7第7讲 成矿物质来源
- 格式:ppt
- 大小:12.06 MB
- 文档页数:45
金属矿床成矿物质来源的几种常用同位素地球化学研究毛光周;王向军;邓冰红;曹明平;刘晓通;安鹏瑞【摘要】金属矿床成矿物质来源是矿床地球化学工作者最为关心的问题之一.不同矿床成矿物质来源不同,同种矿床甚至同一矿床成矿物质来源也会有不同.成矿物质来源包括成矿元素和成矿流体两方面,目前常用的研究方法主要是同位素地球化学分析.通过研究六种常用同位素(氢、氧、硫、钕、锶、铅)的组成和演化特征,简述同位素在金属矿床成矿物质来源中的应用及注意事项,为矿床成因、成矿模式等研究工作以及同位素方法的合理运用提供参考.【期刊名称】《山东科技大学学报(自然科学版)》【年(卷),期】2016(035)001【总页数】11页(P19-29)【关键词】金属矿床;成矿流体;成矿元素;同位素;物质源区【作者】毛光周;王向军;邓冰红;曹明平;刘晓通;安鹏瑞【作者单位】山东科技大学地球科学与工程学院,山东青岛266590;山东科技大学地球科学与工程学院,山东青岛266590;浙江大昌建设集团大昌爆破工程有限公司,浙江舟山316000;山东科技大学地球科学与工程学院,山东青岛266590;山东科技大学地球科学与工程学院,山东青岛266590;山东科技大学地球科学与工程学院,山东青岛266590【正文语种】中文【中图分类】P597成矿物质来源是研究矿床成因,建立成矿模式等工作的基础[1-4]。
广义的物质来源指成矿元素及其搬运介质——成矿流体,因而成矿物质来源可分为成矿元素和成矿流体两方面[2,5-6]。
二者有时同源,有时异源。
矿床通常具有成矿物质多源性、成矿作用多期性的特点。
成矿物质来源是矿床地球化学、成矿规律学的基本问题之一,也是成矿作用研究的重点[2,7]。
金属矿床物质来源研究主要采用构造地质学、矿床学、流体动力学以及地球化学等理论,探讨成矿物质的宏观及微观信息[8-10]。
同位素地球化学在金属矿床成矿物质来源研究中具有重要作用,通过同位素在地质体中的分布及其运动规律研究,解释岩石和矿石的物质来源及其成因等地质问题[11-17]。
矿床成矿物质来源与成矿机制矿床是指地壳中含有经济价值的矿石或者矿石聚集的地质体。
而矿物质来源与成矿机制则是解释矿床形成的关键因素。
一、矿物质来源矿床中的矿石或矿石聚集主要来自地壳中的矿物质。
地壳是地球上最外层的固体岩石壳层,它包括了洲际壳和海洋壳。
研究表明,地壳中含有大量的金属、非金属和半金属矿物质。
地壳中的矿物质来源主要有以下几个方面:1. 玄武岩类和火山岩类:这些岩石中含有较高的含金属矿物和宝石矿物含量。
火山喷发和岩浆的运动能够将这些矿物质带到地表,形成热液和气液流体,促进矿石的聚集。
2. 沉积岩类:沉积岩是由碎屑岩、化学沉积岩和生物沉积岩组成的。
这些岩石会富集一些金属矿物,如金、银、铜等。
同时,含有有机物质的沉积岩也可以形成油气矿床。
3. 特定构造环境:一些构造环境,如断层、褶皱和岩浆活动区,能够促进金属矿物的聚集。
断层带和板块边界是形成金属矿床的重要地质环境。
二、成矿机制成矿机制是解释矿床形成的机制和过程。
虽然具体的成矿机制因矿床类型而异,但总体而言,以下几个机制是主要的:1. 热液活动:地壳中的矿物质会随着岩浆的运动进入热液。
在一定的温度和压力条件下,热液中的溶解矿物质会析出并聚集形成矿床。
2. 流体运移:地下水和热液是形成矿床的重要介质。
它们通过裂隙和孔隙在地壳中运移,同时带走并沉积矿物质。
3. 化学反应:地球内部和地下水中的化学反应能够引发矿物质的沉淀和聚集。
例如,地下水与岩石中的矿物质反应会生成新的矿物质,从而形成矿床。
4. 生物活动:生物的活动也可以促进矿物质的富集。
例如,一些微生物能够从周围环境中提取金属,形成特殊的矿床。
总的来说,矿床的形成是一个复杂的过程,涉及地壳中的矿物质来源和成矿机制。
