当前位置:文档之家› 桥梁荷载横向分布系数的各种计算方法综述.

桥梁荷载横向分布系数的各种计算方法综述.

桥梁荷载横向分布系数的各种计算方法综述.
桥梁荷载横向分布系数的各种计算方法综述.

桥梁荷载横向分布系数的各种计算方法综述

姓名:XXX学号:50XXXXXXX3

摘要:公路桥梁荷载横向分布有多种计算模型,其中比较实用的有:1)杠杆原理法;2)偏心压力法、修正偏心压力法;3)铰接板(梁)法;4)刚接板(梁)法等。这些理论方法有各自的适用范围,应按具体情况选用适当的方法来运用。

关键词:混凝土简支梁桥;荷载横向分布系数;影响线;影响因素

1引言

随着国民经济的发展,对交通的需求日益提高,众多的高速公路及城市快速干道相继修建。公路桥梁上行驶车辆的轴重加重、速度提高,车流密度也相应提高。使之在设计过程中如何确保桥梁结构在使用寿命期限内的安全性,准确计算各片梁所需承担的最大活载弯矩就显得尤为重要。特别是对于中小跨多片梁型的桥梁,当跨数较多时,用测试横向分布状态的方法对桥梁运营状态进行评价,具有简洁、实用、可靠等优点,具有较高的推广价值。

所谓荷载横向分布系数(Lateral Distribution Factor of Live Load)是指公路车辆荷载在桥梁横向各主梁间分配的百分数。普通简支桥梁中它和各主梁间的联结方式(铰接或刚接),有无内横梁及其数目,断面的抗弯刚度和抗扭刚度,以及车辆荷载在桥上的位置等有关。它是一个复杂的空间结构问题,在桥梁设计中常简化为平面问题而引用荷载横向分布系数。[1]目前广泛采用的是利用主梁的纵向影响线和它的荷载横向分布影响线相结合的方法,荷载横向分布系数是在荷载横向分布影响线的基础上按荷载的最不利位置布载,并将荷载位置相应的影响线竖标值求和得到的最后数值结果。对于混凝土简支梁桥,荷载横向分布系数的影响因素主要有桥粱跨度(Z)、主梁间距(S)、桥面板的厚度(t0)、主梁刚度(K0)、横隔梁(板)的数量及位置、车载类型及布栽位置、车辆间距、栏杆及横跨比等。[2][3][4][9]

2计算方法及其适用范围

荷载横向分布理论在桥梁设计中占有重要地位。目前桥梁荷载横向分布系数常用的计算

方法主要有杠杆原理法、偏心压力法(修正偏心压力法)、铰接板(梁)法、刚接梁法和比拟正交异性板法(G-M法)等。下面对这些方法逐一进行介绍和分析。

1)杠杆原理法

忽略主梁之间横向结构的联系作用,即假设桥面板在主梁梁肋处断开,而当作沿横向支承在主梁上的简支梁或悬臂梁来考虑。

图一杠杆法计算实例

假定荷载横向分布影响线的坐标为η,车辆荷载轴重为P,轮重为P/2,将车辆荷载按最不利情况加载,则分布到某主梁的最大荷载为

P’max=Σ(P/2)·η=(1/2×∑η)·P(1)

根据荷载横向分布系数的定义可知,式(1)的1/2∑η即为车辆荷载的横向分布系数。《桥规》(JTG D60)中规定,车道荷载横向分布系数按车辆荷载横向分布系数计,因此,因此,两者可统称为汽车荷载横向分布系数,其值为

m oq=1/2∑ηq(2)

同理可得人群荷载横向分布系数为

m or=ηr(3)

式(2)(3)中:

m o——按杠杆原理法计算的荷载横向分布系数;

脚标q和r——分别指汽车和人群荷载;

ηq和ηr——汽车车轮和每延米人群荷载集度对应的荷载横向分布影响线坐标。

杠杆原理法适用于荷载位于靠近主梁支点时的荷载横向分布计算。此时,主梁的支承刚度远大于主梁间横向联系的刚度,荷载作用于某处时,基本上由相邻的两根梁承担,并传递给支座,受力特性与杠杆原理法接近。此外,该法也可以用于双主梁桥,或者横向联系很弱的无中间横格梁的桥梁。

2)偏心压力法

基本假定是:一,在车辆荷载作用下,中间横隔梁可近似地看作一根刚度无穷大的刚性梁,横梁全长呈直线变形;二,忽略主梁的抗扭刚度,即不计入主梁对横隔梁的抵抗扭矩。

计算原理:设单位竖向集中荷载P=1作用在离截面扭转中心O的距离为e处,各片主梁的抗弯刚度I i、主梁间距a i都各不相等。下面分析荷载在各片主梁上的横向分布情况。

由于假定横梁是刚体,所以可以按刚体力学关于力的平移原理,将荷载P移到中间主梁上,用一个作用在扭转中心(中心主梁)上的竖向力P和一个作用于刚体上的偏心力矩M=P·e=1·e代替。偏心荷载的作用应为P和M作用的叠加。

①中心荷载P=1的作用。

R‘i=I i/(∑I i)(4)

②偏心力矩M=P·e=1·e的作用。

R”i=ea i I i/(∑a i2I i)(5)

③偏心荷载P=1产生的总作用力。偏心荷载P作用于k号梁时,在i号梁上产生的总作用力,即i号主梁所分配到的荷载,等于上诉两种情况的叠加,即

R ik=R‘ik+R”ik=I i/(∑I i)±a i a k I i/(∑a i2I i)(6)

④求荷载横向分布系数m。

ηki=R ki=1/n±a k a i/(∑a i2)(7)

式(6)(7)中,当e和a i位于同一侧时,第二项取正号,反之则取负号。

用偏心压力法计算荷载横向分布适用于桥上具有可靠的横向连接,且桥的宽跨比B/L 小于或接近0.5的情况时(一般称为窄桥)的跨中区域的荷载横向分布影响线。偏心压力法具有概念清楚、公式简明和计算方便等优点。

3)修正偏心压力法

在偏心压力法的推导中由于作了横隔梁近似绝对刚性和忽略主梁抗扭刚度的两项假定,这就导致了边梁受力偏大的计算结果。因此,在实用计算中有按偏心压力法求得的边梁最大横向分布系数乘以0.9加以折减的方法。为了弥补偏心压力的不足,国内外也广泛地采用考虑主梁抗扭刚度的修正偏心压力法,引入一个抗扭修正系数β。这一方法既不失偏心压力的优点,又避免了结构偏大的缺陷,因此修正偏心压力法是一个具有较高实用价值的近似方法。【5】

对于简支梁桥,若主梁截面均相同,即I i=I,I Ti=I T,则

ηki=R ki=1/n±β·a k a i/(∑a i2)(8)

其中

β=1/[1+nl2G c I T/﹙12E c I∑a i2﹚](9)

由式(9)可以看出,当桥梁宽度一定时,随着跨度增大,β减小。即抗扭刚度对横向分布系数的影响增大。

根据《桥规》(JTG D62),式(9)中混凝土的剪变模量G c可取0.4E c;对于由矩形组合而成的梁截面,如T型或I字形梁,其抗扭惯矩I T近似等于各个矩形截面的抗扭惯矩之和,即

