第1章 X射线晶体学基础
- 格式:ppt
- 大小:1.72 MB
- 文档页数:38
第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。
晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。
为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。
这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。
要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。
凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。
点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。
这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。
1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。
每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。
取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。
图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。
《X射线晶体学》课程教学大纲课程英文名称:X-ray Crystallography课程编号:0312092002课程计划学时:32学分:2课程简介:《X射线晶体学》是解决材料的种类和性能优劣问题的重要手段。
它对近代科学和近代技术的发展有着广泛的影响,它不仅揭示了物质的原子级结构,而且为人们认识固体的力学性质和变形过程、性变形为、晶体生长特性和晶体缺陷等奠定了结构基础。
它在固体物理、晶体化学、材料科学、金属学、矿物学及其他有关学科的研究和发展方面做出了极大贡献。
一、课程教学内容及教学基本要求第一章晶体学基础本章重点晶体最密堆积原理、空间点阵、晶体的对称性、晶体定向和晶体计算。
难点晶体结构的对称群、晶体投影、倒易点阵。
本章主要采用课堂讲授的方式,利用粉笔黑板做教具,为学生做形象的演示,帮助学生理解掌握。
本章学时:5学时教学形式:讲授教具: 黑板,粉笔第一节晶体的特征本节要求了解晶体的特征及晶体的结构。
(考核概率50%),1 晶体育非晶体2 晶体的结构第二节晶体最密堆积原理本节要求理解晶体的最密堆积排列原理。
(考核概率80%)1 最密堆积原理第三节空间点阵本节要求理解晶体的空间点阵及其性质、了解常见的晶体空间点阵(考核概率100%),1 空间点阵第四节晶体的对称性本节要求理解对称操作和对称元素,掌握对称操作的种类。
(考核概率100%)1 对称操作和对称元素2 对称操作的种类第五节晶体结构的对称群本节要求理解对称群的概念,重点掌握对称群的种类。
(考核概率100%)1 对称群的概念对称群种类(本章的难点)第六节布拉维格子和晶系的划分本节要求掌握布拉维格子的选取准则,七大晶系的划分及单晶胞(考核概率100%),也是本章的难点。
1 布拉维格子的选取准则2 七大晶系的划分3 单晶胞第七节点群符号与空间符号本节要求了解点群符号与空间群符号(考核概率20%),本节内容要求学生课后自学。
1 点群符号2 空间群符号第八节晶体定向和晶体计算本节要求重点掌握晶体定向、晶向指数和晶面指数、六方晶系的四轴定向、单形与聚形、晶带与晶带的计算。
晶体学基础与X射线单晶衍射分析一、晶体及其对称性晶体是由原子(离子,分子)在空间周期地排列构成地固体物质,为了更好的描述晶体这种周期排列的性质,可以把晶体中按周期重复的区域里的结构抽象成一个点,这样周期排列的点就构成了一个点阵,晶体的结构就可以表示成:晶体结构=点阵+结构基元的形式。
用三个不相平行的单位矢量a,b,c可以点阵在空间排列的坐标,这三个矢量的长度a,b,c及其相互之间的夹角γ,β,α称为点阵参数或晶胞参数。
点阵在空间的排列是高度有序的,这决定了其可以做某些对称操作。
固定一个点不动的对称操作(包括旋转,镜像,中心反映)可以有32种,对应32个点群。
实际晶体中除了点操作外,还可以存在螺旋轴,滑移面,若把这些操作和点操作进行组合,可以产生230种对称操作,对应230个空间群,所有晶体的对称操作只可能是这230个空间群中的一个。
了解晶体所属的空间群对测定晶体结构,判断晶体性质是极为重要的。
二、倒易点阵和衍射方向由于晶体具有周期性的排列结构,X射线照射到晶体上会产生衍射,为了更方便的解释晶体的衍射现象,引入了倒易点阵的概念。
倒易点阵是从是从晶体点阵中抽象出来的一套点阵。
它与晶体点阵的关系可以用下面的公式描述:其中a*,b*,c*是倒易点阵的单位矢量,倒易点阵上的点h,k,l的向量H可以表示为:H=ha∗+kb∗+lc∗向量H的与晶体点阵中的平面(h,k,l)垂直,其长度与点阵中d hkl成反比,即:H=1/dℎkl.晶体产生衍射的基本条件满足布拉格方程:也即:sinθhkl =1d ℎkl 2λ=H ℎkl 2λ 从这里可以看出,只有倒易点阵H hkl 对应的方向才是晶体衍射极大值出射的方向。
三、晶体基本信息的测定晶体的基本信息也就是晶体的晶胞参数和所属的空间群,其中晶胞参数可以在数据处理时利用布拉格方程来计算,为减小误差可以选用高角度的衍射点来求算。
由于在没有反常散射的情况下,晶体的衍射强度满足Friedel 定律,衍射点在H hkl 和H hkl̅̅̅̅̅的强度是相等的,也就是衍射点的分布都是中心对称的。
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。