2013年江苏省高中数学优秀课 评比教案——《对数》教学设 计(评委版)
- 格式:pdf
- 大小:397.26 KB
- 文档页数:10
对数(第一课时)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系; ②理解和掌握对数的性质; ③掌握对数式与指数式的关系 . 2. 过程与方法:通过与指数式的比较,引出对数定义与性质 . 3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力. (2)通过对数的运算法则的学习,培养学生的严谨的思维品质 . (3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力. 二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质 (2)难点:推导对数性质的 三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现 (2)教具:投影仪 四.教学过程:1.提出问题思考:(P 72思考题)13 1.01x y =⨯中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少? 象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).1、对数的概念一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N =a 叫做对数的底数,N 叫做真数.举例:如:24416,2log 16==则,读作2是以4为底,16的对数. 1242=,则41log 22=,读作12是以4为底2的对数. 提问:你们还能找到那些对数的例子2、对数式与指数式的互化 在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1 (2)log xa a N N x =⇔=指数式⇔对数式幂底数←a →对数底数 指 数←x →对数 幂 ←N →真数说明:对数式log a N 可看作一记号,表示底为a (a >0,且a ≠1),幂为N 的指数工表示方程xa N =(a >0,且a ≠1)的解. 也可以看作一种运算,即已知底为a (a >0,且a ≠1)幂为N ,求幂指数的运算. 因此,对数式log a N 又可看幂运算的逆运算.例题:例1(P 73例1)将下列指数式化为对数式,对数式化为指数式.(1)54=645 (2)61264-=(3)1() 5.733m= (4)12log 164=- (5)10log 0.012=- (6)log 10 2.303e =注:(5)、(6)写法不规范,等到讲到常用对数和自然对数后,再向学生说明. (让学生自己完成,教师巡视指导) 巩固练习:P 74 练习 1、2 3.对数的性质:提问:因为a >0,a ≠1时,log x N a a N x =⇔= 则 由1、a 0=1 2、a 1=a 如何转化为对数式 ②负数和零有没有对数? ③根据对数的定义,log a Na=?(以上三题由学生先独立思考,再个别提问解答) 由以上的问题得到① 011,a a a == (a >0,且a ≠1)② ∵a >0,且a ≠1对任意的力,10log N 常记为lg N . 恒等式:log a Na =N4、两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.说明:在例1中,10log 0.010.01,log 10ln10e 应改为lg 应改为.例2:求下列各式中x 的值(1)642log 3x =-(2)log 86x = (3)lg100x = (4)2ln e x -= 分析:将对数式化为指数式,再利用指数幂的运算性质求出x . 解:(1)2223()323331(64)(4)4416x --⋅--=====(2)111166366628,()(8)(2)2x x =====所以 (3)21010010,2x x ===于是(4)222ln ,ln ,e x x e e -=-==-x 由得即e 所以2x =-课堂练习:P 74 练习3、4补充练习:1. 将下列指数式与对数式互化,有x 的求出x 的值 .(1)125-=(2)x = (3)1327x =(4)1()644x= (5)lg0.0001x = (6)5ln e x =2.求log log log ,a b c b c Na⋅⋅∈+的值(a,b,c R 且不等于1,N >0).3.计算31log 53的值.4.归纳小结:对数的定义log (b N a a N b a =⇔=>0且a ≠1)1的对数是零,负数和零没有对数 对数的性质 l o g 1a a = a >0且a ≠1 log a NaN =作业:P 86 习题 2.2 A 组 1、2P 88 B 组 1对数(第二课时)一.教学目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题.③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法①让学生经历并推理出对数的运算性质. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 二.教学重点、难点重点:对数运算的性质与对数知识的应用 难点:正确使用对数的运算性质 三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的教学目标. 教学用具:投影仪 四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();n m nmnma a a ==2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道mnm na a a +⋅=,那m n+如何表示,能用对数式运算吗?如:,,mnm nm n a a aM a N a +⋅===设。
高一数学教案:《对数》教学设计
高一数学教案:《对数》教学设计
教学目标
1.理解对数的概念,把握对数的运算性质.
(1) 了解对数式的由来和含义,清晰对数式中各字母的取值范围及与指数式之间的关系.能熟悉到指数与对数运算之间的互逆关系.
(2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简洁的对数运算.
(3) 能依据概念进行指数与对数之间的互化.
2.通过对数概念的学习和对数运算法则的探究及证明,培育同学从特别到一般的概括思维力量,渗透化归的思想,培育同学的规律思维力量.
3.通过对数概念的学习,培育同学对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使同学擅长发觉问题,揭示数学规律从而调动同学思维的主动参加,培育同学分析问题,解决问题的力量及大胆探究,实事求是的科学精神.
教学建议
教材分析
假如看到这个式子会有何联想?
由同学回答1) (2) (3) (4) ..
也就要求同学以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今日重点讨论对数的运算法则.
二.对数的运算法则(板书)
对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.
由同学上黑板写出求解过程.