I T=∑c i b i t i3(10)

式(10)中:

b i,t i——相应为单个矩形截面的宽度和厚度;

c i——矩形截面抗扭刚度系数(根据t/b比值查表可知);

m——梁截面划分成单个矩形截面的块数。

修正偏心压力法的适用范围与偏心压力法相同,这一方法既不失偏心压力的优点,又避免了结构偏大的缺陷,因此修正偏心压力法是一个具有较高实用价值的近似方法。[1][5] 4)弹性支承连续梁法

弹性支承连续梁法主要是根据桥梁结构纵横梁刚度(抗弯及抗扭)的比例不同,通过假设横梁为弹性支撑在各纵梁位置的弹性支承连续梁(该弹性支撑的刚度即纵梁抗弯刚度),按弹性支承连续梁计算出各支撑处的反力即可得到荷载的横向分布。此法不仅适用于宽跨比小于0.5的窄桥,也适用宽跨比大于0.5的宽桥[5]。弹性支承连续梁的解法很多,比较简便的是初参数法。1954年,中国学者翻译了原苏联奥西波夫所著的《弹性支承连续梁》,给出了初参数法导出的2-8跨弹性支承连续梁支点反力的公式和数值表。后来,中国学者又补充了关于9跨、10跨的公式和表,并在引用、开发和推广方面做了大量工作,使这一方法在桥梁设计上得到广泛应用,且此方法常用于计算平面曲线桥的横向分布系数[6]。

5)铰接板(梁)法

对于用现浇混凝土纵向企口缝连接的装配式板桥以及仅在翼板间用焊接钢板或伸出交叉钢筋连接的无中间横隔梁的装配式桥,由于快件间横向具有一定的连接构造,但其连接刚性又很薄弱。这类结构的受力状态实际接近于数根并列而相互间横向铰接的狭长板(梁),以此为基础发展了横向铰接板(梁)理论来计算荷载的横向分布。

图二铰接梁法计算实例

基本假定有:在竖向荷载作用下,接缝内只传递竖向剪力g(x);采用半波正弦荷载来分析跨中荷载横向分布的规律,g i(x)=g i·sin(π·x/l);每块板梁在偏心荷载下只产生垂直位移ω和转角φ,而不发生横向弯曲。

计算原理:应用结构力学的方法列出正则方程组,整理并引入刚度系数γ=bφ/(2ω),则得到一个只含γ和g i的新方程组。由此只要确定了刚度参数γ、板块数量n和荷载作用位置,就可以解出所有(n-1)个未知铰力的幅值,从而绘制出各梁的横向影响线。

γ=0.5bφ/ω=0.5·[pbl2/(2π2GI T)]/[pl4/(π4EI)](11)

式(11)中对于混凝土,取E=E c,G=G c=0.4E c。

6)刚接板梁法

在铰接板(梁)桥计算理论的基础上,在铰接处补充引入赘余弯矩M i,可建立计横向刚性连接特点的赘余力正则方程。用这一方法来求解各梁荷载横向分布的问题,就称为刚接梁法。对于相邻二片主梁的接合处可以承受弯矩的,或虽然桥面系没有经过构造处理,但没有多片内横箱梁的,或桥面浇筑成一快整体板的桥跨结构,可以看作是刚接梁系,都适用

刚接板梁法来计算荷载横向分布系数。

7)比拟正交异性板法

对于由主梁、连续的桥面板和多横隔梁所组成的梁桥,当其宽度与跨度之比值较大时,可将其简化比拟为一块矩形的平板作为弹性薄板,按古典弹性理论来进行分析,即所谓“比拟正交异性板法”或称“G-M法”。一些学者研究认为使用“G-M法”计算的荷载横向分布系数比实际测量的值偏大一些。因此,在新桥设计阶段我们按照“G-M法”计算的数据来计算结构的内力是偏于安全的,是可行的;而在旧桥加固的计算时,如仍然采用“G-M法”计算荷载横向分布系数,会导致加固工程量偏大,不仅会造成经济上的浪费,而且有可能在实际的加固设计中不可能实现。[7]

8)广义梁格分析法

实际上是推广直梁桥中的梁格理论,但广义梁格分析法不同于刚性横梁法,刚性横梁法是梁格理论在桥梁上运用的特例。广义梁格法也不同于正桥中的弹性支承连续梁法,广义梁格法不仅考虑主梁的抗扭惯矩,而且充分考虑由于弯扭耦合作用而产生的主梁的实际挠曲变形和扭转变形,同时在计算中也充分地考虑了横梁本身的弯曲变形。因而,广义梁格分析法是一种可通用于直、斜、弯梁桥跨的横梁内力计算和主梁内力横向分布计算的方法,它既是一种实用简便的计算方法,又是一种比较精确的计算方法。实质上,这是一个用结构力学位移法简化分析杆系空间结构的方法,由于它从横梁结构的分析入手,所以又可以叫做横梁分析法[8]。

3结语

本文就混凝土简支梁桥荷载横向分布系数的各种计算方法进行了系统的总结和分析,得出计算桥梁荷载横向分布系数的结论如下。

(1)以上各种理论方法计算荷载横向分布系数具有一定的局限性,不同的计算方法有

各自的适用范围,不可盲目使用。

(2)用理论方法计算出桥梁荷载横向分布系数后,也可使用计算软件(Dr.Bridge、Midas 等),模拟桥梁结构,计算出荷载横向分布系数值,与理论方法得出的计算值相比较后,得出较符合桥型的精确横向分布系数理论值。

