2015-2016学年北京市海淀区九年级第一学期数学期末试卷(含答案)
- 格式:doc
- 大小:1.16 MB
- 文档页数:17
2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。
海淀区九年级第一学期期末数学练习答案及评分标准2016.1一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.(本小题满分5分)解:原式212=+⎝⎭……………………………3分 1122=+ ……………………………4分 =……………………………5分18.(本小题满分5分)解法一:522=+x x .15122+=++x x . ……………………………2分6)1(2=+x . ……………………………3分61±=+x .16-±=x .∴161-=x ,162--=x . ……………………………5分 解法二:521-===c b a ,,. ∆=ac b 42-)5(1422-⨯⨯-=204+==240>. …………………………2分∴2x a =221-=⨯ ……………………………3分22-±=1=-. ∴161-=x ,162--=x . ………………………………5分19.(本小题满分5分)证明:∵DE //AB ,∴∠CAB =∠EDA . ………………………………3分∵∠B =∠DAE ,∴△ABC ∽△DAE . ………………………………5分20.(本小题满分5分)解:∵m 是方程210x x +-=的一个根,∴210m m +-=. ………………………………1分∴21m m +=.∴22211m m m =+++-原式 ………………………………3分 222m m =+2=. ………………………………5分21.(本小题满分5分)解:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-, ∴0428b =-+. ………………………………1分∴6b =. ………………………………2分∴二次函数解析式为268y x x =++. ………………………………3分 即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-. ……5分22.(本小题满分5分)解:(1)216y x x =-+; ………………………………2分(2)∵216y x x =-+,∴2(8)64y x =--+. ………………………………4分∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米. ………………………………5分 23.(本小题满分5分)解:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA =90°. ∴∠A+∠ADE =90°. ∵∠ACB =90︒, ∴∠A+∠B =90°.∴∠ADE =∠B . ………………………………1分 在Rt △ABC 中,∵AC =12,BC =5, ∴AB =13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==.………………………………3分 ∵ 12AC AD CD =+=, ∴51213x x +=. .………………………………4分 解得263x =. ∴ 263AD =. …………………………5分 解法二:(1) ∵90DE AB C ⊥∠=︒,, ∴90DEA C ∠=∠=︒. ∵A A ∠=∠, ∴△ADE ∽△ABC .∴ADE B ∠=∠. ………………………… 1分 在Rt △ABC 中,∵12,5AC BC ==, ∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠==…………………………2分 (2) 由(1)可知 △ADE ∽△ABC . ∴.DE AD BC AB= ………………………………3分设AD x =,则12DE DC x ==-. ∴12513x x-=. .………………………………4分 解得263x =.∴263AD =.…………………………5分 24.(本小题满分5分)解:(1) ∵直线2-=kx y 过点A (3,1),∴132k =-. ∴1k =.∴直线的解析式为2y x =-. ………………………………2分 ∵双曲线xmy =过点A (3,1), ∴3m =.∴双曲线的解析式为3y x=. ………………………………3分 (2)3,22⎛⎫⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭. ………………………………5分 25.(本小题满分5分) 解:如图,依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FDEFβ, ∴FD EF 2.1=.G在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==. ………………………2分 ∵10=-=FD CF CD , ∴50=FD .∴602.1==FD EF . ……………………4分 ∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米. ………………………………5分 26.(本小题满分5分)解:如图,(1)连接BO 并延长交⊙O 于点M ,连接MC .∴∠A =∠M ,∠MCB =90°. ∴∠M +∠MBC =90°. ∵DE 是⊙O 的切线, ∴∠CBE +∠MBC =90°. ∴M CBE ∠=∠.∴A CBE ∠=∠. ………………………………2分 (2) 过点C 作CN DE ⊥于点N . ∴ 90CNF ∠=︒.由(1)得,M CBE A ∠=∠=∠. ∴tan tan tan 2M CBE A =∠==. 在Rt △BCM 中,∵5tan 2BM M ==,,∴BC = ………………………………3分 在Rt △CNB 中,∵tan 2BC CBE =∠=, ∴42CN BN ==,. .………………………………4分 ∵2BF =,∴4FN BF BN =+=. 在Rt △FNC 中, ∵4,4FN CN ==,∴CF = …………………………5分 27.(本小题满分6分) 解:(1)①(2,12); ………………………………1分 ②7; ………………………………2分(2)11y x=+; ………………………………4分 (3)如图. ………………………………6分28. (本小题满分8分)解:(1)3; ………………………………1分(2)①如图,△EDF 即为所求; ………………………………3分②在AD 上截取AH ,使得AH =DE ,连接OA 、OD 、OH . ∵点O 为正方形ABCD 的中心,∴OA OD =, 90AOD ∠=︒,1245∠=∠=︒. ∴△ODE ≌△OAH . ………………………………4分 ∴DOE AOH ∠=∠,OE OH =. ∴90EOH ∠=︒.∵△EDF 的周长等于AD 的长,∴EF HF =. ………………………………5分 ∴△EOF ≌△HOF .∴45EOF HOF ∠=∠=︒. ………………………………6分③3. ………………………………8分 29.(本小题满分8分)解:(1)(3,0); ……………………1分(2)点A 、点B 的位置如图所示;…………………………3分(3)①如图,∵特征点C 为直线4y x =-上一点, ∴4b a =-.∵抛物线2y ax bx =+的对称轴与x 轴交于点D ,∴对称轴22bx a=-=.∴点D 的坐标为2,0(). ……………………………4分 ∵点F 的坐标为(1,0),∴1DF =.∵特征直线y =ax +b 交y 轴于点E , ∴点E 的坐标为0,b (). ∵点C 的坐标为,a b (), ∴CE ∥DF . ∵DE ∥CF ,∴四边形DECF 为平行四边形.∴1CE DF ==.………………………………5分∴1a =-.∴特征点C 的坐标为1,4-(). ………………………………6分 ②102b -≤<或548b <<. ………………………………8分。
海淀区九年级第一学期期中测评数 学 试 卷(分数:120分 时间:120分钟) 2015.11学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是A .2,1,3B .2,1,3-C . 2,1,3-D .2,1,3-- 2.下列图形是中心对称图形的是A .B .C .D .3.二次函数2(+1)2y x =--的最大值是A .2-B .1-C .1D .24.已知⊙O 的半径是4,OP 的长为3,则点P 与⊙O 的位置关系是 A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定5.将抛物线2y x =沿y 轴向下平移2个单位,得到的抛物线的解析式为A .22y x =+ B .22y x =- C .()22y x =+ D .()22y x =-6.已知扇形的半径为6,圆心角为60︒,则这个扇形的面积为A .9πB .6πC .3πD .π 7.用配方法解方程243x x +=,下列配方正确的是A .()221x -= B .()227x -= C .()227x += D .()221x +=8.已知二次函数c bx ax y ++=2的图象如图所示,则下列选 项中不正确...的是 A .0a < B .0c >C .0 <12ba-< D .0a b c ++<9.如图,△ABC 内接于⊙O ,BD 是⊙O 的直径.若 33=∠DBC ,则A ∠等于A . 33B .57C .67D .6610.小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如下表:x /分 … 2.66 3.23 3.46 …y /米…69.1669.6268.46…下列选项中,最接近摩天轮转一圈的时间的是A .7分B .6.5分C .6分D .5.5分 二、填空题(本题共18分,每小题3分)11.方程240x -=的解为_______________.12. 请写出一个开口向上且经过(0, 1)的抛物线的解析式_________. 13.若二次函数225y x =-的图象上有两个点(2,)A a 、(3,)B b , 则a____b (填“<”或“=”或“>”).14.如图,A 、B 、C 三点在⊙O 上,∠AOC =100°,则∠ABC =______°.15.用一块直径为4米的圆桌布平铺在对角线长为4米的正方形桌面上(如示意图),若四周下垂的最大长度相等,则这个最大长度x 为_______米(2取1.4).16.如图,O 是边长为1的等边△ABC 的中心,将AB 、BC 、CA 分别绕点A 、点B 、点C 顺时针旋转α(0180α︒<<︒),得到'AB 、'BC 、'CA ,连接''A B 、''B C 、''A C 、'OA 、'OB . (1)''A OB ∠=_______〬; (2)当α= 〬时,△'''A B C 的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解方程:232x x =-.18.若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值.19.已知点(3, 0)在抛物线k x k x y -++-=)3(32上,求此抛物线的对称轴.20.如图,AC 是⊙O 的直径,P A , PB 是⊙O 的切线,A , B 为切点, 25=∠BAC .求∠P 的度数.21.已知x =1是方程2250x ax a -+=的一个根,求代数式23157a a --的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m ,水面宽AB 为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m ,求水面下降的高度.23.已知关于x 的方程)0(0)3(32>=---a a x a x . (1)求证:方程总有两个不相等的实数根; (2)若方程有一个根大于2,求a 的取值范围.24.在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感.按此比例,如果雕像的高为2m ,那么它的下部应设计为多高(5取2.2 ).25.已知AB 是⊙O 的直径,AC 、AD 是⊙O 的弦,AB =2,AC =2,AD =1,求∠CAD 的度数.26.抛物线21y xbx c =++与直线22y x m =-+相交于A (2,)n -、B (2,3)-两点.(1)求这条抛物线的解析式;(2)若14≤≤-x ,则21y y -的最小值为________.27.如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D . P 为AB 延长线上一点,2PCD BAC ∠=∠. (1)求证:CP 为⊙O 的切线; (2)BP =1,5CP =. ①求⊙O 的半径;②若M 为AC 上一动点,则OM +DM 的最小值为 .28.探究活动:利用函数(1)(2)y x x =--的图象(如图1)和性质,探究函数(1)(2)y x x =--的图象与性质.下面是小东的探究过程,请补充完整:(1)函数(1)(2)y x x =--的自变量x 的取值范围是___________;(2)如图2,他列表描点画出了函数(1)(2)y x x =--图象的一部分,请补全函数图象;图1 图2解决问题:设方程1(1)(2)04x x x b ----=的两根为1x 、2x ,且12x x <,方程21324x x x b -+=+的两根为3x 、4x ,且34x x <.若12b <<,则1x 、2x 、3x 、4x 的大小关系为 (用“<”连接).29.在平面直角坐标系xOy 中,半径为1的⊙O 与x 轴负半轴交于点A ,点M 在⊙O 上,将点M 绕点A 顺时针旋转60︒得到点Q . 点N 为x 轴上一动点(N 不与A 重合 ),将点M 绕点N 顺时针旋转60︒得到点P . PQ 与x 轴所夹锐角为α. (1) 如图1,若点M 的横坐标为21,点N 与点O 重合,则α=________︒; (2) 若点M 、点Q 的位置如图2所示,请在x 轴上任取一点N ,画出直线PQ ,并求α的度数;(3) 当直线PQ 与⊙O 相切时,点M 的坐标为_________.图1 图2 备用图海淀区九年级第一学期期中测评数学试卷参考答案一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案DAAABBCDBC二、填空题(本题共18分,每小题3分) 题 号 111213 14 1516 答 案 ,21=x 22-=x21y x =+(答案不唯一)<1300.6120,150三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:2320.x x -+= ……………………………………………1分0)2)(1(=--x x . ……………………………………………3分∴01=-x 或02=-x .∴2,121==x x . ………………………………………………………5分18.解:∵抛物线a x x y ++=32与x 轴只有一个交点,∴0∆=,………………………………………2分即940a -=.……………………………………………4分 ∴49=a .……………………………………………5分19.解:∵点(3, 0)在抛物线k x k x y -++-=)3(32上,∴k k -++⨯-=)3(33302.………………………………………2分 ∴9=k .……………………………………………3分 ∴抛物线的解析式为91232-+-=x x y .∴对称轴为2=x .……………………………………………5分20.解:∵P A ,PB 是⊙O 的切线,∴P A =PB .………………………………………1分∴PBA PAB ∠=∠.………………………………………2分∵AC 为⊙O 的直径, ∴CA ⊥P A .∴90=∠PAC º.………………………………………3分 ∵25=∠BAC º,∴65=∠PAB º.………………………………………4分∴502180=∠-=∠PAB P º.………………………………………5分21.