7第7讲 成矿物质来源
- 格式:ppt
- 大小:12.06 MB
- 文档页数:45
金属矿床成矿物质来源的几种常用同位素地球化学研究毛光周;王向军;邓冰红;曹明平;刘晓通;安鹏瑞【摘要】金属矿床成矿物质来源是矿床地球化学工作者最为关心的问题之一.不同矿床成矿物质来源不同,同种矿床甚至同一矿床成矿物质来源也会有不同.成矿物质来源包括成矿元素和成矿流体两方面,目前常用的研究方法主要是同位素地球化学分析.通过研究六种常用同位素(氢、氧、硫、钕、锶、铅)的组成和演化特征,简述同位素在金属矿床成矿物质来源中的应用及注意事项,为矿床成因、成矿模式等研究工作以及同位素方法的合理运用提供参考.【期刊名称】《山东科技大学学报(自然科学版)》【年(卷),期】2016(035)001【总页数】11页(P19-29)【关键词】金属矿床;成矿流体;成矿元素;同位素;物质源区【作者】毛光周;王向军;邓冰红;曹明平;刘晓通;安鹏瑞【作者单位】山东科技大学地球科学与工程学院,山东青岛266590;山东科技大学地球科学与工程学院,山东青岛266590;浙江大昌建设集团大昌爆破工程有限公司,浙江舟山316000;山东科技大学地球科学与工程学院,山东青岛266590;山东科技大学地球科学与工程学院,山东青岛266590;山东科技大学地球科学与工程学院,山东青岛266590【正文语种】中文【中图分类】P597成矿物质来源是研究矿床成因,建立成矿模式等工作的基础[1-4]。
广义的物质来源指成矿元素及其搬运介质——成矿流体,因而成矿物质来源可分为成矿元素和成矿流体两方面[2,5-6]。
二者有时同源,有时异源。
矿床通常具有成矿物质多源性、成矿作用多期性的特点。
成矿物质来源是矿床地球化学、成矿规律学的基本问题之一,也是成矿作用研究的重点[2,7]。
金属矿床物质来源研究主要采用构造地质学、矿床学、流体动力学以及地球化学等理论,探讨成矿物质的宏观及微观信息[8-10]。
同位素地球化学在金属矿床成矿物质来源研究中具有重要作用,通过同位素在地质体中的分布及其运动规律研究,解释岩石和矿石的物质来源及其成因等地质问题[11-17]。
矿床成矿物质来源与成矿机制矿床是指地壳中含有经济价值的矿石或者矿石聚集的地质体。
而矿物质来源与成矿机制则是解释矿床形成的关键因素。
一、矿物质来源矿床中的矿石或矿石聚集主要来自地壳中的矿物质。
地壳是地球上最外层的固体岩石壳层,它包括了洲际壳和海洋壳。
研究表明,地壳中含有大量的金属、非金属和半金属矿物质。
地壳中的矿物质来源主要有以下几个方面:1. 玄武岩类和火山岩类:这些岩石中含有较高的含金属矿物和宝石矿物含量。
火山喷发和岩浆的运动能够将这些矿物质带到地表,形成热液和气液流体,促进矿石的聚集。
2. 沉积岩类:沉积岩是由碎屑岩、化学沉积岩和生物沉积岩组成的。
这些岩石会富集一些金属矿物,如金、银、铜等。
同时,含有有机物质的沉积岩也可以形成油气矿床。
3. 特定构造环境:一些构造环境,如断层、褶皱和岩浆活动区,能够促进金属矿物的聚集。
断层带和板块边界是形成金属矿床的重要地质环境。
二、成矿机制成矿机制是解释矿床形成的机制和过程。
虽然具体的成矿机制因矿床类型而异,但总体而言,以下几个机制是主要的:1. 热液活动:地壳中的矿物质会随着岩浆的运动进入热液。
在一定的温度和压力条件下,热液中的溶解矿物质会析出并聚集形成矿床。
2. 流体运移:地下水和热液是形成矿床的重要介质。
它们通过裂隙和孔隙在地壳中运移,同时带走并沉积矿物质。
3. 化学反应:地球内部和地下水中的化学反应能够引发矿物质的沉淀和聚集。
例如,地下水与岩石中的矿物质反应会生成新的矿物质,从而形成矿床。
4. 生物活动:生物的活动也可以促进矿物质的富集。
例如,一些微生物能够从周围环境中提取金属,形成特殊的矿床。
总的来说,矿床的形成是一个复杂的过程,涉及地壳中的矿物质来源和成矿机制。
了解矿床的来源和形成机制,有助于我们发现和开发地下的矿藏资源,进一步推动矿业的发展。
但同时,也需要平衡资源开发与环境保护之间的关系,以实现可持续发展。
卢氏张家山铁矿床地球化学特征及成矿物质来源摘要:这篇文章探讨了卢氏张家山铁矿床的地球化学特征以及其成矿物质来源。
通过实地考察及分析,研究发现该矿床主要构成由变质岩、斜长石角闪石和石英等构成的非常复杂的夹层岩系,主要包含辉长岩、玄武岩、变质岩和卤水热液活动作用的痕迹。
矿床中的铁元素主要是从本组状体矿物中溶出,并通过一定的热液流体传输而形成的。
关键词:卢氏张家山铁矿床地球化学特征成矿物质来源正文:卢氏张家山铁矿床位于湖北省卢氏县,是当地重要的矿床之一。
本矿床属于断裂发育、深部抬升及末次冰河剥蚀所构成的变质岩族群。
它主要由变质岩、斜长石角闪石和石英组成,形成一种非常复杂的夹层岩。
实地考察发现,其中包含几种不同类型的锆石本体矿物,其中有变质岩、辉长岩、玄武岩和卤水热液活动作用的痕迹。
经过地球化学分析,发现铁元素的主要来源是本组状体矿物,如磷铁矿、云母等,它们受到卤水热液流体的作用而溶出,才形成了本矿床。
我们认为,在张家山矿床中,铁可能是由卤水热液所转移并最终被沉积形成的,并随着矿床的成熟而得以保存。
综上所述,卢氏张家山铁矿床的地球化学特征和成矿物质来源已得到较为清楚的认识。
未来的研究将在深入探究该矿床的地质构造、矿物学和地球化学及其成矿物质来源方面开展更多的工作,以期更准确地掌握该矿床的地质特征和成矿过程。
为了进一步探讨铁矿床的成因,通过利用先进的同位素技术研究发现,该矿床的铁元素主要来源于本组状体矿物中的高锰铁矿和低锰铁矿,并在热液流体的作用下被溶出而形成。
此外,研究表明该矿床的铁元素大部分来源于燕山期华夏弧全新世地壳拉伸期间消融的地幔增生成因源组成体,也可能来源于较晚期的火山侵入岩体。
另外,从 mineral-chemistry 分析结果来看,卢氏张家山铁矿床的磷铁矿的同源性数据指示它可能来自同一来源的热液流体,这种流体中存在铁元素较高的组成,且具有较高的铁氧化物配分系数。
本研究的 mineral-chemistry 结果也支持了铁元素来自本组状体矿物的观点。