参考文献

[1]刘夏平.桥梁工程.北京:科学出版社,2005

[2]中国土木建筑百科辞典.桥梁工程[M].中国建筑工业出版社,1999

[3]范立础.桥梁工程[M].北京:人民交通出版社,2001

[4]胡肇滋.桥跨结构简化分析荷载横向分布[M].北京:人民交通出版社,1996

[5]郑益民.偏心压力法计算荷载横向分布的简化方法.中外公路,2006

[6]交通部.公路桥涵设计通用规范(JTGD60-2004).北京:人民交通出版社,2008

[7]彭刚.比拟正交异性板法的横向分布探讨[J].辽宁交通科技,2002

[8]庄凌云.装配式连续弯桥横向分布计算的广义梁格法[D].长安大学,2004

[9]建设部.城市桥梁设计荷载准则(CJJ77-98).北京:中国建筑工业出版社,1998

桥梁博士-关于横向力分布系数的讲解

桥博关于横向力分布系数讲解 一、进行桥梁的纵向计算时: a)汽车荷载 1对于整体箱梁、整体板梁等整体结构 其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为2*30米的桥面4车道的整体箱梁验算时,其横向分布系数应为4x0.67(四车道的横向折减系数)x 1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数)= 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 2多片梁取一片梁计算时 按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b)人群荷载 1对于整体箱梁、整体板梁等整体结构 人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1即可。因为在桥博中人群效应=人群集度x人行道宽度x人群横向分布调整系数。 城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。 2多片梁取一片梁计算时 人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c)满人荷载 1对于整体箱梁、整体板梁等整体结构 满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。 2多片梁取一片梁计算时 满人宽度填1,横向分布调整系数填求得的。 注: 1、由于最终效应: 人群效应=人群集度x人行道宽度x人群横向分布调整系数。 满人效应=人群集度x满人总宽度x满人横向分布调整系数。 所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2、新规范对满人、特载、特列没作要求。所以程序对满人工况没做任何设计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。 二、进行桥梁的横向计算时 a)车辆横向加载分三种:箱梁框架,横梁,盖梁。 ○1计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度; ○2横梁,盖梁,汽车荷载横向分布调整系数可取纵向一列车的最大支反力(该值可由纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ对应下的最大值,除以纵向计算时汽车的横向分布调整系数来算得),进行最不利加载。 b)对于人群(或满人)效应,在“横向加载有效区域”中已经填入了人行道分布区域,程序会据此进行影响线加载。人行道宽度填1。 横梁、盖梁计算时,这里的人群横向分布系数与汽车的相似,是指单位横向人行道宽度(1m)的支反力。在计算支反力时,这个系数已经考虑人群集度的大小,所以此时窗口中的“人群集度”应该填1。 c)横向加载最终效应 (假设汽车车道数输入为3)如果计入车道折减系数则折减系数=0.78(公路技术规范),不计入则=1.0。汽车效应=三辆汽车加载的效应(每辆汽车的总重为1,每轮重1/2)x汽车横向分布系数x车道折减系数。 汽车冲击力=汽车效应x冲击系数。(此时用户应自己输入汽车冲击系数,因为横向加载不知道桥梁的实际纵向跨径,但冲击系数是根据纵向跨径计算的.

荷载横向分布综述

荷载横向分布综述 (2007-09-14 14:22:02) 转载 标签: 分类:专业技术 知识/探索 [荷载横向分布计算综述] 桥梁结构分析大致分为两大类: 一:直接采用三维有限元通用分析软件对结构作空间整体分析,以得到结构的内力(更多的是应力分析),即纯数值法; 二:将空间结构简化为平面结构用平面杆系程序分析,而空间效应通过荷载横向分布系数考虑,即所谓半解析数值法。 由于三维有限元程序分析使用中的各种限制条件(如应力分析对实际配筋设计指导性较差、模型建立的困难等等),往往不如单纯的平面分析考虑横向分布系数的方法简便、实用(有时精度也差不多,特别是大跨径结构恒、活载比例的增大,两者差别更小),同时更有益于培养一个桥梁设计者对结构的定性分析、结构受力估算及有限元分析结果的正确判断等方面的能力。因此桥梁结构简化分析—荷载横向分布计算是必要的,并将与有限元分析互相补遗、长期并存! 实际的工作中主要也是简化分析(即荷载横向分布系数计算与平面杆系电算相结合)的多,而有限元用的少! 结构简化分析通常按以下步骤进行(结构尺寸已经初步拟定好): 1.计算桥跨结构荷载横向分布系数; 2.以荷载横向分布系数为乘积因子,按平面杆系结构进行桥跨结构的内力分析; 3.按建筑结构设计原理作构件的配筋设计。 对于荷载横向分布系数计算大致有以下一些方法: 1.杠杆法; 2.梁格法,包括刚性横梁法(也称偏压法)以及修正刚性横梁法(修正偏压法)、弹性

支承连续梁法; 3.梁系法,包括铰接板法、刚接板法、铰接梁法、刚接梁法; 4.板系法,如比拟正交异性板法(G-M法); 5.增大系数法(弯矩增大15%,剪力增大5%)等。 不同截面类型、不同的横向连接方式、桥跨结构的不同位置通常具有不同的荷载横向分布系数计算方法。 上述梁格法、梁系法及板系法等都是建立在等截面简支体系结构上的荷载横向分布计算方法。 增大系数法一般用于箱形截面梁设计,其主导思想来自杆件弯扭相互独立理论,即认为杆件的中心荷载由梁的弯曲内力承担,而扭转荷载由杆件的自由与约束扭转内力承担,因截面翘曲约束正应力σw一般为纵向正应力σM的15%左右,故弯矩增大系数取1.15;而翘曲扭转剪应力τw约为弯曲剪应力τM的5%左右,故剪力增大系数取1.05;而实际上箱梁是弯扭共同作用,所以是不合理的,它与箱梁的综合抗扭刚度2H值有关,计算结果可能过安全也可能不安全,强烈建议慎用! 有关横向分布系数计算的详细分析参见李国豪、石洞《公路桥梁荷载横向分布计算》、胡肇滋《桥跨结构结构简化分析—荷载横向分布》等文献。 对于变截面简支梁和非简支体系桥跨结构其荷载横向分布的精确计算方法极其复杂,为了能利用适用于等截面简支梁计算荷载横向分布系数的方法,通常采用‘等效简支梁法’来处理。其基本理念是把桥跨结构的某一跨按等刚度原则变换为跨度相同的等截面简支梁。所谓等刚度是指在桥梁的跨中施加一个集中力或者一个集中扭矩,则两者的跨中挠度和扭转角应分别彼此相等。即:ω'=f1(Lj,EI)=ω0=Lj^3/(48EI')和及 φ'=f2(Lj,GIt)=ω0=Lj^2/(4GIt'),即换算抗弯惯矩I'=Cw*I,换算抗扭惯矩It'=Cφ*It。 特别地对于箱形截面,应考虑到跨中是否设置横隔梁在换算刚度计算时的差别。 *****变截面简支梁桥: 1.刚度关于跨中按一次或二次曲线对称变化的等效简支梁惯矩换算系数: Cw=10/(9+m),Cφ=3/(2+n)或Cφ=2/(1+n),此时I'=Cw*Ic,It'=Cφ*Itc。

活载横向分布和偏载系数

一、横向分布 如图3—2—1a所示,梁桥的上部结构由承重结构(①~④号主梁)及传力结构(横隔梁、行车道板)两大部分组成,各片主梁靠横隔梁和行车道板连成空间整体结构,当桥上作用荷载(桥面板上作用2个车轴,前轴轴重为P1,后轴轴重为P2)时,各片主梁共同参与工作,形成了各片主梁之间的内力分布。 在计算恒载时,除主梁的自重外,一般将桥面铺装、人行道、栏杆等的重量近似平均分配给各片主梁,即计算出桥面铺装、人行道、栏杆等的总重量除以梁的片数(本例4片梁),得到每片主梁承担的桥面铺装、人行道、栏杆的重量。由于人行道、栏杆等构件一般位于边梁上(①、④号主梁),精确计算时,也可考虑它们的重量在各梁间的分布,即中梁(②、③号主梁)也分担一部分人行道、栏杆的重量。 在计算活载时,需要考虑活载在各片主梁间的分布。 《标准》规定,车道荷载的横向分布系数应按设计车道数布置车辆荷载进行计算。车辆荷载的横向布置如图3—2—1c所示。对于车道荷载,最外车轮距人行道缘石之距不得小于0.5m,车道荷载的横向轮距为1.8m,两列车道荷载车轮的横向间距不得小于1.3m。 如图3—2—1b所示,在车道荷载的作用下,①号边梁所分担的荷载