了解矿床的来源和形成机制,有助于我们发现和开发地下的矿藏资源,进一步推动矿业的发展。
但同时,也需要平衡资源开发与环境保护之间的关系,以实现可持续发展。
卢氏张家山铁矿床地球化学特征及成矿物质来源摘要:这篇文章探讨了卢氏张家山铁矿床的地球化学特征以及其成矿物质来源。
通过实地考察及分析,研究发现该矿床主要构成由变质岩、斜长石角闪石和石英等构成的非常复杂的夹层岩系,主要包含辉长岩、玄武岩、变质岩和卤水热液活动作用的痕迹。
矿床中的铁元素主要是从本组状体矿物中溶出,并通过一定的热液流体传输而形成的。
关键词:卢氏张家山铁矿床地球化学特征成矿物质来源正文:卢氏张家山铁矿床位于湖北省卢氏县,是当地重要的矿床之一。
本矿床属于断裂发育、深部抬升及末次冰河剥蚀所构成的变质岩族群。
它主要由变质岩、斜长石角闪石和石英组成,形成一种非常复杂的夹层岩。
实地考察发现,其中包含几种不同类型的锆石本体矿物,其中有变质岩、辉长岩、玄武岩和卤水热液活动作用的痕迹。
经过地球化学分析,发现铁元素的主要来源是本组状体矿物,如磷铁矿、云母等,它们受到卤水热液流体的作用而溶出,才形成了本矿床。
我们认为,在张家山矿床中,铁可能是由卤水热液所转移并最终被沉积形成的,并随着矿床的成熟而得以保存。
综上所述,卢氏张家山铁矿床的地球化学特征和成矿物质来源已得到较为清楚的认识。
未来的研究将在深入探究该矿床的地质构造、矿物学和地球化学及其成矿物质来源方面开展更多的工作,以期更准确地掌握该矿床的地质特征和成矿过程。
为了进一步探讨铁矿床的成因,通过利用先进的同位素技术研究发现,该矿床的铁元素主要来源于本组状体矿物中的高锰铁矿和低锰铁矿,并在热液流体的作用下被溶出而形成。
此外,研究表明该矿床的铁元素大部分来源于燕山期华夏弧全新世地壳拉伸期间消融的地幔增生成因源组成体,也可能来源于较晚期的火山侵入岩体。
另外,从 mineral-chemistry 分析结果来看,卢氏张家山铁矿床的磷铁矿的同源性数据指示它可能来自同一来源的热液流体,这种流体中存在铁元素较高的组成,且具有较高的铁氧化物配分系数。
本研究的 mineral-chemistry 结果也支持了铁元素来自本组状体矿物的观点。
书山有路勤为径,学海无涯苦作舟
成矿物质来源
也是复杂多样的,成矿物质来源的研究与热液介质来源的研究在探索热液矿床的形成机制、发展热液矿床成矿理论中具有同等重要的地位。
热液成矿作用的成矿物质主要有三个来源:1. 岩浆熔体
岩浆结晶过程中,岩浆中的成矿物质随着岩浆热液的析出,多以络合物的形
式进入热液,形成含矿热液。
2. 地壳岩石
不同来源的热液,在其源区或其运移过程中与不同类型的地壳岩石发生反
应,从而捕获其中的成矿物质,形成含矿热液,进而成矿。
几个因素决定了地壳岩石对热液成矿作用过程中成矿物质的供应:①岩石中成矿组分的最初含量;②热液流体循环过程中所影响的岩石的体积(范围);③岩石和所流经的
热液之间发生水岩反应的强度。
前述的各种来源的热液均可把地壳岩石中的成矿物质活化出来,并使之迁
移、富集成矿。
热液沿围岩的裂隙、孔隙渗滤、运移时,可以和围岩中组分发生反应,这一过程通常称为水岩反应。
通过水-岩反应,一部分物质溶解,使热液中金属组分含量升高,并使围岩中原有金属元素的含量减小。
例如江西德兴铜矿,远离矿体的九岭群中元古界火山-沉积岩系,平均含铜
55 乘以10-6,紧邻矿化-蚀变带的外围有一环形含铜量低值区,宽2~5 km,平均含铜40 乘以10-6,而在矿化蚀变带中含铜(100~1000)乘以10-6 以上,矿化蚀变带中的铜有一部分来自铜元素降低的围岩。
在成矿物质从围岩滤出的过程中,围岩可发生或强或弱的变化。
变质热液可以从变质原岩中带出或从所流经的岩石中萃取成矿物质。
岩浆热
液除了可以把岩浆中的成矿组分带出外,由于其高温特点所决定的高搬运能。