四.小结
1.运算法则的内容
2.运算法则的推导与证明
3.运算法则的使用
五.作业略
六.板书设计。
课题:对数的概念教材:《普通高中课程标准实验教科书》必修一教学目标:1、知识目标(1)理解对数的概念,了解常用对数与自然对数;(2)掌握对数式与指数式的相互转化。
2、能力目标(1)培养学生的分析转化意识;(2)渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。
3、情感目标通过与指数的类比以及对数概念的建立,树立事物的辩证发展和矛盾转化的观点,培养学生科学严谨的治学态度。
教学重点:对数的概念,指数式与对数式的相互转化。
教学难点:对数概念的理解。
教学方法与教学手段:启发式教学、讲练结合法;利用多媒体教学。
教学过程:一:复习回顾指数式:a b=N中,a是____, b是_____,N是_____,其中a,b,N什么范围?二:新课引入1.如果我们拿出一张纸对折,纸就变成了两层,再对折,就变成了四层,继续对折……设折x次时有N层,问折多少次时有128层?如何列式子?如何解决?折纸次数x 1 2 3 4 ……层数N 2 4 8 16 ……我已经知道一共有128层,你们能计算折了多少次吗?这个问题可以转化为已知x2=128求x= ?问题2:2、求下列各式中x 的值x (1) 2=32 1164x⎛⎫= ⎪⎝⎭(2) x (3) 2=7 x=5 x=-2 x=?上述问题,实质就是已知 底数 和 幂 的值,求 指数三、讲授新课:请同学们阅读课本72-74页,介绍对数的背景。
一、对数的概念一般地,如果a(a>0且a ≠1)的b 次幂等于N, 就是b a =N 那么数 b 叫做 a 为底 N 的对数,记作b N a =log ,a 叫做对数的底数,N 叫做真数。
举例:如:24416,2log 16==则,读作2是以4为底,16的对数.1242=,则41log 22=,读作12是以4为底2的对数注意:①底数的限制:a>0且a ≠1②对数的书写格式③ log 同“+” ⨯“”“”等符号一样,表示一种运算,即已知底数和它的幂值求指数的运算,这种运算叫对数运算,只不过对数运算的符号写在数的前面。
2.3.1对数(3)教学目标:1.进一步理解对数的运算性质,能推导出对数换底公式;2.能初步利用对数运算求解一些常见问题的近似值;3.通过换底公式的研究,培养学生大胆探索,实事求是的科学精神.教学重点:对数的换底公式及近似计算;教学难点:对数的换底公式的引入及推导.教学过程:一、情境创设1.复习对数的定义与对数运算性质;2.情境问题.已知lg2≈0.3010,lg3≈0.4771,如何求log23的近似值?二、学生探究log23与lg2、lg3之间的关系,并推广到log a N与log b N、log b a的关系.三、数学建构1.对数的换底公式log a N=loglogbbNa(a>0,a≠1,b>0,b≠1,N>0).2.换底公式的推导3.对数型问题的近似求值.四、数学应用例1计算log89×log332的值.练习:若log34×log25×log5m=2,则m=.例2已知x a=y b=z c,且111a b c+=.求证:z=xy.练习:已知正实数a、b、c满足3a=4b=6c.(1)求证:212c b a-=; (2)比较3a 、4b 、6c 的大小.例3 如图,2000年我国国内生产总值(GDP)为89442亿元, 如果我国的GDP 年均增长7.8%左右,按照这个增长速度,在2000年的基础上,经过多少年后,我国GDP 才能实现比2000年翻两番的目标?(lg2≈0.3010,lg1.078≈0.0326,结果保留整数).例4 在本章第2.2.2节的开头问题中,已知测得出土的古莲子中14C 的残余量占原来的87.9%,试推算古莲子的生活年代(lg2≈0.3010,lg0.879≈-0.0560,结果保留整数).练习:课本63页练习1,2,3.化简:(1)235111log log log 2589⋅⋅= ; (2)345212log 30log 30log 30++= . 证明:235321log 19log 19log 19++<1. 四、小结1.对数的换底公式.2.对数的运算性质在解决实际问题中的应用.五、作业课本P 64习题6,7,8.课后阅读课本63~64页内容.。
《对数》教案完美版《对数》教案⼀.三维⽬标:1.知识与技能①通过实例推导对数的运算性质,准确地运⽤对数运算性质进⾏运算,求值、化简,并掌握化简求值的技能.②运⽤对数运算性质解决有关问题.③培养学⽣分析、综合解决问题的能⼒.培养学⽣数学应⽤的意识和科学分析问题的精神和态度.2. 过程与⽅法①让学⽣经历并推理出对数的运算性质.②让学⽣归纳整理本节所学的知识.3. 情感、态度、和价值观让学⽣感觉对数运算性质的重要性,增加学⽣的成功感,增强学习的积极性.⼆.教学重点、难点重点:对数运算的性质与对数知识的应⽤难点:正确使⽤对数的运算性质三.学法和教学⽤具学法:学⽣⾃主推理、讨论和概括,从⽽更好地完成本节课的三维⽬标.教学⽤具:投影仪四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =?= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-?=÷=();n m n mn ma a a == 2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a+?=,那m n +如何表⽰,能⽤对数式运算吗?如:,,m n m n m n a a a M a N a +?===设。