,也就是说,①号边梁所分担的荷载R1为轴重P1的。 若将第i号梁所承担的力R i表示为系数m i与轴重P的乘积(R i=m i×P),则m i称为第i 号梁的荷载横向分布系数。由此,1号梁的横向分布系数。 荷载所引起的各片主梁的内力大小(横向分布)与桥梁的构造特点、荷载的作用位置有关,因此求解荷载作用下各主梁的内力是一个空间问题,目前广泛采用的方法是将复杂的空间问题转化为平面问题。 本节将着重介绍几种横向分布系数的计算方法。 二、杠杆法 基本原理:杠杆法忽略了主梁之间横向结构的联系作用,即假设桥面板在主梁上断开,把桥面板看作沿横向支承在主梁上的简支梁或悬臂梁。 如图3—2—1b所示,由于杠杆法忽略了主梁之间横向结构的联系作用,当桥上作用车道荷载时,左边的轮重P1/2仅传递给1号和2号梁,右边的轮重P1/2传递给2号梁和3号梁。 根据静力平衡条件,1号梁的支承反力,2号梁支承的相邻两块板上均作用荷载,则该梁所支承的反力R2为两个支承反力之和, R2=R2'+R2''。 杠杆法计算横向分布系数的步骤及方法参见例3—2。 例3—2如图3—2—2a所示,桥梁主梁宽2.2m(主梁间中心距为2.2m),计算跨径l=19.5m。桥面宽:净9+2×1.0m人行道;设计荷载:公路—Ⅱ级,人群荷载:由《公路工程技术标准JTG B01-2003》,桥梁计算跨径小于50m时,人群荷载标准值为3.0KN/m2;用杠杆法计算1、2、3号梁支点截面的荷载横向分布系数。 解:(1)绘制1号、2号梁和3号梁的荷载反力影响线(图3—2—2b、c、d)。 绘制1号梁的反力影响线的方法为:应用杠杆法的原理,当单位荷载P=1作用于1号梁位时,1号梁所承受的荷载反力(影响线纵标)R1=1;当单位荷载P=1作用于2号梁位时,1号梁所承受的荷载反力(影响线纵标)R1=0;将两点连接直线,即得1号梁的荷载反力影响线。 (2)确定荷载的横向最不利的布置(图3—2—2b、c)。 根据《标准》中规定的车辆荷载的横向轮距(3—2—1c)及反力影响线的形状,应用《结构力学》的原理,确定荷载的最不利布置。 (3)内插计算对应于荷载位置的影响线纵标ηi。 (4)计算主梁在车道荷载和人群荷载作用下的横向分布系数(表3—2—1)。

2016D1JB2荷载横向分布计算(刚性横梁法)(模板)

第三章 荷载横向分布计算 由于本桥各T 梁之间采用混凝与湿接缝刚性连接,故其荷载横向分布系数,在梁端可按“杠杆原理法”计算(m 0),在跨中按“修正刚性横梁法”计算(m c )。 (一)梁端的横向分布系数m 0 根据桥规规定,在横向影响线确定荷载沿横向最不利的布置位置。例如,对于汽车荷载,规定的汽车横向轮距为1.8m ,两列汽车车轮的横向最小间距为1.30m,车轮距离人行道缘石最少为0.50m 。求出相应于荷载位置的影响线竖标值后,就可得到横向所有荷载分布给1号梁的最大荷载值为: 式子中:q P —汽车荷载轴重; q η—汽车车轮的影响线竖标。 由此可得: 1号梁在汽车荷载作用下最不利荷载横向分布系数为654.001=m 同理有:904.002=m ;904.003=m ;904.004=m ; 904.005=m ;654.006=m (二)跨中的横向分布系数m c 1.计算I 和I T 求主梁截面中心位置a x (距梁顶) 翼板的换算平均厚度 cm h 192 24141=+= 马蹄形下翼缘换算厚度 cm h 5.34228412=+= S ≈ (260-18)×19×19/2+245×18×245/2=583906cm 3 A ≈(260-18)×19+245×18=9008cm 2 重心距离 a x =S/A=583906/9008=64.82cm 主梁抗弯惯性矩: I ≈1/12×(260-18)×193+(260-18)×19×(64.82-19/2)2+1/12×18×2453 +18×245×(245/2-64.82)2=cm 4=0.5094m 4 翼板主梁抗扭惯性矩 b 1/t 1=260/19=13.68>10, 查表得 c 1=0.33

论述公路桥梁荷载横向分布系数

论述公路桥梁荷载横向分布系数 章娜娜,陈水生 华东交通大学土木建筑学院,南昌 (330013) E-mail: nn860227jd@https://www.doczj.com/doc/2c18983502.html, 摘要:本文就目前国内外对公路桥梁荷载横向分布系数的研究现状,做了一个较全面的综 述。国内主要从常用的三大理论计算法出发,讨论有偏心压力法、修正偏心压力、弹性支承 连续梁法、广义梁格法、铰接板(梁)法、刚接板(梁)法、及比拟正交异性板法(G-M 法)。本文还补充了杠杆原理法及简化计算法。国外一般采用经验公式来计算荷载横向分布 系数,主要从AASHTO标准规范和AASHTO-LRFD规范中的规定,分析桥梁各影响参数,有桥梁跨度()l、主梁间距()S、桥面板的厚度()s t、主梁刚度()g K、横隔梁(板)的数量及位置、车载类型及布载位置、车辆间距、栏杆及横跨比等;曲线桥还应讨论曲线半径及角 度等,得出相关参数影响,最后得出用有限元分析法计算的桥梁荷载横向分布系数较其它方 法更精确。 关键词:公路桥梁;荷载横向分布系数;理论计算方法;有限元分析法;参数 1.概述 随着国民经济的发展,对交通的需求日益提高,众多的高速公路及城市快速干道相继修建。公路桥梁上行驶车辆的轴重加重、速度提高,车流密度也相应提高。使之在设计过程中如何确保桥梁结构在使用寿命期限内的安全性,准确计算各片梁所需承担的最大活载弯矩就显得尤为重要。特别是对于中小跨多片梁型的桥梁,当跨数较多时,用测试横向分布状态的方法对桥梁运营状态进行评价,具有简洁、实用、可靠等优点,具有较高的推广价值。 所谓荷载横向分布系数(Lateral Distribution Factor of live load)是指公路车辆荷载在桥梁横向各主梁间分配的百分数。普通简支桥梁中它和各主梁间的联结方式(铰接或刚接),有无内横梁及其数目,断面的抗弯刚度和抗扭刚度,以及车辆荷载在桥上的位置等有关。它是一个复杂的空间结构问题,在桥梁设计中常简化为平面问题而引用荷载横向分布系数[1]。目前广泛采用的是利用主梁的纵向影响线和它的荷载横向分布影响线相结合的方法,荷载横向分布系数是在荷载横向分布影响线的基础上按荷载的最不利位置布载,并将荷载位置相应的影响线竖标值求和得到的最后数值结果。 2.理论计算方法 荷载横向分布理论在梁桥设计中占有重要地位。目前对公路梁桥荷载横向分布系数的计算,国内常用的计算方法[2-4]主要有三大理论计算法:梁格法、板系法及梁系法。梁格法又包括偏心压力法、修正偏心压力法、弹性支承连续梁法及广义梁格法;板系法有铰接板(梁)法和刚接板(梁)法;梁系法有比拟正交异性板法(G-M法)。还有杠杆原理法及简化计算法。 (1)杠杆原理法,忽略主梁之间横向结构的联系作用,即假设桥面板在主梁梁肋处断开,而当作沿横向支承在主梁上的简支梁或悬臂梁来考虑。杠杆原理法适用于荷载位于靠近主梁支点时的荷载横向分布计算。此时,主梁的支承刚度远大于主梁间横向联系的刚度,荷载作用于某处时,基本上由相邻的两片梁分担,并传递给支座,其受力特性与杠杆接近。另外,该法也可用于双主梁桥,或横向联系很弱的无中间横隔梁的桥梁。 (2)偏心压力法,基本前提是:其一,在车辆荷载作用下,中间横隔梁可近似地看作

桥梁荷载横向分布系数的各种计算方法综述.