成矿系统中成矿物质来源成矿物质是成矿系统中的物质基础,包括金属元素、非金属元素、有机质和他们的化合物。
地幔、地壳和水圈是成矿物质的总仓库,能源源不断地供应成矿物质。
按成矿物质来源可分为幔源、壳源、壳幔混源、海水源、大气降水源以及星外源等,其中地幔、地壳来源是最重要的。
成矿物质即可直接来源于一般岩石,也可来源于已初步富集某些矿质的矿源层(岩)。
对矿源层研究的大量文献表明,具备矿源层(岩)固然有利于成矿;不具备矿源层(岩)但成矿地质作用强烈、持续或反复多次,也能将一般岩石中某些成矿物质反复萃取和高度浓集而形成矿体。
矿质来源地壳称为矿源场,类似名词但更宏观的有金属省或地球化学省,它们作区域性分布,并能在较长的地质历史中贡献成矿物质。
一个成矿系统中有一个或若干个矿源场,可是同一性质的,液可以是不同性质的。
矿床中的矿质可是单组成的,如单一的铜矿,液可以是多组成的,它们或来自同一个矿源场,或来自不同矿源场而在运动汇集过程中实行多组分耦合而形成多矿种矿体。
作为矿质直接来源的含矿岩石建造比较易于查明,而作为矿质间接来源的原生矿源地,因其反复变动或距矿产地很远而不易追溯。
现今已有较系统的同位素地球化学和元素等示踪方法,用以提供关于成矿物质来源地的线索。
成矿流体是指各类地质流体经过一定的地质演化而演变为包含和搬运成矿物质的那一部分流体,包括来源于大气降水、海水、地层水、岩浆水、变质水和幔源的流体等,一些矿化剂也以多种形式被溶于水中参与对矿质的搬运和沉淀、聚集成矿物质,是沟通矿源场、运移场合储运场的纽带和媒介,因而是成矿系统中最为活跃的要素。
流体的稳定、充分供应是成矿系统能否正常运行的关键。
在一个成矿系统中,成矿流体可以是一种类型、一个来源,也可以是几种类型、几个来源的耦合。
热液矿床热液及成矿物质来源1含矿热液的种类与来源含矿热液的来源是矿床学的重要基础理论问题之一。
虽然争论一直存在,但根据多种数据和资料的综合分析研究,大多数研究者已经接受含矿热液主要有下列几种类型:1. 岩浆成因热液(magmatic fluid )指在岩浆结晶过程中从岩浆中释放出来的热水溶液,最初是岩浆体系的组成部分。
由于岩浆热液中常含有 H 2S 、HCl 、HF 、SO 2、CO 、CO 2、H 2、N 2等挥发组分,故具有很强的形成金属络合物并使其迁移活动的能力。
很多证据表明岩浆水的存在有多方面的证据,如:快速冷却的火山岩含水量一般为0.2%~5%,最高可达12%(如某些松脂岩);另外岩浆岩大量的含水硅酸盐矿物也是岩浆含水的最好证明。
按Holland 的实验,只有当与硅酸盐熔浆共存的蒸气相中H 2O 分压超过4.94×107Pa 时,黑云母和角闪石才可从英安质熔体中析出,形成斑晶。
在花岗闪长岩中黑云母和角闪石的含量为10%~30%(体积),水分压应在4.94×107~9.87×108Pa ,含水量约为2%~4%;若新鲜的中酸性岩含水4%左右,则在其结晶时可失水1%~3%,这些水可以构成岩浆流体的主要来源。
对热液矿床中矿物及其中流体包裹体氢氧同位素成分的分析结果,也证实部分热液矿床形成的早期,确有岩浆流体存在。
岩浆流体从岩浆析出的过程和数量,与岩浆结晶的深度、温度、初始含水量、成分和流体相的组成有关,也受到围岩渗透性和裂隙系统发育程度的影响,其中最重要的是岩浆侵位深度和岩浆的初始含水量。
Burnham (1979)实验表明,岩浆中溶解的H 2O 重量百分比随压力的升高而加大(图5-l )。
如果深处形成的岩浆水含量未达到饱和,那么只有当这种岩浆上升到近地表处,或在岩浆结晶的晚期或末期,当无水的硅酸盐矿物(如辉石、长石等)部分或大部分结晶以后,在构造活动或水热爆发作用打开裂隙时,才有较少的岩浆气液析出;相反,初始含水量很高,在深处就已成为水和其他挥发分饱和的硅酸盐熔浆,在较深处或在岩浆结晶较早阶段,即可有岩浆流体相析出。