于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =?==?=log m n a MN a m n MN +=?+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的⽅法推出对数的其它性质吗?(让学⽣探究,讨论)如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+(2)log log log a a a M M N N=- (3)log log ()n a a M n Mn R =∈证明:(1)令,m nM a N a == 则:m n m n M a a a N-=÷= l o g a M m n N ∴-= ⼜由,m n M a N a ==log ,log a a m M n N ∴== 即:log log log a a aM M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则l o g ,bn a b n M M a ==则Nb n na a ∴= Nb ∴= 即log log log a a a M M N N=- 当n =0时,显然成⽴.l o g l o gn a a M n M ∴= 提问:1. 在上⾯的式⼦中,为什么要规定a >0,且a ≠1,M >0,N >0?1.你能⽤⾃⼰的语⾔分别表述出以上三个等式吗?例题:1. 判断下列式⼦是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ?=+ (2)log log log ()a a a x y x y -=-(3)log log log a a a x x y y=÷ (4)log log log a a a xy x y =-(5)(log )log n a a x n x = (6)1log log a a x x=- (71log a x n= 例2:⽤log a x ,log a y ,log a z 表⽰出(1)(2)⼩题,并求出(3)、(4)⼩题的值.(1)log a xy z (2)log a (3)75log (42)z ? (4)分析:利⽤对数运算性质直接计算:(1)log log log log log log aa a a a a xy xy z x y z z =-=+- (2)2log log log log log log a a a a a a x x ==+ =112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519?=+=+=(4)252lg lg105== 点评:此题关键是要记住对数运算性质的形式,要求学⽣不要记住公式.让学⽣完成P 79练习的第1,2,3题提出问题:你能根据对数的定义推导出下⾯的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0 log log logc a c b b a=先让学⽣⾃⼰探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M N c c M a N b a c b c ====则且11,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M M a==⼜因为所以:log log log c a c b b a = ⼩结:以上这个式⼦换底公式,换的底C 只要满⾜C >0且C ≠1就⾏了,除此之外,对C 再也没有什么特定的要求.提问:你能⽤⾃⼰的话概括出换底公式吗?说明:我们使⽤的计算器中,“log ”通常是常⽤对数. 因此,要使⽤计算器对数,⼀定要先⽤换底公式转化为常⽤对数. 如:2lg3log 3lg 2=即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=”再如:在前⾯要求我国⼈⼝达到18亿的年份,就是要计算1.0118log 13x = 所以 1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈ =32.883733()≈年练习:P 79 练习4让学⽣⾃⼰阅读思考P 77~P 78的例5,例的题⽬,教师点拨. 3、归纳⼩结(1)学习归纳本节(2)你认为学习对数有什么意义?⼤家议论.2、思考:(1)证明和应⽤对数运算性质时,应注意哪些问题?(2)222log (3)(5)log (3)log (5)---+-等于吗?。
课题:对数授课教师:王健教材:苏教版必修1【教学目标】l.知识与技能:(1)理解对数的概念和意义;(2)能熟练地进行指数式与对数式的互化,理解两个对数恒等式;(3)了解常用对数与自然对数以及这两种对数的记法。
2. 过程与方法:(1) 通过探究使学生感受化归的数学思想;(2) 通过探究、思考、反思、完善,培养学生理性思维能力。
3. 情感、态度与价值观:(1)通过学习使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣;(2)通过阅读对数发展史,增强学生的数学素养。
【教学重、难点】(1)对数的概念;(2)对数式与指数式的互化。
【教学方法与手段】情境导学、启发引导、质疑讨论、迁移创新。
【教学过程】一、做好伏笔,温故知新:1.在指数式N a b =中,a 称为 ,b 称为 ,N 称为 ;2.若0>a 且1≠a ,则=0a ,=1a 。
二、问题情境,引出课题:求下列各式的x 值(1)273=x (2)2515=x (3)32=x 探析:1.3个问题的共性都是已知 和 的值,求 的值。