桥梁荷载横向分布系数的各种计算方法综述 姓名:XXX学号:50XXXXXXX3 摘要:公路桥梁荷载横向分布有多种计算模型,其中比较实用的有:1)杠杆原理法;2)偏心压力法、修正偏心压力法;3)铰接板(梁)法;4)刚接板(梁)法等。这些理论方法有各自的适用范围,应按具体情况选用适当的方法来运用。 关键词:混凝土简支梁桥;荷载横向分布系数;影响线;影响因素 1引言 随着国民经济的发展,对交通的需求日益提高,众多的高速公路及城市快速干道相继修建。公路桥梁上行驶车辆的轴重加重、速度提高,车流密度也相应提高。使之在设计过程中如何确保桥梁结构在使用寿命期限内的安全性,准确计算各片梁所需承担的最大活载弯矩就显得尤为重要。特别是对于中小跨多片梁型的桥梁,当跨数较多时,用测试横向分布状态的方法对桥梁运营状态进行评价,具有简洁、实用、可靠等优点,具有较高的推广价值。 所谓荷载横向分布系数(Lateral Distribution Factor of Live Load)是指公路车辆荷载在桥梁横向各主梁间分配的百分数。普通简支桥梁中它和各主梁间的联结方式(铰接或刚接),有无内横梁及其数目,断面的抗弯刚度和抗扭刚度,以及车辆荷载在桥上的位置等有关。它是一个复杂的空间结构问题,在桥梁设计中常简化为平面问题而引用荷载横向分布系数。[1]目前广泛采用的是利用主梁的纵向影响线和它的荷载横向分布影响线相结合的方法,荷载横向分布系数是在荷载横向分布影响线的基础上按荷载的最不利位置布载,并将荷载位置相应的影响线竖标值求和得到的最后数值结果。对于混凝土简支梁桥,荷载横向分布系数的影响因素主要有桥粱跨度(Z)、主梁间距(S)、桥面板的厚度(t0)、主梁刚度(K0)、横隔梁(板)的数量及位置、车载类型及布栽位置、车辆间距、栏杆及横跨比等。[2][3][4][9] 2计算方法及其适用范围 荷载横向分布理论在桥梁设计中占有重要地位。目前桥梁荷载横向分布系数常用的计算

桥梁博士操作-横向分布系数的计算

2015年大学生创新训练计划项目申请书 桥梁博士第二次上机作业 横向分布系数的计算 组长: 学院: 年级专业: 指导教师: 组员: 完成日期:

桥梁博士第二次上机作业 一、作业组成 二、作业合作完成情况 本次作业由3组组员共同完成,任务分配情况如下: 张元松完成实例一(“杠杆法”求横向分布系数),并对计算过程进行截图。 郑 宇完成实例二(“刚性横梁法”求横向分布系数),并对计算过程进行截图。 计时雨完成实例三(“刚接板梁法”求横向分布系数),并对计算过程进行截图。 孙 皓完成实例四(实例四、“铰接板梁法”求横向分布系数),对计算过程进行截图,并进行本次实验报告的撰写任务。 三、上机作业内容 1、任务分析与截面特性计算 本次作业结合老师所给的双向四车道的高速公路分离式路基桥的设计图进行,首先对图纸进行分 第二次作业组成 实例一、“杠杆法”求横向分布系数 实例三、“刚接板梁法”求横向分布系数 实例二、“刚性横梁法”求横向分布系数 实例四、“铰接板梁法”求横向分布系数

析,确定荷载横向分布系数计算所对应的各个截面;然后求出所用到截面的界面特性(抗弯惯性矩和抗扭惯性矩);最后用“桥梁博士”的横向分布计算功能求出各主梁的横向分布系数,为接下来的简支T 梁的配筋计算和结构安全性验算做好准备。 (1)通过CAD绘图的方式求出截面特性 用CAD绘制出桥梁设计图中的跨中截面与支点截面如图1所示。对两个截面分布使用“reg”命令→“massprop”命令,求出两个截面的截面特性如图2所示。 图1 CAD绘制的桥梁单元截面 (a) CAD算出的跨中截面特性 (b) CAD算出的支点截面特性 图2 CAD计算出的桥梁截面特性 (2)通过“桥梁博士”计算出截面图形进行验算 步骤一:打开桥博,点击“新建”出现对话框,如图3所示。点击“桥梁博士截面设计文件”,出现图4界面。

荷载横向分布综述

荷载横向分布综述 [荷载横向分布计算综述] 桥梁结构分析大致分为两大类: 一:直接采用三维有限元通用分析软件对结构作空间整体分析,以得到结构的内力(更多的是应力分析),即纯数值法; 二:将空间结构简化为平面结构用平面杆系程序分析,而空间效应通过荷载横向分布系数考虑,即所谓半解析数值法。 由于三维有限元程序分析使用中的各种限制条件(如应力分析对实际配筋设计指导性较差、模型建立的困难等等),往往不如单纯的平面分析考虑横向分布系数的方法简便、实用(有时精度也差不多,特别是大跨径结构恒、活载比例的增大,两者差别更小),同时更有益于培养一个桥梁设计者对结构的定性分析、结构受力估算及有限元分析结果的正确判断等方面的能力。因此桥梁结构简化分析荷载横向分布计算是必要的,并将与有限元分析互相补遗、长期并存! 实际的工作中主要也是简化分析(即荷载横向分布系数计算与平面杆系电算相结合)的多,而有限元用的少! 结构简化分析通常按以下步骤进行(结构尺寸已经初步拟定好): 1.计算桥跨结构荷载横向分布系数; 2.以荷载横向分布系数为乘积因子,按平面杆系结构进行桥跨结构的内力分析; 3.按建筑结构设计原理作构件的配筋设计。