解:∵1=x 是方程0522=+-a ax x 的一个根,∴0512=+-a a .………………………………………2分 ∴152-=-a a .…………………………………………3分 ∴原式7)5(32--=a a ………………………………………4分10-=.………………………………………5分22.解:如图,下降后的水面宽CD 为1.2m ,连接OA , OC ,过点O 作ON ⊥CD 于N ,交AB 于M .………………………… 1分∴90ONC ∠=º.∵AB ∥CD ,∴90OMA ONC ∠=∠=º. ∵ 1.6AB =, 1.2CD =, ∴10.82AM AB ==,10.62CN CD ==. …………………………2分 在Rt △OAM 中,∵1OA =,∴220.6OM OA AM =-=. ………………………………3分 同理可得0.8ON =.………………………………4分 ∴0.2.MN ON OM =-=答:水面下降了0.2米.…………………………5分23.(1)证明: 22)3()(34)3(+=-⨯⨯--=∆a a a .……………………………1分∵0>a , ∴2(3)0a +>.即0>∆.∴方程总有两个不相等的实数根.……………………………………………2分(2)解方程,得3,121ax x =-=.……………………………………………4分 ∵方程有一个根大于2,∴23>a. ∴6>a .……………………………………………5分24.解:如图,雕像上部高度AC 与下部高度BC 应有2::BC BC AC =,即AC BC 22=.设BC 为x m. …………………………………1分依题意,得)2(22x x -=..………………………………………3分 解得,511+-=x 512--=x (不符合题意,舍去).……4分51 1.2-≈.答:雕像的下部应设计为1.2m .…………………………5分25. 解:如图1,当点D 、C 在AB 的异侧时,连接OD 、BC . ………1分∵AB 是⊙O 的直径,∴90ACB ∠=º. 在Rt △ACB 中, ∵2=AB ,2AC =, ∴2BC =.∴45BAC ∠=º.………………2分 ∵1OA OD AD ===,∴60BAD ∠=º.………………3分∴105CAD BAD BAC ∠=∠+∠=º.………………4分当点D 、C 在AB 的同侧时,如图2,同理可得45BAC ∠=︒,60BAD ∠=︒.∴15CAD BAD BAC ∠=∠-∠=º.∴CAD ∠为15º或105º. …………………5分26.解:(1)∵直线m x y +-=22经过点B (2,-3),∴m +⨯-=-223.∴1=m .……………………………………………1分 ∵直线22y x m =-+经过点A (-2,n ),∴5n =.……………………………………………2分∵抛物线21y xbx c =++过点A 和点B , ∴⎩⎨⎧++=-+-=.243,245c b c b ∴⎩⎨⎧-=-=.3,2c b ∴3221--=x x y .……………………………………………4分(2)12-. ……………………………………………5分27.(1)证明:连接OC . ……………………………1分∵∠PCD =2∠BAC ,∠POC =2∠BAC ,∴∠POC =∠PCD .……………………………2分∵CD ⊥AB 于点D ,∴∠ODC =90︒.∴∠POC+∠OCD =90º.∴∠PCD+∠OCD =90º.∴∠OCP =90º.∴半径OC ⊥CP .∴CP 为⊙O 的切线. ……………………………………………3分(2)解:①设⊙O 的半径为r .在Rt △OCP 中,222OC CP OP +=. ∵1,5,BP CP == ∴222(5)(1)r r +=+. ………………………4分解得2r =.∴⊙O 的半径为2. ……………………………………………5分 ②2143. ……………………………………………7分28.解:(1)1x ≤或2x ≥;……………………………………………2分(2)如图所示:……………………………………5分1342x x x x <<<. .……………………………………………7分29. 解:(1)60. ……………………………………………2分(2).……………………………………………3分连接,MQ MP .记,MQ PQ 分别交x 轴于,E F .∵将点M 绕点A 顺时针旋转60︒得到点Q ,将点M 绕点N 顺时针旋转60︒得到点P , ∴△MAQ 和△MNP 均为等边三角形. ………………4分∴MA MQ =,MN MP =,60AMQ NMP ∠=∠=︒.∴AMN QMP ∠=∠. ∴△MAN ≌△MQP . .………………………………5分∴MAN MQP ∠=∠.∵AEM QEF ∠=∠,∴60QFE AMQ ∠=∠=︒.∴60α=︒. .…………………………………………….6分(3)(32,12)或(32-,12-). ………………………8分x yF E P Q AO MN。
海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟) 2016.1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.A .53 B .54 C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80° 3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+B7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、 3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A B .163 C D .129.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-)C .(2-,3)或(2,3-)D .(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若 点A 的坐标是(1,2),则点B 的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数, 谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.计算:2sin 303tan 60cos 45︒+︒-︒. 18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.A24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线 2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线xmy =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan50︒取1.2)26.如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF . (1)求证:CBE A ∠=∠;(2)若⊙O 的直径为5,2BF =,tan 2A =,求CF 的长.27.如图,在平面直角坐标系xOy 中,定义直线x m =与双曲线n ny x=的交点,m n A (m 、n 为 正整数)为 “双曲格点”,双曲线n ny x=在第一象限内的部分沿着竖直方向平移或以平行 于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”2,1A 的坐标为 ;②若线段4,34,n A A 的长为1个单位长度,则n = ; (2)图中的曲线f 是双曲线11y x=的一条“派生曲线”,且经过点2,3A ,则f 的解析式为 y = ; (3)画出双曲线33y x =的“派生曲线”g (g 与双曲线33y x=不重合),使其经过“双曲格 点”2,a A 、3,3A 、4,b A .28.(1)如图1,△ABC 中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,连接BD .若AC =2, BC =1,则△BCD 的周长为 ;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹); ②在图3中补全图形,求EOF ∠的度数; ③若89AF CE=,则OF OE的值为 .29.在平面直角坐标系xOy 中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,C ,a b ()为其特征点.设抛物线2y ax bx =+与其特征直线交于A 、B 两点(点A 在点B 的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为 ; (2)若抛物线2y ax bx =+如图所示,请在所给图中标出点A 、点B 的位置;(3)设抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐 标为(1,0),DE ∥CF .①若特征点C 为直线4y x =-上一点,求点D 及点C 的坐标;②若1tan 22ODE <∠<,则b 的取值范围是 .海淀区九年级第一学期期末数学练习答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.(本小题满分5分)解:原式2122⎛=+ ⎝⎭……………………………3分 1122=+ ……………………………4分 =……………………………5分18.(本小题满分5分) 解法一:522=+x x .15122+=++x x . ……………………………2分 6)1(2=+x . ……………………………3分 61±=+x . 16-±=x .∴161-=x ,162--=x . ……………………………5分解法二:521-===c b a ,,. ∆=ac b 42-)5(1422-⨯⨯-=204+==240>. …………………………2分∴2b x a-±=221-±=⨯ ……………………………3分22-±=1=-.∴161-=x ,162--=x . ………………………………5分 19.(本小题满分5分) 证明:∵DE //AB ,∴∠CAB =∠EDA . ………………………………3分 ∵∠B =∠DAE ,∴△ABC ∽△DAE . ………………………………5分 20.(本小题满分5分)解:∵m 是方程210x x +-=的一个根,∴210m m +-=. ………………………………1分 ∴21m m +=.∴22211m m m =+++-原式 ………………………………3分 222m m =+2=. ………………………………5分 21.(本小题满分5分)解:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-, ∴0428b =-+. ………………………………1分∴6b =. ………………………………2分∴二次函数解析式为268y x x =++. ………………………………3分 即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-. ……5分22.(本小题满分5分)解:(1)216y x x =-+; ………………………………2分(2)∵216y x x =-+,∴2(8)64y x =--+. ………………………………4分∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米. ………………………………5分 23.(本小题满分5分)解:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA =90°. ∴∠A+∠ADE =90°. ∵∠ACB =90︒, ∴∠A+∠B =90°.∴∠ADE =∠B . ………………………………1分在Rt △ABC 中,∵AC =12,BC =5, ∴AB =13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==.………………………………3分 ∵ 12AC AD CD =+=,∴ 51213x x +=. .………………………………4分解得263x =. ∴ 263AD =. …………………………5分 解法二:(1) ∵90DE AB C ⊥∠=︒,, ∴90DEA C ∠=∠=︒.A∵A A ∠=∠, ∴△ADE ∽△ABC .∴ADE B ∠=∠. ………………………… 1分 在Rt △ABC 中,∵12,5AC BC ==, ∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠==…………………………2分 (2) 由(1)可知 △ADE ∽△ABC .∴ .DE AD BC AB = ………………………………3分 设AD x =,则12DE DC x ==-. ∴12513x x-=. .………………………………4分 解得263x =.∴263AD =.…………………………5分 24.(本小题满分5分)解:(1) ∵直线2-=kx y 过点A (3,1),∴132k =-. ∴1k =.∴直线的解析式为2y x =-. ………………………………2分 ∵双曲线xmy =过点A (3,1), ∴3m =.∴双曲线的解析式为3y x=. ………………………………3分 (2)3,22⎛⎫⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭. ………………………………5分 25.(本小题满分5分) 解:如图,依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FD EFβ,∴FD EF 2.1=.在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==. ………………………2分∵10=-=FD CF CD ,∴50=FD .∴602.1==FD EF . ……………………4分 ∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米. ………………………………5分26.(本小题满分5分)解:如图,(1)连接BO 并延长交⊙O 于点M ,连接MC .∴∠A =∠M ,∠MCB =90°.∴∠M +∠MBC =90°.∵DE 是⊙O 的切线,∴∠CBE +∠MBC =90°.∴M CBE ∠=∠.∴A CBE ∠=∠. ………………………………2分(2) 过点C 作CN DE ⊥于点N .∴ 90CNF ∠=︒.由(1)得,M CBE A ∠=∠=∠.∴tan tan tan 2M CBE A =∠==.在Rt △BCM 中,∵5tan 2BM M ==,,∴BC = ………………………………3分在Rt △CNB 中,∵tan 2BC CBE =∠=,∴42CN BN ==,. .………………………………4分∵2BF =,∴4FN BF BN =+=.在Rt △FNC 中,G12∵4,4FN CN ==,∴CF = …………………………5分27.(本小题满分6分)解:(1)①(2,12); ………………………………1分 ②7; ………………………………2分(2)11y x=+; ………………………………4分 (3)如图. ………………………………6分28. (本小题满分8分)解:(1)3; ………………………………1分(2)①如图,△EDF 即为所求; ………………………………3分②在AD 上截取AH ,使得AH =DE ,连接OA 、OD 、OH .∵点O 为正方形ABCD 的中心,∴OA OD =,90AOD ∠=︒,1245∠=∠=︒.∴△ODE ≌△OAH . ………………………………4分∴DOE AOH ∠=∠,OE OH =.∴90EOH ∠=︒.∵△EDF 的周长等于AD 的长,∴EF HF =. ………………………………5分∴△EOF ≌△HOF .∴45EOF HOF ∠=∠=︒. ………………………………6分③3. ………………………………8分29.(本小题满分8分)解:(1)(3,0); ……………………1分(2)点A 、点B 的位置如图所示;…………………………3分(3)①如图,∵特征点C 为直线4y x =-上一点,∴4b a =-.∵抛物线2y ax bx =+的对称轴与x 轴交于点D , ∴对称轴22bx a =-=.∴点D 的坐标为2,0(). ……………………………4分 ∵点F 的坐标为(1,0),∴1DF =.∵特征直线y =ax +b 交y 轴于点E ,∴点E 的坐标为0,b ().∵点C 的坐标为,a b (),∴CE ∥DF .∵DE ∥CF ,∴四边形DECF 为平行四边形.∴1CE DF ==.………………………………5分14∴1a =-.∴特征点C 的坐标为1,4-(). ………………………………6分 ②102b -≤<或548b <<. ………………………………8分。