即指数式N a b =中,已知 和 的值,求 的值。
(这里0>a 且1≠a )。
2.32=x 的解引发我们对=x ?的思考:①在R x ∈内,这样的方程有解吗?②既然有解,x 的值是多少呢?3.对数产生背景介绍。
4.介绍对数的文化意义。
三、概念理解,新知建构:1.对数的定义——一般地,如果a (0,1)a a >≠的b 次幂等于N ,即N a b =,那么就称b 是以a 为底 N 的对数(logarithm ),记作N b a log =,其中a 叫做对数的底数,N 叫做真数。
2.对数概念的理解:①利用对数形式表示32=x 中x 的值。
②将指数式932=化为对数式为29log 3=;将对数式212log 4=化为指数式 为2421=。
总结:由对数的定义可知,N a b =与N b a log =两个等式所表示的是a ,b ,N 这 三个量之间的同一关系,并且说明了指数式和对数式是可以互化的。
苏教版高中数学必修一3.2.1《对数》教学设计1.教学目标 知识与技能:理解对数概念,了解指数与对数的关系,能进行对数式与指数式的互化,了解两个特殊对数. 通过归纳与猜想“发现”对数的简单性质并掌握.培养学生分析问题,解决问题能力. 过程与方法:通过对数的发展史的引入,体会引入对数的必要性.通过探究活动,帮助学生认识数学知识的内在联系,从而培养学生类比、分析、归纳、等价转化的能力. 情感态度价值观:通过学习加深对人类事物的一般规律的认识,使学生体会知识的有机联系,感受数学的整体性,激发兴趣,增强数学交流能力,培养倾听和接受建议的品质. 2.教学重点、难点:重点是对数的定义,对数式和指数式的互化,难点是对数概念的理解,对数性质和相关公式的发现.3.教学方法和手段:归纳、猜想、证明等方法,类比思想、方程思想、数形结合思想,多媒体辅助教学.4.教学过程4.1 问题情境(ppt )234561,10,10,10,10,10,10,0,1,2,3,4,5,6,请同学们一起来看两行数据,不难发现第二行是第一行对应的指数,老师从第一行任取两个数相乘,如235101010⨯=,1090100101010⨯=,怎么算的? 公元前300年,阿基米德在还没有指数运算法则的情况下发现了这样的一个规律是很了不起的,这种计算方法的优点就是把复杂的乘除运算转化成简单的加减运算.很可惜这个规律没有能够继续探究下去也没有能够在实际生活中得以运用.让我们时光重回到17世纪,人们热衷于航海和天文学,人们需要面对越来越繁难的计算,耗费的时间也越来越长.问题1 如果在航海过程中测得两个很大的数字,需要计算乘积,在没有计算器的情况下怎么办呢?(2345567390045×447073288344456)能不能像刚才一样转化为两个数据的加法呢?问题2 以下列数据为例,107x=,(由指数函数的图象和性质可知,这样的x 唯一存在,体现函数与方程的思想.)(ppt )同学们现在以有的知识无法来表示这样的数,我们迫切需要引进一种新的表示方法.同学们其实我们以前也遇到过类似的问题.如:类比:(1)382a a == (2)32?a a ==(3)101002x x == (4)107?xx ==由a =(是使得一个数的三次方等于2的数),法国数学家笛”与2和3的结合体来刻画了三次方等于2的数.类比得到纳皮尔首创用logarithm 表“人造数”的简写到为“log ”与 7、10的组成的整体10log 7来表示一个10的多少次幂等于7的数(强调10log 7的含义),这样的数我们就称为对数.辨析:请学生模仿写1.082x =出方程的解. 请同学们来说说 1.08log 2x =与10log 7的含义.设计意图:通过观察分析两行数据和具体的演算,使学生深刻的认识到对数对简化运算的重大作用和引进对数的必要性,同时也让学生感知到生活中对数我们也是需要的,在这个过程中,对数和指数的联系进一步体现,让学生经历发现问题解决问题的过程,体验“再创造”的过程. 4.2建构数学问题4 到底什么是对数呢?我们以前学了b a N =中,已知底a 和指数b ,求N ,叫指数运算;反之,我们把与之相对的, b a N =中已知底a 和幂N ,求b,称()1x 满足等式的存在吗?()2如果存在,有几个?()3x 你能估计出的大小吗?之为对数运算,不难发现对数其实就是刻画b a N =中的b ,引出了对数的定义. (1)对数定义()()0,1,log =0,1b a a N a a N b a a =>≠>≠定义:若 则(ppt )(2)概念剖析 ① 写法:格式四线三格.②读法:以a 为底,N 的对数;注意不是“log ”以a 为底,N 的对数.(请同学一起来读一下 1.08log 2x =与10log 7)③概念:(指数和对数到底是什么关系呢?大家心里肯定在疑惑? 回忆乘方和开方等价的可以互化的,我们还知道加减、乘除也是可以互化的,类比得到,指数和对视两者也是等价的,可以互化的.一个关系,两种表示.)(PPT)④名称.( 既然是等价的,我们有个成语叫南橘北枳,同一样东西在不同的地方名称不同,那么这里的三个量的名称是什么呢?)⑤对数式中底数和真数的范围.(a 范围一 )设计意图:通过对对数的概念的剖析,使得学生能更加理解对数的概念. 4.3数学运用(1)将下列指数式改写为对数式(2)将下列对数式改写为指数式()12142=2(2)100.01-=0(3)8.81=1(4) 5.133m⎛⎫= ⎪⎝⎭()513log 3125=-()132log 273=-()1log 10e =()104log 1.699a =-(3)近似计算介绍特殊对数(同学们一定觉得刚才对数书写起来很烦,特别是一些经常要用到的对数,有简单的记法吗?)