对于荷载横向分布系数计算大致有以下一些方法: 1.杠杆法; 2.梁格法,包括刚性横梁法(也称偏压法)以及修正刚性横梁法(修正偏压法)、弹性支承连续梁法; 3.梁系法,包括铰接板法、刚接板法、铰接梁法、刚接梁法; 4.板系法,如比拟正交异性板法(G-M法); 5.增大系数法(弯矩增大15%,剪力增大5%)等。 不同截面类型、不同的横向连接方式、桥跨结构的不同位置通常具有不同的荷载横向分布系数计算方法。 上述梁格法、梁系法及板系法等都是建立在等截面简支体系结构上的荷载横向分布计算方法。 增大系数法一般用于箱形截面梁设计,其主导思想来自杆件弯扭相互独立理论,即认为杆件的中心荷载由梁的弯曲内力承担,而扭转荷载由杆件的自由与约束扭转内力承担,因截面翘曲约束正应力w一般为纵向正应力M的15%左右,故弯矩增大系数取1.15;而翘曲扭转剪应力w 约为弯曲剪应力M的5%左右,故剪力增大系数取1.05;而实际上箱梁是弯扭共同作用,所以是不合理的,它与箱梁的综合抗扭刚度2H值有关,计算结果可能过安全也可能不安全,强烈建议慎用! 有关横向分布系数计算的详细分析参见李国豪、石洞《公路桥梁荷载横向分布计算》、胡肇滋《桥跨结构结构简化分析荷载横向分布》等文献。 对于变截面简支梁和非简支体系桥跨结构其荷载横向分布的精确计算

横向分布系数计算(多种方法计算)

横向分布系数的示例计算 一座五梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图,计算跨径L=19.5m ,主梁翼缘板刚性连接。求各主梁对于车辆荷载和人群荷载的分布系数? 杠杆原理法: 解:1绘制1、2、3号梁的荷载横向影响线如图所示 2再根据《公路桥涵设计通用规范》(JTG D60-2004) 规定,在横向影响线上确定荷载沿横向最不利布置位置。 如图所示: 对于1号梁: 车辆荷载:484.0967.02 1 21=?== ∑ηcq m 人群荷载:417.1==r cr m η 对于2号梁: 车辆荷载:5.0121 2 1=?== ∑ηcq m 人群荷载:417.0==r cr m η 对于3号梁: 车辆荷载:5.0121 2 1=?== ∑ηcq m 人群荷载:0==r cr m η 4、5号梁与2、1号梁对称,故荷载的横向分布系数相同。

偏心压力法 (一)假设:荷载位于1号梁 1长宽比为26.25 .155 .19>=?= b l , 故可按偏心压力法来绘制横向影响线并计算横向分布系数c m 。 本桥的各根主梁的横截面积均相等,梁数为5,梁的间距为1.5m ,则: 5.220)5.11(2)5.12(2222 52423222 15 1 2=+?+?=++++=∑=a a a a a a i i 2所以1号5号梁的影响线竖标值为: 6.012 2111=+=∑i a a n η 2.01 2 2115-=-=∑i a a n η 由11η和15η绘制荷载作用在1号梁上的影响线如上图所示,图中根据《公路桥涵设计通用规范》(JTG D60-2004)规定,在横向影响线上确定荷载沿横向最不利布置位置。 进而由11η和15η绘制的影响线计算0点得位置,设0点距离1号梁的距离为x ,则: 4502 .015046.0=?-?=x x x 0点已知,可求各类荷载相应于各个荷载位置的横向影响线竖标值 3计算荷载的横向分布系数 车辆荷载:()533.0060.0180.0353.0593.02 1 21=-++?== ∑ηcq m 人群荷载:683.0==r cr m η (二)当荷载位于2号梁时 与荷载作用在1号梁的区别以下: 4.012 2 112=+= ∑i a a a n η

横向分布系数取值详细介绍

横向分布系数取值详细介绍(桥博) 2008-01-14 23:23 关于横向分布调整系数: 一、进行桥梁的纵向计算时: a) 汽车荷载 1对于整体箱梁、整体板梁等整体结构 其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数)x 1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数)= 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 2多片梁取一片梁计算时 按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b) 人群荷载 1对于整体箱梁、整体板梁等整体结构 人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1 即可。因为在桥博中人群效应= 人群集度x人行道宽度x人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。 2多片梁取一片梁计算时 人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c) 满人荷载 1对于整体箱梁、整体板梁等整体结构 满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。 2多片梁取一片梁计算时 满人宽度填1,横向分布调整系数填求得的。 注: 1、由于最终效应: 人群效应= 人群集度x人行道宽度x人群横向分布调整系数。 满人效应= 人群集度x满人总宽度x满人横向分布调整系数。 所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2 、新规范对满人、特载、特列没作要求。所以程序对满人工况没做任何设 计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。 二、进行桥梁的横向计算时 a) 车辆横向加载分三种:箱梁框架,横梁,盖梁。 1计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向

公路桥梁荷载横向分布系数的计算问题

摘要:在公路桥梁的设计中,荷载横向分布系数的计算问题是设计的核心内容。虽然公路桥梁荷载横向分布系数的计算方式有多种,但是在实质上它们之间是有差异的。为了改进计算方式,使计算过程更加简化和精确。本文阐述了常用的公路桥梁荷载横向分布系数的计算方法及公路桥梁荷载横向分布系数对比,对影响计算问题的主要参数进行了分析。 关键词:公路桥梁;荷载横向分布系数;计算 roads and bridges lateral load distribution factor calculation problem 自从国内外的学者对公路桥梁结构的计算进行大量的研究开始,荷载横向分布系数计算就被广泛应用。采用荷载横向分布系数计算对公路桥梁进行分析,是为了能够使精确的影响面被近似的影响面所取代。此计算主要是将空间问题转变为平面问题进行解决,也就是借助荷载横向分布系数计算出公路桥梁的梁间内力的分布状况。在荷载横向分布系数的计算中,常用的方法有横向铰接板梁法和横向刚接板梁法、偏心压力法和杠杆原理法、比拟正交异性板法和简化计算法,以及修正偏心压力法和弹性支承连续法等。 一、常用的公路桥梁荷载横向分布系数的计算方法 1、横向铰接板梁法和横向刚接板梁法 横向铰接板梁法适应于在无中间横隔梁的装配式桥与无横隔梁的组合式梁桥中。由于正弦荷载取代集中荷载可以减小计算中的误差,所以在假定竖向荷载作用时,可以忽略计算g (x)竖向剪力与m(x)横向弯矩,以及t(x)纵向剪力与n(x)法向力。用半波正弦荷载p(x)=psin 代替集中荷载p,所以正弦分布的竖向剪力为:。 横向刚接板梁法适应于翼缘板刚性连接的肋梁桥中。按照理论基础进行计算,将赘余弯矩mi引入到铰接的地方,就能够建立赘余力正则方程。由于相邻的主梁接合的地方可以承受弯矩,设定平p(x)=isin,因此正弦分布的赘余力素为:,其中是峰值,所以可以计算出刚接梁桥系。如:30米小箱梁计算。跨径30米,横向6片,桥面宽14米,4车道,公路1级荷载。首先要建立空间模型后进行划分实体单元,在实体模型上加载运算后,在计算结果中查询测点位移等结果,计算出梁的挠度分配系数。其次,单梁按照4车道设计,则荷载分布系数为车道4×最大横向分布系数0.182×折减的0.67=0.488。因为实体的计算值大于或接近刚接和铰接板法计算值,没有考虑到横系梁的作用,所以横向联系很弱,导致分布系数偏大。 2、偏心压力法和杠杆原理法 偏心压力法是在忽略主梁对横隔梁的抗扭刚度以及车辆荷载作用下横梁变形的前提下,适用于横向连接,及桥宽跨b/l≤0.5窄桥。其荷载横向分布影响线竖标为: 杠杆原理法主要适合于双主梁桥和无中横梁的桥梁,以及荷载接近主梁支点的m计算中。它忽略了主梁间横向联系的作用,主梁横向联系的刚度要小于支承刚度,由相邻的梁进行分担和传递。 3、比拟正交异性板法和简化计算法 比拟正交异性板法适合于主梁和连续桥面板,以及多横隔梁构成的梁桥。在宽度和跨度的比值较大的情况下,可以将其比拟成一块矩形平板。经过比拟后的在形式上,挠曲面微分方程与正交异性板方程式一样的,只有系数微有变化。 简化计算有助于定性分析与估算公路桥梁结构受力能力,其简化的公式为: 4、修正偏心压力法和弹性支承连续法 由于偏心压力法的假定导致遍粱计算的结果偏大,结合偏心压力法的特点,引入主梁抗扭刚度的修正偏心法。而弹性支承连续粱法属于粱格法,它是按照桥梁的抗弯扭刚度的不同,计算出各支承的法的反力得到荷载横向分布,适合窄桥和宽桥的计算。常用于平面曲线桥的