北京市北京市海淀区2015-2016学年九年级上学期期末数学试卷一、单选题1. 在△ABC 中,∠C=90°,BC=3,AB=5,则sinA 的值是( ) A . B . C . D .2. 如图,⊙O是△ABC 的外接圆,若∠AOB=100°,则∠ACB 的度数是( )A . 40°B . 50°C . 60°D . 80°3. 抛物线y=(x ﹣2)+1的顶点坐标是( )A . (﹣2,﹣1)B . (﹣2,1)C . (2,﹣1)D . (2,1)4. 若点A (a ,b )在双曲线y=上,则代数式ab ﹣4的值为( )A . -12B . -7C . -1D . 15. 如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为( )A .B .C .D .6. 抛物线y=2x 向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为( )A . y=2(x+1)+3B . y=2(x+1)﹣3C . y=2(x ﹣1)﹣3D . y=2(x ﹣1)+37. 已知点(x , y )、(x , y )、(x , y )在双曲线y=上,当x <0<x <x 时,y 、y 、y 的大小关系是( )A . y <y <yB . y <y <yC . y <y <yD . y <y <y 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,cosD= , 则AB 的长为( )A .B .C .D . 129. 在平面直角坐标系xOy 中,A 为双曲线y=-上一点,点B 的坐标为(4,0).若△AOB 的面积为6,则点A 的坐标为222222112233123123123132312231A . (﹣4,) B . (4,-) C . (﹣2,3)或(2,﹣3) D . (﹣3,2)或(3,﹣2)10. 如图,在平面直角坐标系xOy 中,抛物线y=x +bx+c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若AB=3,则点M 到直线l 的距离为( )A . B . C . 2 D .二、填空题11. 请写一个图象在第二、四象限的反比例函数解析式:________12. 已知关于x 的方程x ﹣6x+m=0有两个不相等的实数根,则m 的取值范围是________13. 如图,在平面直角坐标系xOy 中,△ABC 与△A′B′C′顶点的横、纵坐标都是整数.若△ABC 与△A′B′C′是位似图形,则位似中心的坐标是________ .14. 如图,正比例函数y=mx (m≠0)与反比例函数y=的图象交于A 、B 两点,若点A 的坐标为(1,2),则点B 的坐标是________15. 古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x 尺,则可列方程为________.16. 正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tanB=2,则的值为________(2)将△ABC 绕点D 旋转得到△A′B′C′,连接BB′、CC′.若 , 则tanB 的值为________22三、解答题17. 计算:sin30°+3tan60°﹣cos 45°18. 解方程:x +2x ﹣5=019. 如图,D 是AC 上一点,DE ∥AB ,∠B=∠DAE .求证:△ABC ∽△DAE.20. 已知m 是方程x +x ﹣1=0的一个根,求代数式(m+1)+(m+1)(m ﹣1)的值.21. 已知二次函数y=x +bx+8的图象与x 轴交于A 、B 两点,点A 的坐标为(﹣2,0),求点B 的坐标.22. 如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式?(不要求写自变量的取值范围);(2)求矩形ABCD的最大面积.23. 如图,在△ABC 中,∠ACB=90°,D 为AC 上一点,DE ⊥AB 于点E ,AC=12,BC=5.(1)求cos ∠ADE 的值;(2)当DE=DC 时,求AD的长.24. 如图,在平面直角坐标系xOy 中,双曲线y=与直线y=kx ﹣2交于点A (3,1).(1)求直线和双曲线的解析式;(2)直线y=kx ﹣2与x 轴交于点B ,点P 是双曲线y=上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线y=kx ﹣2于2222225.如图,小嘉利用测角仪测量塔高,他分别站在、两点测得塔顶的仰角为10米.已知小嘉的眼睛距地面的高度 为1.5米,计算塔的高度.(参考数据: 取0.8,取0.6, 取1.2)26. 如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF .(1)求证:∠CBE=∠A ;(2)若⊙O 的直径为5,BF=2,tanA=2,求CF 的长.27. 如图,在平面直角坐标系xOy 中,定义直线x=m 与双曲线y =的交点A (m 、n 为正整数)为“双曲格点”,双曲线y =在第一象限内的部分沿着竖直方向平移或以平行于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”A 的坐标为 ;②若线段A A 的长为1个单位长度,则n= ;(2)图中的曲线f 是双曲线y =的一条“派生曲线”,且经过点A ,则f 的解析式为y=n m , n n 2,14,34,n 12,328. (1)如图1,△ABC 中,∠C=90°,AB 的垂直平分线交AC 于点D ,连接BD .若AC=2,BC=1,求△BCD 的周长为;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF 的度数;③若 , 求的值四、综合题29. 在平面直角坐标系xOy 中,定义直线y=ax+b 为抛物线y=ax +bx 的特征直线,C (a ,b )为其特征点.设抛物线y=ax +bx 与其特征直线交于A 、B 两点(点A 在点B的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为.(2)若抛物线y=ax +bx 如图所示,请在所给图中标出点A 、点B 的位置;(3)设抛物线y=ax +bx 的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐标为(1,0),DE ∥CF .①若特征点C 为直线y=﹣4x 上一点,求点D 及点C 的坐标 ;②若<tan ∠ODE <2,则b 的取值范围是.参考答案1.2.3.4.5.22227.8.9.10.11.12.13.14.15.16.17.18.19.20.22.23.24.25.26.27.28.29.。
2015—2016学年度九年级第一学期数学期末试卷参考答案一、 选择题1、D2、B3、A4、B5、C6、A7、D8、C9、B 10、B 二、 填空题(第14题和第16题,填对一个答案不得分)11、-1 12、122-=x y 13、235cm 14、o o 12060或 15、-4 16、o o 12060或 三、解答题17、(1)x 1=-1,x 2=23 (2)x 1=3,x 2=118、(1)∵△=ac 4-b 2=1-2c <0...................................................................2分 ∴c>21............................................................................................4分(2)∵k=c >21 b=1>0........................................................................5分 ∴图像经过第一、二、三象限.....................................................7分19、(1)∵△=ac 4-b 2...............................................3分∵022≥-)(m ∴422+-)(m >0∴方程总有两个不相等的实数根...4分 (2)当x=1时,解得m=2∴ 此三角形的周长为4+10,4+22..............................7分20、(1)过点D 作DF ⊥BC 与F ,连接OE.......................1分 ∵AD,DC,BC 是⊙O 的切线,设FC=x∴AD=DE=4,EC=BC=4+x4)2(84)12(444222+-=+-=--++=m m m m m m 分另一个根为5............................33,1034212∴===+-x x x x∴DC=x+8在Rt △DFC 中,122+x 2=(x+8)2解得:x=5∴BC=x+4=9.................................................2分(2)由题意得,在Rt △DFC 中,DC=x+y 122+(y-x )2=(x+y )2xy=36,y=x36................................................4分 (3)∵梯形面积为78 ∴7812y36x 21=⨯+)(............................................6分 解得x=4或9................................................7分 21、(1)∵A(-1,2)在反比例函数上,∴-2=1-k.................................................2分 解得:k=3,..............................................3分 ∴x 3=y ..................................................4分(2)当k=11时,∴x10-=y ∵S OPM ∆=21OM ·MP=21y x =21k =5..............................7分 22、(1)设一次函数的解析式为y=kx+b..................................1分 ⎩⎨⎧=+=+30b k 6040b k 50 解得:k=-1,b=90.........................................3分 ∴y=-x+90...............................................4分(2)w=xy =x(-x+90)...................................5分=-x2+90x=-(x-45)2+2025.........................................6分∵x=45在40≦x≦50之间,.....................................7分∴当x=45元时,w取得最大值2025元..........................8分23、证明:∵AC是直径∴∠ANC=90°∵AB=AC∴∠ACN=∠ABN∴∠ABN+∠BAN=90°∴∠ACN+∠PCB=90°∴∠PCB=∠BAN..............................................3分(2)∵AB=AC ∠ANC=90°∴∠CAN=∠BAN∴CN=NM=BN∴∠NMB=∠NBM∴∠AMC=∠CBP∵∠PCB=∠BAN∴△AMN∽△CBP∴=..............................................................7分24、(1)25人............................................................1分(2)a=75 b=10 c=3 ..............................................4分(3)43.2°............................................................5分(4)(树形图略).....................................................7分P (一男一女)=32................................................8分 25、(1)∵ y=ax 2+bx+6经过A(-3,0),B(2,0)∴9a-3b+6=0 4a+2b+6=0解得:a=-1,b=-1∴ y=-x 2-x+6................................................2分(2)∵当x=0时,y=6∴C(0,6) B(2,0)∴设经过点B 和点C 的直线的解析式为y=mx+n∴2m+n=0n=6∴m=-3,n=6∴直线BC 的解析式为y=-3x+6................................3分 ∵点E 在直线y=h 上,∴E(0,h)∵点D 在直线y=h 上,∴D 点的纵坐标为h ,把D 点代入y=-3x+6,解得:X=3h -6 ∴D(3h -6,h)..............................................4分 ∴DE=3h -6 ∴S △BDE=233-h 61-3h -6h 21212+=⋅=⋅)(DE OE .......................5分 ∵61-<0∴当h=23时,△BDE 的面积最大,最大值为23...................6分(3)存在符合题意的直线∵A(-3,0),C(0,6)∴设直线AC 的解析式为y=px+q代入,解得:p=2,q=6∴y=2x+6......................................................7分 把y=h 代入y=2x+6,得x=26-h ∴F (26-h ,h ) 在△OFM 中,OM=2,OF=22h )26h (+- MF=2h )226-h (2++...............8分 若OM=MF,则22h )226h (++-=2.....................................9分 解得:h 1=2,h 2=-56(不合题意,舍去)把y=h 1=2代入 y=-x 2-x+6得x 1=217-1-,x 2=2171-+ ∵点G 在第二象限∴G (217-1-,2)..............................10分 综上所述,存在这样的直线y=2使得OM=MF ;当h=2时,点G (217-1-,2),...................................11分。
