第七章成矿物质来源成矿解读
- 格式:ppt
- 大小:2.29 MB
- 文档页数:72
矿床成矿物质来源与成矿机制矿床是指地壳中含有经济价值的矿石或者矿石聚集的地质体。
而矿物质来源与成矿机制则是解释矿床形成的关键因素。
一、矿物质来源矿床中的矿石或矿石聚集主要来自地壳中的矿物质。
地壳是地球上最外层的固体岩石壳层,它包括了洲际壳和海洋壳。
研究表明,地壳中含有大量的金属、非金属和半金属矿物质。
地壳中的矿物质来源主要有以下几个方面:1. 玄武岩类和火山岩类:这些岩石中含有较高的含金属矿物和宝石矿物含量。
火山喷发和岩浆的运动能够将这些矿物质带到地表,形成热液和气液流体,促进矿石的聚集。
2. 沉积岩类:沉积岩是由碎屑岩、化学沉积岩和生物沉积岩组成的。
这些岩石会富集一些金属矿物,如金、银、铜等。
同时,含有有机物质的沉积岩也可以形成油气矿床。
3. 特定构造环境:一些构造环境,如断层、褶皱和岩浆活动区,能够促进金属矿物的聚集。
断层带和板块边界是形成金属矿床的重要地质环境。
二、成矿机制成矿机制是解释矿床形成的机制和过程。
虽然具体的成矿机制因矿床类型而异,但总体而言,以下几个机制是主要的:1. 热液活动:地壳中的矿物质会随着岩浆的运动进入热液。
在一定的温度和压力条件下,热液中的溶解矿物质会析出并聚集形成矿床。
2. 流体运移:地下水和热液是形成矿床的重要介质。
它们通过裂隙和孔隙在地壳中运移,同时带走并沉积矿物质。
3. 化学反应:地球内部和地下水中的化学反应能够引发矿物质的沉淀和聚集。
例如,地下水与岩石中的矿物质反应会生成新的矿物质,从而形成矿床。
4. 生物活动:生物的活动也可以促进矿物质的富集。
例如,一些微生物能够从周围环境中提取金属,形成特殊的矿床。
总的来说,矿床的形成是一个复杂的过程,涉及地壳中的矿物质来源和成矿机制。
了解矿床的来源和形成机制,有助于我们发现和开发地下的矿藏资源,进一步推动矿业的发展。
但同时,也需要平衡资源开发与环境保护之间的关系,以实现可持续发展。
成矿规律、成矿机制、找矿方向一、成矿规律成矿规律是指地球内部物质运动和地壳演化过程中形成矿产资源的一种规律性表现。
它是通过对矿产资源分布、矿床类型、矿化蚀变带等进行系统研究,总结归纳出来的。
成矿规律可以帮助我们理解矿产资源的形成机制,指导矿产资源的勘查和开发工作。
1. 成矿规律的分类根据地质成因的不同,成矿规律可以分为热液成矿规律、沉积成矿规律、变质成矿规律和岩浆成矿规律等。
- 热液成矿规律:热液成矿是指在岩浆活动或岩石圈物质循环过程中,由于热液作用而形成的矿床。
常见的热液成矿规律有热液相分离规律、热液活动形成规律等。
- 沉积成矿规律:沉积成矿是指在地壳形成和演化过程中,由于沉积作用而形成的矿床。
常见的沉积成矿规律有河流沉积规律、海洋沉积规律等。
- 变质成矿规律:变质成矿是指在岩石圈物质循环过程中,由于岩石圈内部高温高压作用而形成的矿床。
常见的变质成矿规律有接触变质规律、区域变质规律等。
- 岩浆成矿规律:岩浆成矿是指在岩浆活动或岩石圈物质循环过程中,由于岩浆作用而形成的矿床。
常见的岩浆成矿规律有火山喷发规律、岩浆侵入规律等。
2. 成矿规律的研究方法研究成矿规律的方法主要包括地质调查、地球化学分析、物理勘探、矿床模拟实验等。
通过对矿产资源的地质调查和研究,可以获取矿床的空间分布、岩相特征、矿石特性等信息,从而总结出成矿规律。
二、成矿机制成矿机制是指矿产资源形成的物理、化学和地质过程。
了解成矿机制可以帮助我们理解矿床的形成过程,从而指导矿产资源的勘查和开发工作。
1. 成矿物质来源成矿物质来源主要有地幔、地壳和外部输入三个方面。
地幔来源的成矿物质主要是岩浆和热液,地壳来源的成矿物质主要是沉积物和变质岩,外部输入的成矿物质主要是降水和大气等。
2. 成矿过程成矿过程包括物理、化学和地质过程。