常用对数:10log lg a a =从布里格斯说起,他继承了纳皮尔的事业,用毕生的精力完成了以10为底的对数表,后来学者的数据处理很多都会把两个数的乘积转化为 .(PPT 放映对数表,对数表介绍了怎么样把两个数的加法运算转化为两个数的乘积运算.) 自然对数:log ln e a a =(e=2.7182818284…)这是因为很多反映自然规律的数学模型都包含e ,如放射性元素的衰变公式、牛顿的冷却定律,还有化学、物理和建筑学等自然学科中经常会出现,所以就称为自然对数了.(我们可以看见计算器上有常用对数和自然对数的运算我们一起来算两个.)设计意图:“常用对数”和“自然对数”的名称并不是“空穴来风”而是“事出有因”,这样可以强化学生对对数概念的认识,体会数学和生活的联系. 4.4学生活动(我们平时的运算不能借助与计算器,,那到底怎么来计算对数呢?)先和同学们探究 和 的值总结计算方法(1)根据对数定义直接求解;(2)转化为指数方程进行求解.(同学们有没有发现每次不管哪个方法你都要回到指数的形式很麻烦,下面我们一起来看看对数运算,让大家能不能从中发现一些简单性质,方便我们以后的运算)(1)计算探究一般地, , , , ,请证明这些结论.(1)引导学生观察真数的特点,(2)引导学生观察真数和底数的关系.2log 89log27131(5)log 3=3(2)log 3=2(6)log 16=4(1)log 1=2(4)log 8=2(7)log 32=12(3)log1=2log 3(8)2=3log 2(9)3=??1010⋅(2)归纳总结探究结果 归纳特殊发现一般规律探究内容:对上面的练习,进行观察归纳,探究“发现”一般规律;设计意图:培养探究意识和科学的探究方法,提高归纳总结的能力 (3)交流总结 简单证明因为01a =,所以log 10(0,1)a a a =>≠ 因为1a a =,所以log 1(0,1)a a a a =>≠ 因为n n a a =,所以log (0,1)n a a n a a =>≠类比证明:因为log log a a b b =,所以log a b a b =还可以回归指数证4.5回顾小结 基本知识:对数的定义,常用对数,对数的简单性质, 学会了对数和指数的互化以及对数的简单计算. 思想方法:归纳、猜想、证明等方法,类比思想、方程思想、 函数与方程思想、数形结合思想.对数概念的形成经历了近二千年时间,经历了阿基米德、纳皮尔的对数概念提出, 最后欧拉的对数概念完善. 对数概念的萌芽、形成、完善的过程也是一个文化继承、发展的过程.今天和大家沿着历史的足迹,探索了对数的含义,完成了前人用了两千年的时间探索完成的对数的概念,同时也完善了我们的运算知识体系,从加减、乘除、乘方开方、对数指数,这些互逆运算中,我们感受到了数学的玄妙.很多数学概念的产生过程中包含了人类许多的艰辛与曲折,经历了长期的改进,才成为系统的、严谨的逻辑形式.数学是一门生动有趣的富有创造性的学科.希望同学们更加热爱数学,勇攀数学的高峰. 4.6.课外作业 必做题:教材74页3-7选做题:1.求值()()3 2log32-+;2.已知[]235log log log0,x x⎡⎤=⎣⎦求的值.。
课题:对数授课教师:丁曼教材:苏教版必修一3.2.1一、教学目标:1、理解对数的概念;2、能熟练地进行指数式与对数式的互化;3、了解常用对数与自然对数以及这两种对数的记法;4、了解对数恒等式;5、了解对数的发明历史以及对数能够简化运算;6、学会用科学计算器计算常用对数和自然对数;7、让学生感受化归与转化的思想,能用相互联系的观点辩证地看问题,培养他们数学地分析问题的意识。
二、教学重点、难点:重点 :(1)对数的概念;(2)对数式与指数式的相互转化。
难点 :(1)对数概念的理解;(2)对数性质的理解。
三、教学方法与教学手段:教学方法:问题解决法、讨论法、类比分析与发现.教学手段:采用多媒体辅助教学.四、教学过程设计(一)创设情境,问题导入由十六、七世纪科学所遭遇的复杂运算问题的解决,引出对数的发明,简单说明对数的起源、意义、作用,引发学生的学习兴趣。
揭示了对数是一种运算后,由学生学习过的运算加、减、乘、除、乘方、开方等入手,引入对数。
28,x x =等于多少,学生很快得出答案,那么在3.1.2节例4中谈到的元素衰变问题,如果特别的经过多少年元素剩下原来的一半,我们可得到0.840.5,x =这里的x 已经超越了我们的经验,此时必须扩充装备,问题已经转化为用底数和幂表示指数,由指数函数的特征我们知道x 存在且唯一,此处数学上记作0.84log 0.5x =,读作:以0.84为底0.5的对数。
(二)动脑思考,探索新知让学生将b a N =表示为对数关系式,同时认读符号。
认读后将字母名称的变化情况带学生明确。
给出定义:(0,1)log ,b a a a a b N a N b a N N b a N >≠==一般的,如果的次幂等于,即,那么就称是以为底的对数,记作其中,叫做对数的底数,叫做真数。
从定义中可看到 log (0,1)b a a N N b a a =⇔=>≠提问:a 的范围和N 的范围是什么情况?学生思考回答,体会指数式和对数式的等价。