海淀区九年级第一学期期末练习2015.1数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到步应得的累加分数.一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案AADCBBCB二、填空题(本题共16分,每小题4分) 9.3π;10. 24 ;11.122,1x x =-=; 12.(1)37,26;(每个答案1分)(2)6.(2分)三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分) 解:原式11122=-+-+……………………………………………………………………4分 12=. ………………………………………………………………………………5分 14.(本小题满分5分)证明:∵AB =AC ,D 是BC 中点,∴AD ⊥BC .…………………………………………………………………………1分 ∴∠ADC =90°. ∵BE ⊥AC , ∴∠BEC =90°.∴∠ADC =∠BEC .……………………………………………………………………3分 在△ACD 和△BCE 中,ACD BCE ADC BEC ∠=∠⎧⎨∠=∠⎩,, ∴△ACD ∽△BCE .……………………………………………………………………5分15.(本小题满分5分)解:由已知,可得2320m m --=.………………………………………………………1分∴223m m -=. ………………………………………………………………………2分∴原式=2211233m m mm m m---===.………………………………………………5分16. (本小题满分5分)解一:设平移后抛物线的表达式为22y x bx c =++.…………………………………1分∵平移后的抛物线经过点(0,3)A ,(2,3)B ,∴3,382.c b c =⎧⎨=++⎩………………………………………………………………………3分解得4,3.b c =-⎧⎨=⎩ …………………………………………………………………………4分所以平移后抛物线的表达式为2243y x x =-+.………………………………5分 解二:∵平移后的抛物线经过点(0,3)A ,(2,3)B ,∴平移后的抛物线的对称轴为直线1x =. …………………………………………1分 ∴设平移后抛物线的表达式为()221y x k =-+.………………………………2分 ∴()23221k =⨯-+..………………………………………………………………3分 ∴1k =..………………………………………………………………………………4分 所以平移后抛物线的表达式为()2211y x =-+. ………………………………5分 17. (本小题满分5分)解:(1)将2x =代入2y x =中,得224y =⨯=.∴点A 坐标为(2,4).………………………………………………………………1分 ∵点A 在反比例函数ky x=的图象上, ∴248k =⨯=.……………………………………………………………………2分 ∴反比例函数的解析式为8y x=.………………………………………………3分 (2)()1,8P 或()1,8P --.……………………………………………………………5分 18.(本小题满分5分)解:(1)∵△ABC 中,∠ACB =90°,4sin 5A =,BC =8, ∴8104sin 5BC AB A ===.…………………………………………………………1分∵△ABC 中,∠ACB =90°,D 是AB 中点, ∴152CD AB ==.…………………………………………………………………2分(2)解法一:过点C 作CF ⊥AB 于F ,如图.∴∠CFD =90°.在Rt △ABC 中,由勾股定理得22221086AC AB BC =-=-=.∵CF AB AC BC ⋅=⋅, ∴245AC BC CF AB ⋅==.………………………………3分 ∵BE ⊥CE ,∴∠BED =90°. ∵∠BDE =∠CDF ,∴∠ABE =∠DCF .………………………………………4分∴24245cos cos 525CF ABE DCF CD ∠=∠===.…………………………………5分 解法二:∵D 是AB 中点,AB =10,∴152BD AB ==.……………………………………………………………………3分 ∴12BDC ABC S S ∆∆=. 在Rt △ABC 中,由勾股定理得22221086AC AB BC =-=-=.∴168242ABC S ∆=⨯⨯=. ∴12BDC S ∆=.∴1122BE CD =. ∵5CD =,∴245BE =.………………………………………………4分 ∵BE ⊥CE , ∴∠BED =90°.∴24245cos 525BE ABE BD ∠===.……………………………………………………5分 F E D ABCE D ABC四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)由已知,得0m ≠且()()2222424420m m m m m ∆=+-⨯=-+=->,∴0m ≠且2m ≠.…………………………………………………………………2分 (2)原方程的解为()()222m m x m+±-=.∴1x =或2x m=.…………………………………………………………………3分 ∵20x <,∴11x =,220x m=<.∴0m <. ∵121x x >-,∴12m>-.∴2m >-.又∵02m m ≠≠且,∴20m -<<.……………………………………………………………………4分 ∵m 是整数,∴1m =-.………………………………………………………5分20. (本小题满分5分)解:(1)()()210052410180400y x x x x =-+=-++.……………………………2分(110x ≤≤且x 为整数).(2)∵()22101804001091210y x x x =-++=--+.…………………………3分又∵110x ≤≤且x 为整数,∴当9x =时,函数取得最大值1210.…………………………………………4分 答:工厂为获得最大利润,应生产第9档次的产品,当天的最大利润为1210万元.………………………………………………………………5分21.(本小题满分5分)解:(1)连接OB ,OC .∵AD 与⊙O 相切于点A ,∴FA ⊥AD .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,P DCBE F OA∴FA ⊥BC .……………………………………1分 ∵FA 经过圆心O ,∴OF ⊥BC 于E ,CF BF =.∴∠OEC =90°,∠COF =∠BOF . ∵∠BOF =2∠BAF . ∴∠COF =2∠BAF . ∵∠PCB =2∠BAF , ∴∠PCB =∠COF . ∵∠OCE +∠COF =180°-∠OEC =90°, ∴∠OCE +∠PCB =90°,即∠OCP =90°. ∴OC ⊥PC .∵点C 在⊙O 上,∴直线PC 是⊙O 的切线.…………………………………………………………2分(2)∵四边形ABCD 是平行四边形,∴BC=AD=2. ∴BE=CE =1.在Rt △ABE 中,∠AEB =90°,AB =10, ∴223AE AB BE =-=.…………………………………………………………3分设⊙O 的半径为r ,则OC OA r ==,3OE r =-. 在Rt △OCE 中,∠OEC =90°, ∴222OC OE CE =+. ∴()2231r r =-+.解得53r =.…………………………………………………………………………4分 ∵∠COE=∠PCE ,∠OEC=∠CEP =90°, ∴△OCE ∽△CPE . ∴OE OCCE CP=. ∴553331CP -=. ∴54CP =.……………………………………………………………………………5分 22.(本小题满分5分)(1)如图,线段CD 即为所求;……………………1分(2)OC =425,tan AOD ∠=5;……………………3分AC(3)tan AOD ∠=74.…………………………………5分五、解答题:(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分) 解:(1)∵反比例函数ky x=的图象经过点(1,4)A , ∴4k =.………………………………………………………………………1分 ∴反比例函数的解析式为4y x=. ∵反比例函数4y x=的图象经过点(,)B m n , ∴4mn =.………………………………………………………………………2分 (2)∵二次函数2(1)y x =-的图象经过点(,)B m n ,∴2(1)n m =-.…………………………………………………………………3分 由(1)得4mn =,∴原式2(21)24mn m m mn n =-++-24184m n =-+-()484n n =+-8=.……………………………………………………………………4分(3)由(1)得反比例函数的解析式为4y x=. 令y x =,可得24x =,解得2x =±.12345-1-2-5-4-3-2-154321yxO∴反比例函数4y x=的图象与直线y x =交于 点(2,2),(2,2)--.…………………………5分当二次函数2(1)y a x =-的图象经过点(2,2)时,可得2a =; 当二次函数2(1)y a x =-的图象经过点(2,2)--时,可得29a =-. ∵二次函数2(1)y a x =-的顶点为(1,0),∴由图象可知,符合题意的a 的取值范围是02a <<或29a <-.…………7分24.(本小题满分7分)(1)AD +DE =4.……………………………………………………………………………………1分 (2)①补全图形.……………………………………………………………………………………2分 解:设DE 与BC 相交于点H ,连接AE ,交BC 于点G ,如图. ∠ADB =∠CDE =90°, ∴∠ADE =∠BDC . 在△ADE 与△BDC 中,,,,AD BD ADE BDC DE DC =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△BDC .……………………………………3分 ∴AE= BC ,∠AED =∠BCD .DE 与BC 相交于点H ,∴∠GHE =∠DHC . ∴∠EGH=∠EDC=90°.…………………………………………………………………………4分 线段CB 沿着射线CE 的方向平移,得到线段EF , ∴EF = CB =4,EF//CB . ∴AE= EF .CB//EF ,∴∠AEF=∠EGH=90°.HGF CBD AEAE=EF ,∠AEF=90°,∴∠AFE=45°. ∴AF =cos 45EF=42.…………………………………………………………………………5分②8sin2AF α=.………………………………………………………………………………7分25.(本小题满分8分)解:(1)①1;………………………………………………………………………………1分② 1.………………………………………………………………………………2分 (2)2.…………………………………………………………………………………4分(3)不妨设矩形ABCD 的边AB =4,BC =3.由已知可得,平移图形W 不会改变其测度面积S的大小,将矩形ABCD 的其中一个顶点B 平移至x 轴上.当顶点A ,B 或B ,C 都在x 轴上时,如图5和图6,矩形ABCD 的测度面积S 就是矩形ABCD 的面积,此时S =12.………………………………5分当顶点A ,C 都不在x 轴上时,如图7. 过A 作直线AE ⊥x 轴于点E ,过C 作直线CF ⊥x 轴于点F , 过D 作直线GH ∥x 轴,与直线AE ,CF 分别交于点H 和点 G ,则可得四边形EFGH 是矩形. 当点P ,Q 分别与点A ,C 重合时,12x x -取得最大值m , 且最大值m EF =;当点P ,Q 分别与点B ,D 重合时,12y y -取得最大值n ,且最大值n GF =. ∴图形W 的测度面积S EF GF =⋅. ∵∠ABC =90°,∴∠ABE +∠CBF =90°. ∵∠AEB =90°,∴∠ABE +∠BAE =90°. ∴∠BAE =∠CBF .又∵90AEB BFC ∠=∠=,∴△ABE ∽△BCF .…………………………………………………………………………6分xyFEH G C D A OB 图7x yCD A O B 图5 图6x y A D COB∴43AE EB AB BF FC BC ===. 设4,4AE a EB b ==()0,0a b >>,则3,3BF a FC b ==, 在Rt △ABE 中,由勾股定理得222AE BE AB +=. ∴22161616a b +=.即221a b +=. ∵0b >,∴21b a =-易证△ABE ≌△CDG .∴4CG AE a ==.∴43EF EB BF b a =+=+,34GF FC CG b a =+=+.∴()()4334S EF GF b a b a =⋅=++22121225a b ab =++212251a a =+-()2212251a a=+-421225a a =+-+2211122524a ⎛⎫=+--+ ⎪⎝⎭∴当212a =,即22a =时,测度面积S 取得最大值149122542+⨯=.…………7分∵0,0a b >>,∴240a a ->.∴12S >.∴当顶点A ,C 都不在x 轴上时,S 的范围为49122≤S <. 综上所述,测度面积S 的取值范围是49122≤≤S .………………………………………8分。
2015-2016学年北京市海淀区九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,BC=3,AB=5,则sin A的值是()A. B. C. D.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.B.C.D.3.抛物线y=(x-2)2+1的顶点坐标是()A. B. C. D.4.若点A(a,b)在双曲线上,则代数式ab-4的值为()A. B. C. D. 15.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A. B. C. D.6.抛物线y=2x2向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为()A. B. C.D.7.已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线上,当x1<0<x2<x3时,y1、y2、y3的大小关系是()A. B. C. D.8.如图,AB是⊙的直径,C、D是圆上的两点,若,,则AB的长为A.B.C.D. 129.在平面直角坐标系xOy中,A为双曲线上一点,点B的坐标为(4,0).若△AOB的面积为6,则点A的坐标为()A. B.C. 或D. 或10.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点,若AB=3,则点M到直线l的距离为()A. B. C. 2 D.二、填空题(本大题共6小题,共18.0分)11.请写一个图象在第二、四象限的反比例函数解析式:______.12.已知关于x的方程x2-6x+m=0有两个不相等的实数根,则m的取值范围是______.13.如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是______.14.如图,正比例函数y=mx(m≠0)与反比例函数y=的图象交于A、B两点,若点A的坐标为(1,2),则点B的坐标是______.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为______.16.正方形CEDF的顶点D、E、F分别在△ABC的边AB、BC、AC上.(1)如图,若tan B=2,则的值为______;(2)将△ABC绕点D旋转得到△A′B′C′,连接BB′、CC′.若,则tan B的值为______.三、计算题(本大题共2小题,共10.0分)17.已知m是方程x2+x-1=0的一个根,求代数式(m+1)2+(m+1)(m-1)的值.18.已知二次函数y=x2+bx+8的图象与x轴交于A、B两点,点A的坐标为(-2,0),求点B的坐标.四、解答题(本大题共11小题,共62.0分)19.计算:sin30°+3tan60°-cos245°.20.解方程:x2+2x-5=0.21.如图,D是AC上一点,DE∥AB,∠B=∠DAE.求证:△ABC∽△DAE.22.