物理过程主要是岩浆侵入、岩浆喷发、热液活动等;化学过程主要是热液作用、溶解沉淀、离子交换等;地质过程主要是构造运动、沉积作用、变质作用等。
地球矿产资源及其形成作用(21)胡经国第七章成矿分区第一节成矿分区概述一、矿带及其分类㈠、矿带的定义矿带(Ore Zone)是指具有共同地质构造特征和成因联系的矿床或矿床组合的分布地带。
㈡、矿带分类矿带可以分为以下几种类型:1、与一定构造岩相带吻合的矿带如中国祁连山地区与细碧角斑岩带吻合的黄铁矿型铜等多金属矿带。
2、与一定的区域构造断裂带和构造体系吻合的矿带如中国湘西黔东汞矿带。
3、与一定大地构造单元边界吻合的矿带如湘西钨-锑-金矿带等。
内生矿床的矿带常与深断裂、大断裂和破碎带及沿其分布的火山-岩浆活动带有关。
与矿带一致的地质构造单元,往往是三级、四级构造单元。
二、成矿区带的定义成矿区带(Metallogenic Zone/Belt),是指在地质构造、地质发展历史以及在成矿作用与矿床特征等方面具有共性的地区;一般呈狭长带状分布的成矿区带称为成矿带(长宽比大于2),长宽比接近的成矿区带称为成矿区(长宽比小于2∶1)。
第二节地球成矿分区一、地球成矿分区依据按规模或范围大小,地球成矿分区可分为全球性成矿单元、国家或区域性成矿单元、地区性成矿单元等类型。
地球成矿分区一般与大地构造分区或构造体系划分一致,如与环太平洋构造域对应的环太平洋成矿域、与特提斯-地中海构造域对应的特提斯-地中海成矿域等。
其次级成矿单元,有的是按地槽区或褶皱带来划分的,如中国内蒙古海西成矿带,长江中下游中生代成矿带;国外如乌拉尔成矿带,安第斯成矿带等。
范围较小的或次一级的成矿带称为成矿亚带,如祁连山成矿带中的南祁连成矿亚带。
二、地球成矿分区单元划分地球成矿分区与大地构造分区一样,可以根据大地构造分区和成矿作用特征等,将其划分为:一级成矿单元(成矿域)、二级成矿单元(成矿省)、三级成矿单元(成矿区带)、四级成矿单元(次级成矿区带)等。
全球一级成矿单元通常是跨国甚至是跨洲的成矿单元,称为成矿域。
全球主要的金属矿产成矿域有:环(滨)太平洋成矿域、特提斯-地中海成矿域、古亚洲成矿域、前寒武系成矿域等。
书山有路勤为径,学海无涯苦作舟
成矿物质来源
也是复杂多样的,成矿物质来源的研究与热液介质来源的研究在探索热液矿床的形成机制、发展热液矿床成矿理论中具有同等重要的地位。
热液成矿作用的成矿物质主要有三个来源:1. 岩浆熔体
岩浆结晶过程中,岩浆中的成矿物质随着岩浆热液的析出,多以络合物的形
式进入热液,形成含矿热液。
2. 地壳岩石
不同来源的热液,在其源区或其运移过程中与不同类型的地壳岩石发生反
应,从而捕获其中的成矿物质,形成含矿热液,进而成矿。
几个因素决定了地壳岩石对热液成矿作用过程中成矿物质的供应:①岩石中成矿组分的最初含量;②热液流体循环过程中所影响的岩石的体积(范围);③岩石和所流经的
热液之间发生水岩反应的强度。
前述的各种来源的热液均可把地壳岩石中的成矿物质活化出来,并使之迁
移、富集成矿。
热液沿围岩的裂隙、孔隙渗滤、运移时,可以和围岩中组分发生反应,这一过程通常称为水岩反应。
通过水-岩反应,一部分物质溶解,使热液中金属组分含量升高,并使围岩中原有金属元素的含量减小。
例如江西德兴铜矿,远离矿体的九岭群中元古界火山-沉积岩系,平均含铜
55 乘以10-6,紧邻矿化-蚀变带的外围有一环形含铜量低值区,宽2~5 km,平均含铜40 乘以10-6,而在矿化蚀变带中含铜(100~1000)乘以10-6 以上,矿化蚀变带中的铜有一部分来自铜元素降低的围岩。
在成矿物质从围岩滤出的过程中,围岩可发生或强或弱的变化。
变质热液可以从变质原岩中带出或从所流经的岩石中萃取成矿物质。
岩浆热
液除了可以把岩浆中的成矿组分带出外,由于其高温特点所决定的高搬运能。