《对数》教案一.三维目标:1.知识与技能①通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能.②运用对数运算性质解决有关问题. ③培养学生分析、综合解决问题的能力.培养学生数学应用的意识和科学分析问题的精神和态度. 2. 过程与方法①让学生经历并推理出对数的运算性质. ②让学生归纳整理本节所学的知识. 3. 情感、态度、和价值观让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 二.教学重点、难点重点:对数运算的性质与对数知识的应用 难点:正确使用对数的运算性质 三.学法和教学用具学法:学生自主推理、讨论和概括,从而更好地完成本节课的三维目标. 教学用具:投影仪 四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-⋅=÷=();n m n mnma a a ==2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m na a a +⋅=,那m n +如何表示,能用对数式运算吗?如:,,mnm nm n a a aM a N a +⋅===设。
于是,m nMN a += 由对数的定义得到log ,log m n a a M a m M N a n N =⇔==⇔= log m n a MN a m n MN +=⇔+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗? (让学生探究,讨论)如果a >0且a ≠1,M >0,N >0,那么: (1)log log log a a a MN M N =+ (2)log log log aa a MM N N=- (3)log log ()na a M n Mn R =∈证明:(1)令,mnM a N a ==则:m n m n Ma a a N-=÷= log a Mm n N∴-=又由,mn M a N a ==log ,log a a m M n N ∴==即:log log log a a aM M N m n N-=-= (3)0,log ,N nna n N M M a ≠==时令则 log ,b na b n M M a ==则N b n na a ∴=N b ∴=即log log log a a a M M N N=-当n =0时,显然成立.log log na a M n M ∴=提问:1. 在上面的式子中,为什么要规定a >0,且a ≠1,M >0,N >0? 1. 你能用自己的语言分别表述出以上三个等式吗?例题:1. 判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=- (3)log log log aa a xx y y=÷ (4)log log log a a a xy x y =-(5)(log )log na a x n x = (6)1log log a ax x=- (71log a x n=例2:用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xy z (2)log a (3)75log (42)z ⨯ (4)分析:利用对数运算性质直接计算: (1)log log log log log log a a a a a a xyxy z x y z z=-=+- (2)2log log log log log log aa a a a a x x ==+ =112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519⨯=+=+=(4)252lg lg105==点评:此题关键是要记住对数运算性质的形式,要求学生不要记住公式. 让学生完成P 79练习的第1,2,3题 提出问题:你能根据对数的定义推导出下面的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0 log log logc a c bb a=先让学生自己探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M Nc c M a N b a c b c ====则且11,()N NMMMac a ab ====N所以c即:log log ,log c a c b N N b M M a ==又因为 所以:log log log c a c bb a=小结:以上这个式子换底公式,换的底C 只要满足C >0且C ≠1就行了,除此之外,对C 再也没有什么特定的要求.提问:你能用自己的话概括出换底公式吗?说明:我们使用的计算器中,“log ”通常是常用对数. 因此,要使用计算器对数,一定要先用换底公式转化为常用对数. 如:2lg 3log 3lg 2=即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=” 再如:在前面要求我国人口达到18亿的年份,就是要计算1.0118log 13x = 所以 1.0118lg18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈=32.883733()≈年练习:P 79 练习4让学生自己阅读思考P 77~P 78的例5,例的题目,教师点拨. 3、归纳小结(1)学习归纳本节(2)你认为学习对数有什么意义?大家议论.2、思考:(1)证明和应用对数运算性质时,应注意哪些问题? (2)222log (3)(5)log (3)log (5)---+-等于吗?。
教学计划:《对数》一、教学目标1.知识与技能:学生能够理解对数的概念,掌握对数的基本性质,学会使用对数换底公式和对数的运算法则进行简单的计算。
2.过程与方法:通过实例引入,引导学生自主探究对数的概念;通过小组合作,探讨对数性质与运算法则的推导过程,培养学生的探究能力和合作精神;通过练习巩固,提高学生运用对数知识解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养逻辑思维能力和抽象思维能力;通过对数的学习,让学生感受数学中的转换思想和简化运算的妙用,增强对数学美的感受力;培养学生的耐心和细心,形成严谨的科学态度。