如图,矩形ABCD为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB边的长度为x米,矩形ABCD的面积为y平方米.(1)y与x之间的函数关系式为______(不要求写自变量的取值范围);(2)求矩形ABCD的最大面积.23.如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求cos∠ADE的值;(2)当DE=DC时,求AD的长.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=kx-2交于点A(3,1).(1)求直线和双曲线的解析式;(2)直线y=kx-2与x轴交于点B,点P是双曲线y=上一点,过点P作直线PC∥x轴,交y轴于点C,交直线y=kx-2于点D.若DC=2OB,直接写出点P的坐标为______.25.如图,小嘉利用测角仪测量塔高,他分别站在A、B两点测得塔顶的仰角α=45°,β=50°.AB为10米.已知小嘉的眼睛距地面的高度AC为1.5米,计算塔的高度.(参考数据:tan50°取1.2)26.如图,△ABC内接于⊙O,过点B作⊙O的切线DE,F为射线BD上一点,连接CF.(1)求证:∠CBE=∠A;(2)若⊙O的直径为5,BF=2,tan A=2,求CF的长.27.如图,在平面直角坐标系xOy中,定义直线x=m与双曲线y n=的交点A m,n(m、n为正整数)为“双曲格点”,双曲线y n=在第一象限内的部分沿着竖直方向平移或以平行于x轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”A2,1的坐标为______;②若线段A4,3A4,n的长为1个单位长度,则n=______;(2)图中的曲线f是双曲线y1=的一条“派生曲线”,且经过点A2,3,则f的解析式为y=______;(3)画出双曲线y3=的“派生曲线”g(g与双曲线y3=不重合),使其经过“双曲格点”A2,a、A3,3、A4,b.28.(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为______;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF 的周长等于AD的长.①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF的度数;③若,则的值为______.29.在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为______;(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F 的坐标为(1,0),DE∥CF.①若特征点C为直线y=-4x上一点,求点D及点C的坐标;②若<tan∠ODE<2,则b的取值范围是______.答案和解析1.【答案】A【解析】解:∵∠C=90°,BC=3,AB=5,∴sinA==,故选:A.根据锐角的正弦为对边比斜边,计算即可.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.【答案】B【解析】解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选:B.已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.3.【答案】D【解析】解:∵y=(x-2)2+1是抛物线的顶点式,根据顶点式的坐标特点可知,对称轴为直线x=2,故选:D.已知抛物线的顶点式,可知顶点坐标和对称轴.考查了二次函数的性质,顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.4.【答案】C【解析】解:∵点A(a,b)在双曲线上,∴3=ab,∴ab-4=3-4=-1.故选:C.根据反比例函数图象上点的坐标特征得到k=xy,由此求得ab的值,然后将其代入所求的代数式进行求值即可.本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.【答案】C【解析】【分析】先根据平行四边形的性质得AB∥CD,AB=CD,而E是AB的中点,BE=AB=CD,再证明△BEF∽△DCF,然后根据相似三角形的性质可计算的值.本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选C.6.【答案】B【解析】解:由“左加右减、上加下减”的原则可知,把抛物线y=2x2的图象向左平移1个单位,再向下平移3个单位,则平移后的抛物线的表达式为y=2(x+1)2-3.故选:B.根据“左加右减、上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】B【解析】解:∵函数中,k=1>0,∴此函数的图象的两个分支位于一三象限,且在每一象限内,y随x的增大而减小.∵x1<0<x2<x3,∴点A(x1,y1)在第三象限,B(x2,y2)、C(x3,y3)在第一象限,∴y1<0,0<y3<y2,∴y1<y3<y2.故选B.先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由x1<0<x2<x3判断出各点所在的象限,进而可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.【答案】D【解析】解:连接AC,由圆周角定理得,∠B=∠D,∵AB是⊙O的直径,∴∠ACB=90°,∴cosB==,又BC=8,∴AB=12,故选:D.连接AC,根据圆周角定理得到∠B=∠D,∠ACB=90°,根据余弦的定义计算即可.本题考查的是圆周角定理和锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等、熟记锐角三角函数的定义是解题的关键.9.【答案】C【解析】解:设点A的坐标为(-,a),∵点B的坐标为(4,0).若△AOB的面积为6,∴S△AOB=4×|a|=6,解得:a=±3,∴点A的坐标为(-2,3)(2.-3).故选C.设点A的坐标为(-,a),根据点B的坐标为(4,0),△AOB的面积为6,列方程即可得到结论.本题考查了反比例函数系数k的几何意义,三角形的面积的计算,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.10.【答案】B【解析】【分析】此题主要考查抛物线与x轴和直线的交点问题,会用根的判别式和根与系数的关系进行列式求解是解题的关键.设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,又x2+bx+c=0时,△=0,列式求解即可.【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,∴△=b2-4ac=0,∴b2-4c=0,设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,可得:b2-4(c-m)=9,解得:m=.故答案选B.11.【答案】y=-【解析】解:∵图象在第二、四象限,∴y=-,故答案为:y=-.根据反比例函数的性质可得k<0,写一个k<0的反比例函数即可.此题主要考查了反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.12.【答案】m<9【解析】解:∵关于x的方程x2-6x+m=0有两个不相等的实数根,∴△=b2-4ac=(-6)2-4m=36-4m>0,解得:m<9.故答案为m<9.若一元二次方程有两个不相等的实数根,则根的判别式△=b2-4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围.本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.【答案】(8,0)【解析】解:直线AA′与直线BB′的交点坐标为(8,0),所以位似中心的坐标为(8,0).故答案为:(8,0)根据位似图形的主要特征:每对位似对应点与位似中心共线画图解答.本题考查的是位似图形的概念,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.14.【答案】(-1,-2)【解析】解:把点A的坐标为(1,2)代入y=mx与y=,得m=2,n=2.即y=2x①,y=②,解之得:x=±1,将x=-1代入①得y=-2,∴点B的坐标是(-1,-2).故答案为:(-1,-2).由题意,点A的坐标适合正反比例函数的解析式,把点A的坐标(1,2)代入y=mx(m≠0)与y=,分别求出m、n的值为2、2.即正比例函数y=2x①与反比例函数y=②,利用①②组成的方程组可得:2x=,得x=±1,故点B的横坐标为-1,纵坐标为-2.本题可将问题转化为方程来求解.图象经过点,则点适合方程.15.【答案】(x-2)2+(x-4)2=x2【解析】解:设竿长为x尺,由题意得,(x-2)2+(x-4)2=x2.故答案为:(x-2)2+(x-4)2=x2.设竿长为x尺,根据题意可得,则房门的宽为x-4,高为x-2,对角线长为x,然后根据勾股定理列出方程.本题考查了由实际问题抽象出一元二次方程,解答本题的关键是根据题意表示出各个边的长度以及勾股定理的应用.16.【答案】;【解析】解:(1)∵四边形CEDF为正方形,∴ED=EC,∠CED=90°,在Rt△BDE中,∵tanB==2,∴DE=2BE,∴==;(2)连结DC、DC′,如图,∵△ABC绕点D旋转得到△A′B′C′,∴DB=DB′,DC=DC′,∠BDB′=∠CDC′,即=,∴△DBB′∽△DCC′,∴=,设DC=3x,BD=5x,∵四边形CEDF为正方形,∴DE=3x,在Rt△BDE中,BE===4x,∴tanB===.故答案为,.(1)由正方形的性质得ED=EC,∠CED=90°,再在Rt△BDE中,利用正切的定义得到DE=2BE,则CE=BE,所以=;(2)连结DC、DC′,如图,根据旋转的性质得DB=DB′,DC=DC′,∠BDB′=∠CDC′,则可判断△DBB′∽△DCC′,根据相似三角形的性质得=,则可设DC=3x,BD=5x,然后利用正方形性质得DE=3x,接着利用勾股定理计算出BE=4x,最后根据正切的定义求解.本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长和得到对应角相等.解决(2)的关键是证明△DBB′∽△DCC′得到=.17.【答案】解:把x=m代入方程得:m2+m-1=0,即m2+m=1,则原式=m2+2m+1+m2-1=2(m2+m)=2.【解析】由m为已知方程的解,将x=m代入方程求出m2+m的值,原式整理后代入计算即可求出值.此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.【答案】解:∵二次函数y=x2+bx+8的图象与x轴交于点A(-2,0),∴0=4-2b+8,∴b=6,∴二次函数解析式为y=x2+6x+8,当y=0时,x2+6x+8=0,解得x1=-2,x2=-4,∴抛物线与x轴的交点B的坐标为(-4,0).【解析】先把A点坐标代入y=x2+bx+8中求出b的值,从而得到二次函数解析式为y=x2+6x+8,然后解方程x2+6x+8=0即可得到B点坐标.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.19.【答案】解:原式=+3-=.【解析】将特殊角的三角函数值带入求解.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.【答案】解:x2+2x-5=0x2+2x=5,x2+2x+1=6,(x+1)2=6,x+1=±,x1=-1+,x2=-1-.【解析】根据配方法的步骤先把常数项移到等号的右边,再在左右两边同时加上一次项系数2的一半的平方,配成完全平方的形式,然后开方即可.此题考查了配方法解一元二次方程,一元二次方程的解法有直接开平方方法,公式法,配方法,因式分解法等等,学生在平时的训练中,学会根据方程的特征,选择恰当的方法,提高解题效率.21.【答案】证明:∵DE∥AB,∴∠CAB=∠EDA.∵∠B=∠DAE,∴△ABC∽△DAE.【解析】由平行线的性质得出∠CAB=∠EDA.再由已知条件即可得出结论.本题考查了相似三角形的判定方法、平行线的性质;熟练掌握平行线的性质,熟记两角相等的两个三角形相似是解决问题的关键.22.【答案】y=-x2+16x【解析】解:(1)y=(16-x)x=-x2+16x;(2)∵y=-x2+16x,∴y=-(x-8)2+64.∵0<x<16,∴当x=8时,y的最大值为64.答:矩形ABCD的最大面积为64平方米.(1)设AB边的长度为x米,CB的长为(16-x)米,利用矩形的面积公式列出矩形面积y与x的关系式;(2)利用配方法求得函数的最大值即可.此题考查了二次函数的实际应用问题.解题的关键是根据矩形的面积构建二次函数模型,然后根据二次函数的性质求解即可.23.【答案】解:(1)∵DE⊥AB,∴∠DEA=90°,∴∠A+∠ADE=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠ADE=∠B,在Rt△ABC中,∵AC=12,BC=5,∴AB=13,∴ ,∴ ;(2)由(1)得,设AD为x,则,∵AC=AD+CD=12,∴,解得,∴.【解析】(1)根据三角形的内角和得到∠A+∠ADE=90°,∠A+∠B=90°,根据余角的性质得到∠ADE=∠B,根据勾股定理得到AB=13,由三角函数的定义即可得到结论;(2)由(1)得,设AD为x,则,由于AC=AD+CD=12,列方程即可得到结论.本题考查了解直角三角形,正确掌握解直角三角形的方法是解题的关键.24.【答案】P(,2)或(-,-6)【解析】解:(1)∵直线y=kx-2过点A(3,1),∴1=3k-2.∴k=1.∴直线的解析式为y=x-2.∵双曲线y=过点A(3,1),∴m=3.∴双曲线的解析式为.(2)∵PC∥x轴,DC=2OB,∴==,∴CF=2OF,由直线y=x-2可知F(0,-2),∴OF=2,∴CF=4,∴C的坐标为(0,2)或(0,-6),∴P的纵坐标为2或-6,代入y=得,2=,解得x=,-6=,解得x=-,∴P(,2)或(-,-6).故答案为P(,2)或(-,-6).(1)把A的坐标分别代入双曲线y=与直线y=kx-2,根据待定系数法即可求得;(2)根据平行线分线段成比例定理得出==,得出CF=2OF,即可求得直线CD与y轴的交点坐标,从而求得P的纵坐标,代入(1)求得的解析式即可求得P点的坐标.本题考查了用待定系数法求一次函数的解析式和反比例函数的解析式,一次和图象上点的坐标特征,平行线分线段成比例定理的应用,求得直线CD与y 轴的交点坐标是解题的关键.25.【答案】解:如图,依题意,可得CD=AB=10,FG=AC=1.5,∠EFC=90°,在Rt△EFD中,∵β=50°,,∴EF=1.2FD,在Rt△EFC中,∵α=45°,∴CF=EF=1.2FD,∵CD=CF-FD=10,∴FD=50,∴EF=1.2FD=60,∴EG=EF+FG=60+1.5=61.5.答:塔的高度为61.5米.【解析】设EF=x米,在Rt△FCE中,∠FCE=∠FEC=45°,可得出FC=EF,FD=x-10,在Rt△FBE中利用锐角三角函数的定义即可求出x的值,进而可得出结论.本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.【答案】(1)证明:如图,连接BO并延长交⊙O于点M,连接MC,∴∠A=∠M,∠MCB=90°,∴∠M+∠MBC=90°,∵DE是⊙O的切线,∴∠CBE+∠MBC=90°,∴∠CBE=∠M,∴∠CBE=∠A;(2)解:过点C作CN⊥DE于点N,∴∠CNF=90°,由(1)得,∠M=∠CBE=∠A,∴tan M=tan∠CBE=tan A=2,在Rt△BCM中,∵BM=5,tan M=2,∴,在Rt△CNB中,∵,,∴CN=4,BN=2,∵BF=2,∴FN=BF+BN=4,在Rt△FNC中,∵FN=4,CN=4,∴.