桥博纵横向计算时的横向分布调整系数说明+几种理论横向分布系数计算法的适用条件

关于横向分布调整系数: 一、进行桥梁的纵向计算时: a) 汽车荷载 ○1对于整体箱梁、整体板梁等整体结构 其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数)x 1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数)= 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 ○2多片梁取一片梁计算时 按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b) 人群荷载 ○1对于整体箱梁、整体板梁等整体结构 人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1 即可。 因为在桥博中人群效应= 人群集度x人行道宽度x人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。 ○2多片梁取一片梁计算时 人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c) 满人荷载 ○1对于整体箱梁、整体板梁等整体结构 满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。 ○2多片梁取一片梁计算时 满人宽度填1,横向分布调整系数填求得的。

注: 1、由于最终效应: 人群效应= 人群集度x人行道宽度x人群横向分布调整系数。 满人效应= 人群集度x满人总宽度x满人横向分布调整系数。 所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2 、新规范对满人、特载、特列没作要求。所以程序对满人工况没做任何设计验算的处理, 用户若需要对满人荷载进行验算的话,可以自定义组合。 二、进行桥梁的横向计算时 a) 车辆横向加载分三种:箱梁框架,横梁,盖梁。 ○1计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度; ○2横梁,盖梁,汽车荷载横向分布调整系数可取纵向一列车的最大支反力(该值可由纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ对应下的最大值,除以纵向计算时汽车的横向分布调整系数来算得),进行最不利加载。 b) 对于人群(或满人)效应,在“横向加载有效区域”中已经填入了人行道分布区域,程 序会据此进行影响线加载。人行道宽度填1。 横梁、盖梁计算时,这里的人群横向分布系数与汽车的相似,是指单位横向人行道宽度(1m)的支反力。在计算支反力时,这个系数已经考虑人群集度的大小,所以此时窗口中的“人群集度”应该填1。 c) 横向加载最终效应 (假设汽车车道数输入为3)如果计入车道折减系数则折减系数=0.78(公路技术规范),不计入则=1.0。

桥梁横向分布系数

轮迹横向分布系数 编辑 概念 在路面上行驶时,轮迹的横向分布是不均匀的。实际上车辆轮迹仅具有一定宽度,车辆通过时只能覆盖一小部分。因此,路面横断面上各个点所受到的轴载作用次数,仅为通过该断面轴载总数的一部分。对于路面横断面上某一宽度(如轮迹宽度)范围内的频率,也即该宽度范围内所受到的车辆作用次数同通过该横断面总作用次数的比值,称为轮迹横向分布系数。这以系数同各种轴载的累计作用次数相乘,可得到路面结构横断面上各点受到疲劳的作用次数。 影响因素 影响轮迹横向分布系数分布规律的主要因素有车辆的类型、主轴轮数量、主轴轮间距及其车轮数量、轮胎宽度等。 2关于桥梁横向分布系数的详解 编辑 汽车荷载效应: 结构所承受的汽车荷载大小,取决于汽车荷载的类型,和汽车荷载的横向分布系数,而与所填入的车道数无关(如果有的话)。 对于预制、拼装的T梁、空心板等结构,其横向分布系数可能是小于1的小数; 对于整体箱梁、整体板梁等结构,其分布系数就是其所承受的汽车总列数,考虑横向折减、偏载后的修正值。例如,对于一个桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数)x 1.15(经计算而得的偏载系数)= 3.082。汽车的横向分布系数已经包含了汽车车道数的影响。 人群效应和满人效应 对于人群效应和满人效应,程序进行加载时,既考虑了人行道宽度(或满人总宽度),又考虑了横向系数。 对于整体箱梁、整体板梁等结构,若如实填写了人行道宽度(或满人总宽),则横向分布系数只需填1。 对于预制、拼装的T梁、空心板等结构,用户应区分计算而得的横向分布系数是否包含了宽度的影响,若已含宽度影响,则宽度值填1即可。 用桥梁博士工具中计算所得的人群横向分布系数是包括了宽度影响的。 其它荷载的横向分布系数与此相似。关键是用户应该理解上面所列的对最终效应的解释。 2. 如果是横向加载,则效应计算如下: 汽车效应= 多列汽车加载的效应x汽车横向分布系数x折减系数。 此处的多列车效应,是根据用户输入的车道数,通过影响线加载而得;不是简单的一列车的倍数。 汽车冲击力= 汽车效应x冲击系数。 此时用户应自己输入汽车冲击系数,因为横向加载不知道结构的纵向特征。 挂车效应= 一辆挂车加载效应x挂车的横向分布系数。 人群效应= 人群集度x人行道宽度x人群横向分布系数。 满人效应= 人群集度x满人总宽度x满人横向分布系数。 特载效应= 一辆特载效应x特载横向分布系数。 特殊车列效应= 一列特殊车列效应x特殊车列横向分布系数。(全桥只加一列)

桥梁工程计算练习题

[行车道板内力计算练习]计算图示T梁翼板所构成的铰接悬臂板的设计内力。设计荷载:公路—Ⅱ级。桥面铺装为5沥青混凝土面层(重度为213)和15防水混凝土垫层(重度为253)。 解: (一)恒载内力(以纵向1m宽的板进行计算) 1.每米板上的恒载集度 (二)公路—Ⅱ级车辆荷载产生的内力 铺装层总厚0.05+0.15=0.20m,则板上荷载压力面的边长为 由图可知:重车后轴两轮的有效分布宽度重叠,则铰缝处纵向两个车轮对于悬臂根部的有效分布宽度 冲击系数取1.3 作用于每米宽板条上的弯矩为:

相应于每米宽板条活载最大弯矩时的每米宽板条上的剪力为: (三)荷载组合 基本组合: 1.2 1.4 1.2 1.9 1.41 2.2419.42ud sg sp M M M kN m =+=-?-?=-? 1.2 1.4 1.2 5.36 1.426.614 3.69ud sg sp Q Q Q kN =+=?+?= [刚性横梁法练习题]一座计算跨径为19.5m 的钢筋混凝土简支梁桥,跨度内设有 5 道横隔梁,横截面布置如图所示,试求荷载位于跨中时, 2号、3号主梁相对应于汽车荷载和人群荷载的横向分布系数。 解: 此桥具有很大的横向连接刚性,且长宽比大于2,故可按偏心压力法绘制荷载横向分布影响线。 1 计算2号梁的荷载横向分布影响线竖标: 5 221 25.6m i i a ==∑ 21212 1 112 1.6 1.60.40525.6 n i i a a n a η=??= +=+=∑ 25252 1 112 1.6 1.60525.6n i i a a n a η=??= -=-=∑ 2 计算3号梁的荷载横向分布影响线竖标:

桥梁博士横向分布系数计算操作详解

桥梁博士横向分布系数计算教程(超详细、超正点) Step1 双击桥梁博士快捷方式打开程序。 Step2 点击新建桥梁博士横向分布文件(红圈内标识) Step3 1、当前文件描述输入相应的信息(随便输入); 2、当前任务表示输入相应的信息(也随便输入); 3、当前任务类型可选杠杆法、刚性横梁法、刚接板梁法(根据实际桥梁类型选用不能瞎来)这里以刚接板为例; 4、点击添加任务。 Step4 1、点击结构描述(S)按钮弹出对话框; 2、填入相应的数据,下面主要介绍一下参数对应梁体的部位:主梁宽度b(m)指单梁宽度(包含后浇带);左板长度、左板惯矩、右板长度、右板惯矩分别对应主梁悬臂位置的长度和惯性矩(此处左右板长度及惯性矩为主梁预制的实际悬臂长度不含后浇带);若上部结构为空心板梁等适合于铰接板法的,可勾选与下一根主梁铰接;接着输入主梁跨度(m)为计算跨径l;G/E为剪切模量与弹性模量比混凝土一般取为0.425或0.43(剪切模量G和弹性模量E、泊松比μ之间有关系:G=E/(2(1+μ)));

Step5 点击活载信息(L)填入相应的信息(此处单纯为了求横向分布系数故数值和汽车型号可随意选择,一般汽车荷载选为汽超-20级,人群集度:可根据规范填写,挂车荷载由于可不用管),勾选自动计入汽车车道折减系数,点击桥面布置(L)进入下面重要的一步。 Step6 1、桥面描述中L1、L 2、L 3、L 4、R1、R2、R3、R4分别对应示意图中相应位置,若相应位置未设置则在其对话框中输入0(例某桥没有设置人行道则在人行道位置填入0)。 2、桥面中线距首梁距离为上部结构横断面左边梁边缘至桥面中心线的距离。 3、左汽车车道、右汽车车道:若桥梁设置中央分隔带则为左右车道的车道数;若桥梁不设置中央分隔带则只需在左汽车车道输入桥梁设计车道数即可,点击确认完成操作。

桥梁博士计算横向系数取值

横向分布系数的一些说明 一、进行桥梁的纵向计算时: a) 汽车荷载 1、对于整体箱梁、整体板梁等整体结构其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 ×0.67(四车道的横向折减系数)×1.15(经计算而得的偏载系数)×0.97(大跨径的纵向折减系数)= 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 2、多片梁取一片梁计算时按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b) 人群荷载 1、对于整体箱梁、整体板梁等整体结构人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填 1 即可。因为在桥博中人群效应= 人群集度×人行道宽度×人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。 2、多片梁取一片梁计算时人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c) 满人荷载 1、对于整体箱梁、整体板梁等整体结构满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度

折减。 2、多片梁取一片梁计算时满人宽度填1,横向分布调整系数填求得的。注: 1、由于最终效应:人群效应=人群集度×人行道宽度×人群横向分布调整系数。满人效应=人群集度×满人总宽度×满人横向分布调整系数。所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2 、新规范对满人、特载、特列没作要求。所以程序对满人工况没做任何设计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。 二、进行桥梁的横向计算时 a) 车辆横向加载分三种:箱梁框架,横梁,盖梁。 1、计算箱形框架截面 实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度; 2、横梁,盖梁 汽车荷载横向分布调整系数可取纵向一列车的最大支反力(该值可由纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ对应下的最大值,除以纵向计算时汽车的横向分布调整系数来算得),进行最不利加载。 b)对于人群(或满人)效应 在“横向加载有效区域”中已经填入了人行道分布区域,程序会据此进行影响线加载。人行道宽度填1。横梁、盖梁计算时,这里的人群横向分布系数与汽车的相似,是指单位横向人行道宽度(1m)的支反力。在计算支反力时,这个系数已经考虑人群集度的大小,所以此时窗口中的“人群集度”应该填1。

关于桥梁横向分布系数的详解

汽车荷载效应: 结构所承受的汽车荷载大小,取决于汽车荷载的类型,和汽车荷载的横向分布系数,而与所填入的车道数无关(如果有的话)。 对于预制、拼装的T梁、空心板等结构,其横向分布系数可能是小于1的小数; 对于整体箱梁、整体板梁等结构,其分布系数就是其所承受的汽车总列数,考虑横向折减、偏载后的修正值。例如,对于一个桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数)x 1.15(经计算而得的偏载系数)= 3.082。汽车的横向分布系数已经包含了汽车车道数的影响。 人群效应和满人效应 对于人群效应和满人效应,程序进行加载时,既考虑了人行道宽度(或满人总宽度),又考虑了横向系数。 对于整体箱梁、整体板梁等结构,若如实填写了人行道宽度(或满人总宽),则横向分布系数只需填1。 对于预制、拼装的T梁、空心板等结构,用户应区分计算而得的横向分布系数是否包含了宽度的影响,若已含宽度影响,则宽度值填1即可。 用桥梁博士工具中计算所得的人群横向分布系数是包括了宽度影响的。 其它荷载的横向分布系数与此相似。关键是用户应该理解上面所列的对最终效应的解释。 2. 如果是横向加载,则效应计算如下: 汽车效应= 多列汽车加载的效应x汽车横向分布系数x折减系数。 此处的多列车效应,是根据用户输入的车道数,通过影响线加载而得;不是简单的一列车的倍数。 汽车冲击力= 汽车效应x冲击系数。 此时用户应自己输入汽车冲击系数,因为横向加载不知道结构的纵向特征。 挂车效应= 一辆挂车加载效应x挂车的横向分布系数。 人群效应= 人群集度x人行道宽度x人群横向分布系数。 满人效应= 人群集度x满人总宽度x满人横向分布系数。 特载效应= 一辆特载效应x特载横向分布系数。 特殊车列效应= 一列特殊车列效应x特殊车列横向分布系数。(全桥只加一列) 中-活载效应= 0;程序不计算中活载的横向加载; 轻轨效应=0;程序不计算轻轨的横向加载。 加载特点 加载时,每列汽车的总重为1KN,每轮重1/2KN; 每辆挂车的车轮合计总重1KN,每轮重1/4KN; 每列特列的总重为1KN,用户在定义特列分布时,分配各轮重; 每辆特载的车轮总重1KN,用户在定义特载分布时,分配各轮重。

相关主题
文本预览
相关文档 最新文档