二、教学重点和难点●教学重点:对数的概念、基本性质、换底公式及运算法则。
●教学难点:理解对数概念的本质,掌握对数运算法则的推导和应用。
三、教学过程1. 引入新课(约5分钟)●生活实例:以地震震级、声音强度等生活实例为引子,介绍这些领域中如何使用对数来表示和计算量级,引出对数的概念。
●问题驱动:提出一个需要用到对数来解决的问题,如“如何快速比较两个大数的相对大小?”,激发学生思考,引出对数的应用价值。
●概念揭示:正式介绍对数的定义,说明对数是指数运算的逆运算,强调底数、真数和对数值的含义。
2. 讲授新知(约15分钟)●性质讲解:介绍对数的基本性质,如对数函数的单调性、对数运算与指数运算的互逆关系等,并举例说明。
●换底公式:详细讲解对数换底公式的推导过程,强调公式的意义和应用场景,同时给出具体的例子进行验证。
●运算法则:介绍对数的运算法则,包括积的对数、商的对数、幂的对数等,通过例题演示运算法则的应用。
3. 巩固练习(约10分钟)●基础练习:设计一系列基础题目,涵盖对数概念、性质、换底公式和运算法则,让学生独立完成,以检验他们对新知识的掌握情况。
●错题解析:收集学生练习中的典型错误,进行全班性的讲解和纠正,帮助学生理清思路,避免类似错误再次发生。
●小组讨论:鼓励学生组成小组,针对练习中的难题进行讨论交流,分享解题思路和方法,促进知识的内化和吸收。
课题:3.2.1对数授课教师:无锡市辅仁高级中学 张长贵教材:苏教版普通高中课程标准实验教科书 数学必修1一、教学目标:1.通过具体实例使学生认识到引进对数的必要性,让学生在实际背景中了解对数的意义,经历对数概念的形成过程;2.帮助学生理解对数的概念,引导学生认识对数与指数的相互联系,会熟练地进行指数式与对数式的互化,体会转化与化归的思想;3.引导学生发现关于对数的几个常用结论,了解常用对数和自然对数,了解对数的发明历史,培养学生的探究意识和发现问题、分析问题、解决问题的能力.二、教学重点、难点:重点:对数的概念,指数式与对数式的互化;难点:对数概念的理解.三、教学方法与手段:运用引导发现和讲练结合的教学方法,突出教师的“导”和学生的“探”,借助多媒体课件、计算器等工具让学生在教师的引导下,学会思考,大胆探索,建构知识,体会思想,形成技能.四、教学过程:(一)问题情境设该物质最初的质量是1,则经过x年,该物质的剩留量为.课本第68页 例4 某种放射性物质不断变化为其他物质,每经过1年,这种物质剩留的质量是原来的84%.写出这种物质的剩留量关于时间的函数关系式.问题1:我们建立这个函数关系式可以实现计算预测的功能,只要知道时间x就可以计算剩留量y.比如,经过了3年,剩留量是多少?问题2:反过来,如果我们知道了该物质的剩留量y,怎么求出所经过的时间x呢?比如经过多少年,剩留量为0.5?“已知底数和幂值求指数”是一个新运算,这是我们这节课将要研究的问题.【设计意图】通过具体实例说明研究对数的必要性.引导学生用数学语言表述问题,回顾指数运算.由剩留量y求出所经过的时间x的设问让学生发现“已知底数和幂值求指数”的新问题,引发学生的认知冲突,激发学生的兴趣.问题3:中的存在吗?唯一吗?能否借助之前所学的指数函数内容加以说明?[师生活动]引导学生利用指数函数的图像和性质分析得出中的存在且唯一.【设计意图】关注学生的认知规律,引导学生用旧知识解决新问题,反映知识的联系性,体现数形结合的思想,同时为引入对数打下基础.(二)建构数学1.定义概念读法板书课题:对数写法一般地,如果的次幂等于,即,那么就称是以为底的对数(logarithm),记作,其中,叫做对数的底数(base oflogarithm),叫做真数(proper number).2.概念解读b叫做以a为底N的对数,叫做对数的底数,N叫做真数.问题4:在指数式中,a,b,N的名称叫什么?学生回答指数式中的字母名称,教师完成上述连线图.【设计意图】明确指数式和对数式中a,b,N的名称与位置变化,让学生了解对数式与指数式的关系,明确对数式与指数式形式的区别.指出:对数的写法和符号表示也有讲究.我们用四线三格来规范书写.正确写法:错误写法是一个整体, 离开了底数和真数的孤立符号log是没有意义的.【设计意图】对数符号是学生学习的难点,注意对数的书写,避免因书写不规范而产生的错误,进一步强化学生对对数符号的认识和理解.问题5:我们用表示b,对数式的含义是什么呢?对数式的含义就是指.因此根据对数的定义可知,与两个等式所表示的是a,b,N这3个量之间的同一个关系.两种写法可以相互转化.【设计意图】明确指数式和对数式中a,b,N是同一个量,理解指数式与对数式的相互关系,互化也体现了等价转化这个重要的数学思想,为探究对数的基本性质和对数式指数式的互化做好铺垫.3.性质探究问题6:对数式中a、b、N的取值范围是什么?[师生活动]基于上述互化关系,教师引导学生认识到两个式子中字母的位置和名称发生了变化,但它们表示的是同一个量. 学生回忆指数函数的图像和性质,回答a,N,b的范围.底数,,R,N>0.【设计意图】引导学生利用指数式与对数式的互化关系和已学过的指数函数的相关知识来认识a,b,N的范围,促进学生加深对定义的理解.例如:; .问题7:根据对数的定义,写出下列各对数的值(,):,, ,, , .[学生活动]学生口答,并提炼一般性结论:(,),.【设计意图】尝试使用对数的定义探究出对数的一些基本性质,体会数学定义的价值和指数式与对数式相互转化过程中蕴含的等价转化的思想方法.