【解析】(1)连接BO并延长交⊙O于点M,连接MC,根据圆周角定理求出∠A=∠M,∠MCB=90°,求出∠M+∠MBC=90°,根据切线性质求出∠CBE+∠MBC=90°,推出∠CBE=∠M即可;(2)过点C作CN⊥DE于点N,求出∠CNF=90°,求出tanM=tan∠CBE=tanA=2,解直角三角形求出BC、CN、BN,求出FN,根据勾股定理求出即可.本题考查了解直角三角形,勾股定理,切线的性质,圆周角定理的应用,能求出∠M=∠CBE=∠A是解此题的关键,题目比较好,难度偏大.27.【答案】(2,);7;+1【解析】解:(1)①把x=2代入y=得:y=,则A的坐标是(2,);②把x=4代入y=得y=.根据题意得:(4-2)2+(-)2=1,解得:n=7.故答案是:(2,),7;的坐标是(2,).(2)把x=2代入y=得y=,则点A2,3设f的解析式为y=+k,把(2,)代入,得=+k,解得:k=1.则f 的解析式是:;(3)把x=2代入y=得y=,则A 2,a 的坐标是(2,);把x=3代入y=得y=1,则A 3,3的坐标是(3,1);把x=4代入y=得y=,则A 4,b 的坐标是(4,).如图.(1)①把x=2代入y=即可求得点的纵坐标;②首先求得A 4,3A 4,n 的坐标,然后根据线段A 4,3A 4,n 的长为1个单位长度即可求得n 的值;(2)把x=2代入y=求得点A 2,3的坐标,然后设f 的解析式为y=+k ,把点A 2,3的坐标代入即可求得k 的值,进而求得代数式;(3)首先求得“双曲格点”A 2,a 、A 3,3、A 4,b 的坐标,把y=进行上下平移或把y=沿平行与x 轴的直线翻折,进行平移即可求得. 本题考查了反比例函数的图象的平移与翻折以及待定系数法求函数的解析式,理解“派生曲线”和“双曲格点”的定义,理解定义求得“双曲格点”的坐标是关键.28.【答案】3;【解析】解:(1)∵AB 的垂直平分线交AC 于点D ,∴BD=AD ,∴△BCD的周长=BC+CD+BD=BC+AC=1+2=3,故答案为:3;(2)①如图1所示:△EDF即为所求;②如图2所示:AH=DE,连接OA、OD、OH,∵点O为正方形ABCD的中心,∴OA=OD,∠AOD=90°,∠1=∠2=45°,在△ODE和△OAH中,,∴△ODE≌△OAH(SAS),∴∠DOE=∠AOH,OE=OH,∴∠EOH=90°,∵△EDF的周长等于AD的长,∴EF=HF,在△EOF和△HOF中,,∴△EOF≌△HOF(SSS),∴∠EOF=∠HOF=45°;③作OG⊥CD于G,OK⊥AD于K,如图3所示:设AF=8t,则CE=9t,设OG=m,∵O为正方形ABCD的中心,∴四边形OGDK为正方形,CG=DG=DK=KA=AB=OG,∴GE=CE-CG=9t-m,DE=2CG-CE=2m-9t,FK=AF-KA=8t-m,DF=2DK-AF=2m-8t,由(2)②知△EOF≌△HOF,∴OE=OH,EF=FH,在Rt△EOG和Rt△HOK中,,∴Rt△EOG≌Rt△HOK(HL),∴GE=KH,∴EF=GE+FK=9t-m+8t-m=17t-2m,由勾股定理得:DE2+DF2=EF2,∴(2m-9t)2+(2m-8t)2=(17t-2m)2,整理得:(m+6t)(m-6t)=0,∴m=6t,∴OG=OK=6t,GE=9t-m=9t-6t=3t,FK=8t-m=2t,∴====.故答案为.(1)由线段垂直平分线的性质得出BD=AD,得出△BCD的周长=BC+CD+BD=BC+AC,即可得出结果;(2)①在AD上截取AH=DE,再作EH的垂直平分线,交AD于F,△EDF即为所求;②连接OA、OD、OH,由正方形的性质得出∠1=∠2=45°,由SAS证明△ODE≌△OAH,得出∠DOE=∠AOH,OE=OH,得出∠EOH=90°,证出EF=HF,由SSS证明△EOF≌△HOF,得出∠EOF=∠HOF=45°即可;③作OG⊥CD于G,OK⊥AD于K,设AF=8t,则CE=9t,设OG=m,由正方形的性质得出GE=CE-CG=9t-m,DE=2CG-CE=2m-9t,FK=AF-KA=8t-m,DF=2DK-AF=2m-8t,由HL证明Rt△EOG≌Rt△HOK,得出GE=KH,因此EF=GE+FK=17t-2m,由勾股定理得出方程,解方程求出m=6t,得出OG=OK=6t,GE=9t-m=9t-6t=3t,FK=8t-m=2t,由勾股定理即可得出结果.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质、勾股定理、解方程等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.29.【答案】(3,0);<或<<【解析】解:(1)∵A(0,0),B(1.3),代入:直线y=ax+b,解得:a=3,b=0,∴直线y=3x,抛物线解析式:y=3x2,∴C(3,0).故答案为:(3,0);(2)联立直线y=ax+b与抛物线y=ax2+bx,得:ax2+(b-a)x-b=0,∴(ax+b)(x-1)=0,解得:x=-,x=1,∴A(1,a+b),B(-,0).点A、点B的位置如图所示;(3)①如图,∵特征点C为直线y=-4x上一点,∴b=-4a.∵抛物线y=ax2+bx的对称轴与x轴交于点D,∴对称轴.∴点D的坐标为(2,0).∵点F的坐标为(1,0),∴DF=1.∵特征直线y=ax+b交y轴于点E,∴点E的坐标为(0,b).∵点C的坐标为(a,b),∴CE∥DF.∵DE∥CF,∴四边形DECF为平行四边形.∴CE=DF=1.∴a=-1.∴特征点C的坐标为(-1,4).②由已知和已证得:C(a,b),E(0,b),F(1,0),D(-,0),∵<tan∠ODE<2,∴<<2,∴<||<2,解得:<|2a|<2,∴-1<a<-或<a<1,∵DE∥CF,CE∥DF,∴CE=DF,由题意可得:1+=a,(可以画出三种图象,由此得出这个结论)整理得:b=2a2-2a即:b=2(a-)2-当b=2(a-)2-时,当-1<a<-,可得.当<a<1时,可得-≤b<0综上所述:或-≤b<0.(1)根据点A、B求出直线解析式,得到a、b值,即可写出点C坐标;(2)联立直线与抛物线解析式,即可求出点A(1,a+b),B(-,0),根据图象描出两点即可;(3)求出点D坐标,根据点F、C、E坐标及平行四边形性质,即可求出特征点C的坐标,根据已知和已证得:C(a,b),E(0,b),F(1,0),D(-,0),由CEDF 平行四边形性质可以得出b关于a的函数关系式,利用已知<tan∠ODE<2求出a的取值范围,进而求出b的取值范围;题目考查了新定义特征点、特征线及二次函数综合应用,题目整体难易适中,对学生最大的难点在于对新定义的理解.适合学生对中考压轴题目训练.。
2015-2016海淀区初三数学期末试题 2015.11.方程2350x x --=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根 2.在Rt △ABC 中,∠C =90º,35BC AB ==,,则sin A 的值为A.35 B.45 C. 34 D. 433.若右图是某个几何体的三视图,则这个几何体是A. 长方体B. 正方体C. 圆柱D. 圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是 A.16 B. 13 C. 12 D. 235.如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为A. 1B. 2C. 4D. 86.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC =2,则OF 的长为A .12B .34C .1D .2 8.如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的图1 图2A .线段EFB .线段DEC .线段CED .线段BE 二、填空题(本题共16分,每小题4分)9.若扇形的半径为3cm ,圆心角为120°,则这个扇形的面积为__________ cm 2.10.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为 m.11.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为__________.12.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===.(1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F =,则正整数m 的最小值是_____________. 三、解答题(本题共30分,每小题5分) 13.计算:()()1201511sin 30 3.142-⎛⎫-+-π-+ ⎪⎝⎭.14.如图,△ABC 中,AB =AC ,D 是BC 中点,BE ⊥AC 于E . 求证:△ACD ∽△BCE .15.已知m 是一元二次方程2320x x --=的实数根,求代数式(1)(1)1m m m+--的值.16.抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC .(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.B18.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E . (1)求线段CD 的长; (2)求cos ABE ∠的值.四、解答题(本题共20分,每小题5分) 19.已知关于x 的一元二次方程()2220mx m x -++=有两个不相等的实数根12,x x .(1)求m 的取值范围; (2)若20x <,且121x x >-,求整数m 的值.20. 某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x 的产品时,当天的利润为y 万元.(1)求y 关于x 的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.A21.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切,射线AO 交BC 于点E ,交⊙O 于点F .点P 在射线AO 上,且∠PCB =2∠BAF . (1)求证:直线PC 是⊙O 的切线;(2)若ABAD =2,求线段PC 的长.22.阅读下面材料:小明观察一个由11⨯正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A 、B 、C 是点阵中的三个点,请在点阵中找到点D ,作出线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出AOD ∠的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE CD ⊥于F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC =_______________;tan AOD ∠=_______________;C图1 图2 图3参考小明思考问题的方法,解决问题:如图3,计算:tan AOD ∠=_______________.五、解答题(本题共22分,第23题7分,第24题7分,第25小题8分) 23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.24.如图1,在△ABC 中,BC =4,以线段AB 为边作△ABD ,使得AD=BD , 连接DC ,再以DC 为边作△CDE ,使得DC = DE ,∠CDE =∠ADB =α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系;(2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ① 若α=90°,依题意补全图3, 求线段AF 的长; ②请直接写出线段AF 的长(用含α的式子表示).图2 图3 备用图BBB图1图325. 在平面直角坐标系xOy 中,设点()11,P x y ,()22,Q x y 是图形W 上的任意两点.定义图形W 的测度面积:若12x x -的最大值为m ,12y y -的最大值为n ,则S m n =为图形W 的测度面积.例如,若图形W 是半径为1的⊙O .当P ,Q 分别是⊙O 与x 轴的交点时,如图1,12x x - 取得最大值,且最大值m =2;当P ,Q 分别是⊙O 与y 轴的交点时,如图2,12y y -取得最大值,且最大值n =2.则图形W 的测度面积4S mn ==.(1)若图形W 是等腰直角三角形ABO ,OA =OB =1.①如图3,当点A ,B 在坐标轴上时,它的测度面积S = ; ②如图4,当AB ⊥x 轴时,它的测度面积S = ;(2)若图形W 是一个边长为1的正方形ABCD ,则此图形测度面积S 的最大值为 ;(3)若图形W 是一个边长分别为3和4的矩形ABCD ,求它的测度面积S 的取值范围.图1图2数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到步应得的累加分数。
2015-2016学年北京市海淀区初三上学期期末数学试卷一、选择题(本题共30分,每小题3分)1.(3分)在△ABC中,∠C=90°,BC=3,AB=5,则sinA的值是()A.B.C.D.2.(3分)如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°3.(3分)抛物线y=(x﹣2)2+1的顶点坐标是()A.(﹣2,﹣1)B.(﹣2,1)C.(2,﹣1)D.(2,1)4.(3分)若点A(a,b)在双曲线上,则代数式ab﹣4的值为()A.﹣12 B.﹣7 C.﹣1 D.15.(3分)如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.6.(3分)抛物线y=2x2向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为()A.y=2(x+1)2+3 B.y=2(x+1)2﹣3 C.y=2(x﹣1)2﹣3 D.y=2(x﹣1)2+37.(3分)已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线上,当x1<0<x2<x3时,y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y18.(3分)如图,AB是⊙O的直径,C、D是圆上的两点.若BC=8,,则AB的长为()A.B.C.D.129.(3分)在平面直角坐标系xOy中,A为双曲线上一点,点B的坐标为(4,0).若△AOB的面积为6,则点A的坐标为()A.(﹣4,)B.(4,)C.(﹣2,3)或(2,﹣3) D.(﹣3,2)或(3,﹣2)10.(3分)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点,若AB=3,则点M到直线l的距离为()A.B.C.2 D.二、填空题(本题共18分,每小题3分)11.(3分)请写一个图象在第二、四象限的反比例函数解析式:.12.(3分)已知关于x的方程x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是.13.(3分)如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是.14.(3分)如图,正比例函数y=mx(m≠0)与反比例函数y=的图象交于A、B两点,若点A的坐标为(1,2),则点B的坐标是.15.(3分)古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为.16.(3分)正方形CEDF的顶点D、E、F分别在△ABC的边AB、BC、AC上.(1)如图,若tanB=2,则的值为;(2)将△ABC绕点D旋转得到△A′B′C′,连接BB′、CC′.若,则tanB 的值为.三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.(5分)计算:sin30°+3tan60°﹣cos245°.18.(5分)解方程:x2+2x﹣5=0.19.(5分)如图,D是AC上一点,DE∥AB,∠B=∠DAE.求证:△ABC∽△DAE.20.(5分)已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m ﹣1)的值.21.(5分)已知二次函数y=x2+bx+8的图象与x轴交于A、B两点,点A的坐标为(﹣2,0),求点B的坐标.22.(5分)如图,矩形ABCD为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB边的长度为x米,矩形ABCD的面积为y平方米.(1)y与x之间的函数关系式为(不要求写自变量的取值范围);(2)求矩形ABCD的最大面积.23.(5分)如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求cos∠ADE的值;(2)当DE=DC时,求AD的长.24.(5分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=kx﹣2交于点A(3,1).(1)求直线和双曲线的解析式;(2)直线y=kx﹣2与x轴交于点B,点P是双曲线y=上一点,过点P作直线PC∥x轴,交y轴于点C,交直线y=kx﹣2于点D.若DC=2OB,直接写出点P的坐标为.25.(5分)如图,小嘉利用测角仪测量塔高,他分别站在A、B两点测得塔顶的仰角α=45°,β=50°.AB为10米.已知小嘉的眼睛距地面的高度AC为1.5米,计算塔的高度.(参考数据:sin50°取0.8,cos50°取0.6,tan50°取1.2)26.(5分)如图,△ABC内接于⊙O,过点B作⊙O的切线DE,F为射线BD上一点,连接CF.(1)求证:∠CBE=∠A;(2)若⊙O的直径为5,BF=2,tanA=2,求CF的长.27.(6分)如图,在平面直角坐标系xOy中,定义直线x=m与双曲线y n=的交(m、n为正整数)为“双曲格点”,双曲线y n=在第一象限内的部分沿着点A m,n竖直方向平移或以平行于x轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”A 2,1的坐标为 ;②若线段A 4,3A 4,n 的长为1个单位长度,则n= ;(2)图中的曲线f 是双曲线y 1=的一条“派生曲线”,且经过点A 2,3,则f 的解析式为y= ;(3)画出双曲线y 3=的“派生曲线”g (g 与双曲线y 3=不重合),使其经过“双曲格点”A 2,a 、A 3,3、A 4,b .28.(8分)(1)如图1,△ABC 中,∠C=90°,AB 的垂直平分线交AC 于点D ,连接BD .若AC=2,BC=1,则△BCD 的周长为 ;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹); ②在图3中补全图形,求∠EOF 的度数; ③若,则的值为 .29.(8分)在平面直角坐标系xOy 中,定义直线y=ax +b 为抛物线y=ax 2+bx 的特征直线,C (a ,b )为其特征点.设抛物线y=ax 2+bx 与其特征直线交于A 、B 两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为;(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标;②若<tan∠ODE<2,则b的取值范围是.2015-2016学年北京市海淀区初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)在△ABC中,∠C=90°,BC=3,AB=5,则sinA的值是()A.B.C.D.【解答】解:∵∠C=90°,BC=3,AB=5,∴sinA==,故选:A.2.(3分)如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选:B.3.(3分)抛物线y=(x﹣2)2+1的顶点坐标是()A.(﹣2,﹣1)B.(﹣2,1)C.(2,﹣1)D.(2,1)【解答】解:∵y=(x﹣2)2+1是抛物线的顶点式,根据顶点式的坐标特点可知,对称轴为直线x=2,故选:D.4.(3分)若点A(a,b)在双曲线上,则代数式ab﹣4的值为()A.﹣12 B.﹣7 C.﹣1 D.1【解答】解:∵点A(a,b)在双曲线上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故选:C.5.(3分)如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选:C.6.(3分)抛物线y=2x2向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为()A.y=2(x+1)2+3 B.y=2(x+1)2﹣3 C.y=2(x﹣1)2﹣3 D.y=2(x﹣1)2+3【解答】解:由“左加右减、上加下减”的原则可知,把抛物线y=2x2的图象向左平移1个单位,再向下平移3个单位,则平移后的抛物线的表达式为y=2(x+1)2﹣3.故选:B.7.(3分)已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线上,当x1<0<x2<x3时,y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【解答】解:∵函数中,k=1>0,∴此函数的图象的两个分支位于一三象限,且在每一象限内,y随x的增大而减小.∵x1<0<x2<x3,∴点A(x1,y1)在第三象限,B(x2,y2)、C(x3,y3)在第一象限,∴y1<0,0<y3<y2,∴y1<y3<y2.故选:B.8.(3分)如图,AB是⊙O的直径,C、D是圆上的两点.若BC=8,,则AB的长为()A.B.C.D.12【解答】解:连接AC,由圆周角定理得,∠B=∠D,∵AB是⊙O的直径,∴∠ACB=90°,∴cosB==,又BC=8,∴AB=12,故选:D.9.(3分)在平面直角坐标系xOy中,A为双曲线上一点,点B的坐标为(4,0).若△AOB的面积为6,则点A的坐标为()A.(﹣4,)B.(4,)C.(﹣2,3)或(2,﹣3) D.(﹣3,2)或(3,﹣2)【解答】解:设点A的坐标为(﹣,a),∵点B的坐标为(4,0).若△AOB的面积为6,=4×|a|=6,∴S△AOB解得:a=±3,∴点A的坐标为(﹣2,3)(2.﹣3).故选:C.10.(3分)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点,若AB=3,则点M到直线l的距离为()A.B.C.2 D.【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,∴△=b2﹣4ac=0,∴b2﹣4c=0,设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,可得:b2﹣4(c﹣m)=9,解得:m=.故选:B.二、填空题(本题共18分,每小题3分)11.(3分)请写一个图象在第二、四象限的反比例函数解析式:y=﹣.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.12.(3分)已知关于x的方程x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是m<9.【解答】解:∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<9.故答案为m<9.13.(3分)如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是(8,0).【解答】解:直线AA′与直线BB′的交点坐标为(8,0),所以位似中心的坐标为(8,0).故答案为:(8,0)14.(3分)如图,正比例函数y=mx(m≠0)与反比例函数y=的图象交于A、B两点,若点A的坐标为(1,2),则点B的坐标是(﹣1,﹣2).【解答】解:把点A的坐标为(1,2)代入y=mx与y=,得m=2,n=2.即y=2x①,y=②,解之得:x=±1,将x=﹣1代入①得y=﹣2,∴点B的坐标是(﹣1,﹣2).方法二:∵A、B关于原点对称,A(1,2),∴B(﹣1,﹣2).故答案为:(﹣1,﹣2).15.(3分)古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为(x﹣2)2+(x﹣4)2=x2.【解答】解:设竿长为x尺,由题意得,(x﹣2)2+(x﹣4)2=x2.故答案为:(x﹣2)2+(x﹣4)2=x2.16.(3分)正方形CEDF的顶点D、E、F分别在△ABC的边AB、BC、AC上.(1)如图,若tanB=2,则的值为;(2)将△ABC绕点D旋转得到△A′B′C′,连接BB′、CC′.若,则tanB的值为.【解答】解:(1)∵四边形CEDF为正方形,∴ED=EC,∠CED=90°,在Rt△BDE中,∵tanB==2,∴DE=2BE,∴==;(2)连结DC、DC′,如图,∵△ABC绕点D旋转得到△A′B′C′,∴DB=DB′,DC=DC′,∠BDB′=∠CDC′,即=,∴△DBB′∽△DCC′,∴==,设DC=3x,BD=5x,∵四边形CEDF为正方形,∴DE=3x,在Rt△BDE中,BE===4x,∴tanB===.故答案为,.三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.(5分)计算:sin30°+3tan60°﹣cos245°.【解答】解:原式=+3﹣=.18.(5分)解方程:x2+2x﹣5=0.【解答】解:x2+2x﹣5=0x2+2x=5,x2+2x+1=6,(x+1)2=6,x+1=±,x1=﹣1+,x2=﹣1﹣.19.(5分)如图,D是AC上一点,DE∥AB,∠B=∠DAE.求证:△ABC∽△DAE.【解答】证明:∵DE∥AB,∴∠CAB=∠EDA.∵∠B=∠DAE,∴△ABC∽△DAE.20.(5分)已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m ﹣1)的值.【解答】解:把x=m代入方程得:m2+m﹣1=0,即m2+m=1,则原式=m2+2m+1+m2﹣1=2(m2+m)=2.21.(5分)已知二次函数y=x2+bx+8的图象与x轴交于A、B两点,点A的坐标为(﹣2,0),求点B的坐标.【解答】解:∵二次函数y=x2+bx+8的图象与x轴交于点A (﹣2,0),∴0=4﹣2b+8,∴b=6,∴二次函数解析式为y=x2+6x+8,当y=0时,x2+6x+8=0,解得x1=﹣2,x2=﹣4,∴抛物线与x轴的交点B的坐标为(﹣4,0).22.(5分)如图,矩形ABCD为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB边的长度为x米,矩形ABCD的面积为y平方米.(1)y与x之间的函数关系式为y=﹣x2+16x(不要求写自变量的取值范围);(2)求矩形ABCD的最大面积.【解答】解:(1)y=(16﹣x)x=﹣x2+16x;(2)∵y=﹣x2+16x,∴y=﹣(x﹣8)2+64.∵0<x<16,∴当x=8时,y的最大值为64.答:矩形ABCD的最大面积为64平方米.23.(5分)如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求cos∠ADE的值;(2)当DE=DC时,求AD的长.【解答】解:(1)∵DE⊥AB,∴∠DEA=90°,∴∠A+∠ADE=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠ADE=∠B,在Rt△ABC中,∵AC=12,BC=5,∴AB=13,∴,∴;(2)由(1)得,设AD为x,则,∵AC=AD+CD=12,∴,解得,∴.24.(5分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=kx﹣2交于点A(3,1).(1)求直线和双曲线的解析式;(2)直线y=kx﹣2与x轴交于点B,点P是双曲线y=上一点,过点P作直线PC∥x轴,交y轴于点C,交直线y=kx﹣2于点D.若DC=2OB,直接写出点P的坐标为P(,2)或(﹣,﹣6).【解答】解:(1)∵直线y=kx﹣2过点A(3,1),∴1=3k﹣2.∴k=1.∴直线的解析式为y=x﹣2.∵双曲线y=过点A(3,1),∴m=3.∴双曲线的解析式为.(2)∵PC∥x轴,DC=2OB,∴==,∴CF=2OF,由直线y=x﹣2可知F(0,﹣2),∴OF=2,∴CF=4,∴C的坐标为(0,2)或(0,﹣6),∴P的纵坐标为2或﹣6,代入y=得,2=,解得x=,﹣6=,解得x=﹣,∴P(,2)或(﹣,﹣6).故答案为P(,2)或(﹣,﹣6).25.(5分)如图,小嘉利用测角仪测量塔高,他分别站在A、B两点测得塔顶的仰角α=45°,β=50°.AB为10米.已知小嘉的眼睛距地面的高度AC为1.5米,计算塔的高度.(参考数据:sin50°取0.8,cos50°取0.6,tan50°取1.2)【解答】解:如图,依题意,可得CD=AB=10,FG=AC=1.5,∠EFC=90°,在Rt△EFD中,∵β=50°,,∴EF=1.2FD,在Rt△EFC中,∵α=45°,∴CF=EF=1.2FD,∵CD=CF﹣FD=10,∴FD=50,∴EF=1.2FD=60,∴EG=EF+FG=60+1.5=61.5答:塔的高度为61.5米.26.(5分)如图,△ABC内接于⊙O,过点B作⊙O的切线DE,F为射线BD上一点,连接CF.(1)求证:∠CBE=∠A;(2)若⊙O的直径为5,BF=2,tanA=2,求CF的长.【解答】(1)证明:如图,连接BO并延长交⊙O于点M,连接MC,∴∠A=∠M,∠MCB=90°,∴∠M+∠MBC=90°,∵DE是⊙O的切线,∴∠CBE+∠MBC=90°,∴∠CBE=∠M,∴∠CBE=∠A;(2)解:过点C作CN⊥DE于点N,∴∠CNF=90°,由(1)得,∠M=∠CBE=∠A,∴tanM=tan∠CBE=tanA=2,在Rt△BCM中,∵BM=5,tanM=2,∴,在Rt△CNB中,∵,∴CN=4,BN=2,∵BF=2,∴FN=BF+BN=4,在Rt△FNC中,∵FN=4,CN=4, ∴.27.(6分)如图,在平面直角坐标系xOy 中,定义直线x=m 与双曲线y n =的交点A m ,n (m 、n 为正整数)为“双曲格点”,双曲线y n =在第一象限内的部分沿着竖直方向平移或以平行于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”A 2,1的坐标为 (2,) ;②若线段A 4,3A 4,n 的长为1个单位长度,则n= 7 ;(2)图中的曲线f 是双曲线y 1=的一条“派生曲线”,且经过点A 2,3,则f 的解析式为y= +1 ;(3)画出双曲线y 3=的“派生曲线”g (g 与双曲线y 3=不重合),使其经过“双曲格点”A 2,a 、A 3,3、A 4,b .【解答】解:(1)①把x=2代入y=得:y=,则A 的坐标是(2,);②把x=4代入y=得y=.根据题意得:(4﹣2)2+(﹣)2=1,解得:n=7.故答案是:(2,),7;的坐标是(2,).(2)把x=2代入y=得y=,则点A2,3设f的解析式为y=+k,把(2,)代入,得=+k,解得:k=1.则f的解析式是:;的坐标是(2,);(3)把x=2代入y=得y=,则A2,a的坐标是(3,1);把x=3代入y=得y=1,则A3,3的坐标是(4,).把x=4代入y=得y=,则A4,b如图.28.(8分)(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为3;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF 的周长等于AD的长.①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求∠EOF的度数;③若,则的值为.