(三)数学运用例1 将下列指数式改写成对数式:指数式对数式(1)(2)(3)(4)例2将下列对数式改写成指数式:指数式对数式(1)(2)(3)【设计意图】熟悉指数式对数式的相互转化,加深理解对数概念. 从说、写两个角度来规范学生的数学表达.例3 求下列各式的值:(1); (2).[师生活动]学生解答,教师巡视答题情况,并请学生交流解法.解:(1)法一:由,得 .法二:设,则,所以.[教学预设]由于很容易看出,故此处学生可能不需要设,不强求.第(2)问中学生不会很容易地得出相对应的指数式,可以通过设将对数式转化为指数式.(2)设,根据对数的定义知,即,得,,所以=.在对数还不熟练的时候可以先假设要算的对数值为,再转化为指数式,根据指数式确定的值,用对数的定义去解决问题.【设计意图】帮助学生在应用的过程中进一步理解对数的概念,掌握对数式与指数式的互化方法,培养学生的运算能力和分析问题、解决问题的能力.练习 求下列各式的值:(1);(2);(3);(4);(5).【设计意图】了解学生对数概念的掌握情况,巩固所学知识,为引入两个重要结论做好准备.探究(1)=;(2)=;(3) =;(4) =;(5) .你能提炼出一般性结论吗?,,R, b .[师生活动]师生探讨如何证明这个结论.定义中两个式子①和②中a,b,N是同一个量,那么能否通过代换得到结论?猜想:,,N >0,N .将②代入①,可以得到结论.板书 结论:,R,.,.【设计意图】通过思考题的设置,借助练习与讨论的方式,让学生自己提炼出结论并进行证明,培养学生分析问题、观察归纳的能力. 重要结论的发现和证明又进一步深化学生对对数概念的理解.[回扣例题] 例3 求下列各式的值:(1);(2).[学生活动]学生利用结论(R)来解决问题.【设计意图】利用发现的结论再次来解答前面的例题,将例题和练习融合,从概念到应用,从练习再回到例题,交替螺旋上升,始终围绕着对数概念这个中心.介绍(1)常用对数这是一个以10为底的对数. 通常将以10为底的对数称为常用对数(common logarithm),如,等.为了方便起见,对数简记为,如,.问题8: ,的值是多少?[师生活动]教师指导学生使用计算器计算和(保留四位小数).【设计意图】鼓励学生使用计算器等进行探索发现,感受现代信息技术在数学中的作用,促进学生的学习.(2)自然对数在科学技术中,常常使用以e为底的对数,这种对数称为自然对数(natural logarithm).是一个无理数.正数的自然对数一般简记为,如分别记为等.链接“常用对数”“自然对数”这两个特殊对数的名称很特别.为什么称之为常用对数?自然对数又自然在哪里?有两本课外阅读书《不可思议的e》和《漫话e》,从中你一定能找到答案.【设计意图】指导学生查阅有关资料、书籍,多了解一些数学文化方面的知识,激发学生学习数学的兴趣.回到开头的问题,计算3.9755,让学生了解经过大约4年剩留量是原来的一半.[教学预设] 有些同学的计算器上不能设置底数和真数,是计算器的设计缺陷吗?那么碰到底数不是10和e的对数怎么办?还能用计算器计算吗?这个问题通过后面的学习也能解决.【设计意图】呼应本节课开头的问题.借用计算器能否设定底数和真数的问题激发学生对后续相关内容的求知欲.(四)课堂总结结合课本中的阅读材料和学生一起回顾整个知识的探究和发生的过程.【设计意图】通过小结对本节课的教学内容进行梳理和概括.将课本的《阅读》内容有机地融合到课堂总结中,通过数学史的学习既让学生了解了对数的发明历史,又向学生介绍了对数在简化运算中的价值,感受数学对推动社会发展的作用,激发学生学习数学的热情,将本节课与后续内容的学习连贯起来.(五)课后巩固布置作业:课本第79页:习题3.2(1)感受理解 1,2,3,4.附:教学设计说明本节课是苏教版必修一第3.2节《对数函数》的第一课时.本章学习的主要内容为三个基本初等函数及其性质,以及运用它们解决一些实际问题.本节内容安排在指数函数后,对数函数前,因此对数概念的学习是指数概念和指数函数的回顾、深化和延续,同时又是学习对数运算性质和对数函数的基础,在高中的函数内容中起到承上启下的作用.数学概念的教学要将数学概念在数学思想的整体连贯性中的作用体现出来.数学概念是构成数学知识的基础,数学概念的内涵外延及其所反映的思想方法,其与相关概念之间的联系都是概念教学的重点.对数是一个比较抽象的数学概念,但对数又是为了生产生活中的计算需要而必然产生的.本设计从第3.1.2节中例4“放射性物质剩留量”问题作为引入,通过具体问题说明研究对数的必要性,调动学生学习对数的积极性,也体现了知识的系统性和知识之间的有机联系.教材从指数到对数的过程以及强调指数式与对数式的互化关系,有利于学生理解对数的概念,也易于后续的对数运算性质及对数函数的教学.通过对数概念的教学让学生感受转化与化归的思想,能用相互联系的观点看问题.设计例1例2的目的是让学生进一步熟悉对数式与指数式的互化,加深对数概念的理解,并配以练习加以巩固.例3的设计是一个亮点,也是本节课的一个高潮点.一个方法是将对数化为指数处理,回扣了定义.另一个方法是利用练习中发现的结论来解决.而重要结论的发现和证明过程恰恰又是对数概念的深层次运用,将例题和练习完美融合,从概念到例题,从练习再回到例题,交替螺旋上升,始终围绕着本节课教学重难点—对数概念的理解来做文章.本段教学还注重培养学生观察归纳类比的能力.根据本节内容的特点,教学过程中笔者注重信息技术的作用,鼓励学生使用计算器,促进学生的数学学习.通过推荐书目的介绍激发学生学习数学的兴趣.对数的发明者与发展历史及其价值是数学文化的重要体现,能让学生感受数学知识的产生和发展源于实践又不断推动社会发展.将课本第79页的《阅读》内容有机地融合到课堂总结中,既向学生介绍了对数的发明历史,又向学生展示了对数的真正价值,将学生对知识的渴望延伸至课外.。