【解答】解:(1)∵AB的垂直平分线交AC于点D,∴BD=AD,∴△BCD的周长=BC+CD+BD=BC+AC=1+2=3,故答案为:3;(2)①如图1所示:△EDF即为所求;②如图2所示:AH=DE,连接OA、OD、OH,∵点O为正方形ABCD的中心,∴OA=OD,∠AOD=90°,∠1=∠2=45°,在△ODE和△OAH中,,∴△ODE≌△OAH(SAS),∴∠DOE=∠AOH,OE=OH,∴∠EOH=90°,∵△EDF的周长等于AD的长,∴EF=HF,在△EOF和△HOF中,,∴△EOF≌△HOF(SSS),∴∠EOF=∠HOF=45°;③作OG⊥CD于G,OK⊥AD于K,如图3所示:设AF=8t,则CE=9t,设OG=m,∵O为正方形ABCD的中心,∴四边形OGDK为正方形,CG=DG=DK=KA=AB=OG,∴GE=CE﹣CG=9t﹣m,DE=2CG﹣CE=2m﹣9t,FK=AF﹣KA=8t﹣m,DF=2DK﹣AF=2m ﹣8t,由(2)②知△EOF≌△HOF,∴OE=OH,EF=FH,在Rt△EOG和Rt△HOK中,,∴Rt△EOG≌Rt△HOK(HL),∴GE=KH,∴EF=GE+FK=9t﹣m+8t﹣m=17t﹣2m,由勾股定理得:DE2+DF2=EF2,∴(2m﹣9t)2+(2m﹣8t)2=(17t﹣2m)2,整理得:(m+6t)(m﹣6t)=0,∴m=6t,∴OG=OK=6t,GE=9t﹣m=9t﹣6t=3t,FK=8t﹣m=2t,∴====.故答案为.29.(8分)在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为(3,0);(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标;②若<tan∠ODE<2,则b的取值范围是或.【解答】解:(1)∵A(0,0),B(1.3),代入:直线y=ax+b,解得:a=3,b=0,∴直线y=3x,抛物线解析式:y=3x2,∴C(3,0).故答案为:(3,0);(2)联立直线y=ax+b与抛物线y=ax2+bx,得:ax2+(b﹣a)x﹣b=0,∴(ax+b)(x﹣1)=0,解得:x=﹣,x=1,∴A(1,a+b),B(﹣,0).点A、点B的位置如图所示;(3)①如图,∵特征点C为直线y=﹣4x上一点,∴b=﹣4a.∵抛物线y=ax2+bx的对称轴与x轴交于点D,∴对称轴.∴点D的坐标为(2,0).∵点F的坐标为(1,0),∴DF=1.∵特征直线y=ax+b交y轴于点E,∴点E的坐标为(0,b).∵点C的坐标为(a,b),∴CE∥DF.∵DE∥CF,∴四边形DECF为平行四边形.∴CE=DF=1.∴a=﹣1.∴特征点C的坐标为(﹣1,4).②由已知和已证得:C(a,b),E(0,b),F(1,0),D(﹣,0),∵<tan∠ODE<2,∴<<2,∴<||<2,解得:<|2a|<2,∴﹣1<a<﹣或<a<1,∵DE∥CF,CE∥DF,∴CE=DF,由题意可得:1+=a,(可以画出三种图象,由此得出这个结论)整理得:b=2a2﹣2a即:b=2(a﹣)2﹣当b=2(a﹣)2﹣时,当﹣1<a<﹣,可得.当<a<1时,可得﹣≤b<0综上所述:或﹣≤b<0.。
2015-2016学年海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟) 2016.1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.A .53B .54C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80° 3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+ 7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、 3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y <<8.如图,AB是⊙O的直径,C、D是圆上的两点.若BC=8,2 cos3D=,则AB的长为A B.163C D.129.在平面直角坐标系xOy中,A为双曲线6yx=-上一点,点B的坐标为(4,0).若△AOB的面积为6,则点A的坐标为A.(4-,32)B.(4,32-)C.(2-,3)或(2,3-)D.(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy中,抛物线2y x bx c=++与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点.若AB=3,则点M到直线l的距离为A.52B.94C.2D.74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式.12.已知关于x的方程260x x m-+=有两个不相等的实数根,则m的取值范围是.13.如图,在平面直角坐标系xOy中,△ABC与△'''A B C顶点的横、纵坐标都是整数.若△ABC与△'''A B C是位似图形,则位似中14.正比例函数1y k x=与反比例函数2kyx=的图象交于A、B两点,若点A的坐标是(1,2),则点B的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为.16.正方形CEDF的顶点D、E、F分别在△ABC的边AB、BC、上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分) 17.计算:2sin 303tan 60cos 45︒+︒-︒.18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米. (1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线 2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;A(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线 x my =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan50︒取1.2)26.如图,△ABC 内接于错误!未指定书签。
⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF错误!未指定书签。
错误!未指定书签。
.(1)求证:CBE A ∠=∠;(2)若⊙O 的错误!未指定书签。
直径为5,2BF =,tan 2A =,求CF 错误!未指定书签。
的长.27.如图,在平面直角坐标系xOy 中,定义直线x m =与双曲线n ny x=的交点,m n A (m 、n 为正整数)为 “双曲格点”,双曲线n ny x=在第一象限内的部分沿着竖直方向平移或以平行 于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”2,1A 的坐标为 ;②若线段4,34,n A A 的长为1个单位长度,则n = ; (2)图中的曲线f 是双曲线11y x=的一条“派生曲线”,且经过点2,3A ,则f 的解析式为 y = ; (3)画出双曲线33y x =的“派生曲线”g (g 与双曲线33y x=不重合),使其经过“双曲格 点”2,a A 、3,3A 、4,b A .28.(1)如图1,△ABC 中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,连接BD .若AC =2, BC =1,则△BCD 的周长为 ;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹); ②在图3中补全图形,求EOF ∠的度数; ③若89AF CE=,则OF OE的值为 .29.在平面直角坐标系xOy 中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,C ,a b ()为其特征点.设抛物线2y ax bx =+与其特征直线交于A 、B 两点(点A 在点B的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为 ; (2)若抛物线2y ax bx =+如图所示,请在所给图中标出点A 、点B 的位置;(3)设抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐 标为(1,0),DE ∥CF .①若特征点C 为直线4y x =-上一点,求点D 及点C 的坐标; ②若1tan 22ODE <∠<,则b 的取值范围是 .海淀区九年级第一学期期末数学练习答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分) 17.(本小题满分5分)解:原式212=+⎝⎭……………………………3分 1122=+ ……………………………4分 =.……………………………5分18.(本小题满分5分) 解法一:522=+x x .15122+=++x x . ……………………………2分 6)1(2=+x . ……………………………3分61±=+x .16-±=x .∴161-=x ,162--=x . ……………………………5分 解法二:521-===c b a ,,.∆=ac b 42-)5(1422-⨯⨯-=204+==240>. …………………………2分∴2x a=221-=⨯ ……………………………3分22-±=1=-±.∴161-=x ,162--=x . ………………………………5分 19.(本小题满分5分) 证明:∵DE //AB ,∴∠CAB =∠EDA . ………………………………3分 ∵∠B =∠DAE ,∴△ABC ∽△DAE . ………………………………5分 20.(本小题满分5分)解:∵m 是方程210x x +-=的一个根,∴210m m +-=. ………………………………1分 ∴21m m +=.∴22211m m m =+++-原式 ………………………………3分 222m m =+2=. ………………………………5分 21.(本小题满分5分)解:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-, ∴0428b =-+. ………………………………1分∴6b =. ………………………………2分∴二次函数解析式为268y x x =++. ………………………………3分 即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-. ……5分 22.(本小题满分5分)解:(1)216y x x =-+; ………………………………2分(2)∵216y x x =-+,∴2(8)64y x =--+. ………………………………4分∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米. ………………………………5分23.(本小题满分5分)解:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA =90°. ∴∠A+∠ADE =90°.∵∠ACB =90︒, ∴∠A+∠B =90°.∴∠ADE =∠B . ………………………………1分 在Rt △ABC 中,∵AC =12,BC =5, ∴AB =13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==.………………………………3分 ∵ 12AC AD CD =+=, ∴51213x x +=. .………………………………4分 解得263x =. ∴ 263AD =. …………………………5分 解法二:(1) ∵90DE AB C ⊥∠=︒,, ∴90DEA C ∠=∠=︒. ∵A A ∠=∠, ∴△ADE ∽△ABC .∴ADE B ∠=∠. ………………………… 1分 在Rt △ABC 中,∵12,5AC BC ==, ∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠== …………………………2分(2) 由(1)可知 △ADE ∽△ABC . ∴.DE AD BC AB= ………………………………3分设AD x =,则12DE DC x ==-. ∴12513x x-=. .………………………………4分解得263x =. ∴263AD =.…………………………5分 24.(本小题满分5分)解:(1) ∵直线2-=kx y 过点A (3,1),∴132k =-. ∴1k =.∴直线的解析式为2y x =-. ………………………………2分 ∵双曲线xmy =过点A (3,1), ∴3m =.∴双曲线的解析式为3y x=. ………………………………3分 (2)3,22⎛⎫⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭. ………………………………5分 25.(本小题满分5分) 解:如图,依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FDEFβ, ∴FD EF 2.1=.在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==. ………………………2分 ∵10=-=FD CF CD , ∴50=FD .∴602.1==FD EF . ……………………4分 ∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米. ………………………………5分 26.(本小题满分5分)解:如图,(1)连接BO 并延长交⊙O 于点M ,连接MC .∴∠A =∠M ,∠MCB =90°. ∴∠M +∠MBC =90°. ∵DE 是⊙O 的切线, ∴∠CBE +∠MBC =90°. ∴M CBE ∠=∠.G∴A CBE ∠=∠. ………………………………2分 (2) 过点C 作CN DE ⊥于点N . ∴ 90CNF ∠=︒.由(1)得,M CBE A ∠=∠=∠. ∴tan tan tan 2M CBE A =∠==. 在Rt △BCM 中,∵5tan 2BM M ==,,∴BC = ………………………………3分 在Rt △CNB 中,∵tan 2BC CBE =∠=, ∴42CN BN ==,. .………………………………4分 ∵2BF =,∴4FN BF BN =+=. 在Rt △FNC 中, ∵4,4FN CN ==,∴CF = …………………………5分 27.(本小题满分6分) 解:(1)①(2,12); ………………………………1分 ②7; ………………………………2分(2)11y x=+; ………………………………4分 (3)如图. ………………………………6分28. (本小题满分8分)解:(1)3; ………………………………1分(2)①如图,△EDF 即为所求; ………………………………3分②在AD 上截取AH ,使得AH =DE ,连接OA 、OD 、OH . ∵点O 为正方形ABCD 的中心,∴OA OD =,90AOD ∠=︒,1245∠=∠=︒. ∴△ODE ≌△OAH . ………………………………4分 ∴DOE AOH ∠=∠,OE OH =. ∴90EOH ∠=︒.∵△EDF 的周长等于AD 的长,∴EF HF =. ………………………………5分 ∴△EOF ≌△HOF .∴45EOF HOF ∠=∠=︒. ………………………………6分. ………………………………8分 29.(本小题满分8分)解:(1)(3,0); ……………………1分(2)点A 、点B 的位置如图所示;…………………………3分(3)①如图,∵特征点C 为直线4y x =-上一点, ∴4b a =-.∵抛物线2y ax bx =+的对称轴与x 轴交于点D ,∴对称轴22bx a=-=.∴点D 的坐标为2,0(). ……………………………4分 ∵点F 的坐标为(1,0),∴1DF =.∵特征直线y =ax +b 交y 轴于点E ,∴点E 的坐标为0,b (). ∵点C 的坐标为,a b (), ∴CE ∥DF . ∵DE ∥CF ,∴四边形DECF 为平行四边形.∴1CE DF ==.………………………………5分∴1a =-.∴特征点C 的坐标为1,4-(). ………………………………6分 ②102b -≤<或548b <<. ………………………………8分。