单片机外围模块
- 格式:pptx
- 大小:1.52 MB
- 文档页数:105
PIC 单片机是什么?
什幺是PIC 单片机?
PIC 单片机(Peripheral Interface Controller)是一种用来开发的去控制外围设备的集成电路(IC)。
一种具有分散作用(多任务)功能的CPU。
与人类相比,大脑就是CPU,PIC 共享的部分相当于人的神经系统。
PIC 单片机是一个小的计算机
PIC 单片机有计算功能和记忆内存像CPU 并由软件控制允行。
然而,处理
能力存储器容量却很有限,这取决于PIC 的类型。
但是它们的最高操作频率
大约都在20MHz 左右,存储器容量用做写程序的大约1K4K 字节。
时钟频率与扫描程序的时间和执行程序指令的时间有关系。
但不能仅以时
钟频率来判断程序处理能力,它还随处理装置的体系结构改变(1*)。
如果是
同样的体系结构,时钟频率较高的处理能力会较强。
这里用字来解释程序容量。
用一个指令(2*)表示一个字。
通常用字节(3*)来
表示存储器(4*)容量。
一个字节有8 位,每位由1 或0 组成。
PIC16F84A 单
片机的指令由14 位构成。
当把1K 个子转换成位为:1 x 1,024 x 14 = 14,336 位。
再转换为字节为:14,336/(8 x 1,024) = 1.75K。
在计算存储器的容量时,我们规定1G 字节= 1,024M 字节, 1M 字节= 1,024K 字节, 1K 字节= 1,024 字节. 它们不是以1000 为倍数,因为这是用二进制计算的缘故。
51单片机buf用法单片机(Microcontroller)是指将微处理器与外部存储器、输入/输出接口及定时器等外围电路集成在一块芯片上的一种微型计算机系统。
而51单片机则是指来自Intel早期生产的一款经典单片机,即Intel 8051。
在51单片机的编程中,BUF(Buffer)是一种常用的功能模块,用于数据的缓冲、传输和处理等操作。
本文将介绍51单片机BUF的基本用法,以及一些常见的应用案例。
一、BUF的基本概念BUF是一种常见的数据缓冲模块,通常由寄存器和状态控制逻辑构成。
其主要作用是在不同模块之间进行数据的传输和处理,起到缓冲数据的作用。
BUF可以分为输入BUF和输出BUF两种类型。
输入BUF接收外部输入信号,将其缓存在寄存器中,以供后续的处理使用。
而输出BUF则将经过处理后的数据从寄存器中输出,发送给外部器件或其他模块。
BUF的主要功能是防止信号的损失和传输延迟,提高数据的稳定性和可靠性。
二、BUF的用法在51单片机中,通过设置寄存器和相关的逻辑控制,实现对BUF的配置和使用。
以下是BUF的一些常见用法:1. 数据的输入和缓冲首先,通过将BUF的输入引脚与外部输入信号相连,将外部输入数据传递给BUF。
然后,将BUF的输出引脚与寄存器相连,通过设置寄存器的控制位,将输入数据缓存在寄存器中。
例如,假设我们需要从外部输入一个模拟信号,并将其用于后续的数据处理。
我们可以使用一个BUF模块将该模拟信号缓存到寄存器中,以供后续的处理使用。
2. 数据的处理和传输一旦输入数据被缓存在寄存器中,我们可以对其进行各种数据处理操作。
比如,可以进行数据的加减运算、位操作、逻辑运算等。
完成数据处理后,我们可以将处理结果传输到其他模块或输出端口,以实现数据的进一步应用。
通过BUF的输出引脚和寄存器的相关设置,可以将处理结果输出到指定的位置。
3. 数据的输出和发送BUF还可以用于将数据发送到外部器件或其他模块。
通过设置BUF的控制位和输出引脚,可以将寄存器中的数据输出并发送。
单片机通信技术UARTSPI和IC 单片机通信技术:UART、SPI和IC单片机(Microcontroller)是一种集成了处理器核心、存储器和外设接口的微型计算机系统。
在各种电子设备中,单片机扮演着控制和通信的重要角色。
本文将介绍单片机通信技术中的UART、SPI和IC (Integrated Circuit)三个关键概念,并探讨它们之间的联系与应用。
一、UART通信技术UART(Universal Asynchronous Receiver/Transmitter)通信技术是一种异步串行通信协议,通常用于单片机与外部设备之间的通信。
UART通过串口将数据以二进制的形式进行传输,通信的双方需要约定好各自的通信参数,如波特率、数据位数、停止位等。
UART通信技术的核心在于数据的传输方式,它采用了起始位、数据位、校验位和停止位的组合来实现数据的传输。
起始位用于告知数据接收方一组数据的开始,数据位是用来传输具体的数据内容,校验位用于检测数据的准确性,停止位用于标志一组数据的结束。
UART通信技术具有简单、稳定、成本低等优点,因此在许多单片机应用中得到广泛应用。
例如,串口通信、蓝牙通信、红外通信等都可采用UART技术。
二、SPI通信技术SPI(Serial Peripheral Interface)通信技术是一种同步串行通信协议,常用于实现单片机与外围设备之间的高速数据传输。
SPI通信采用全双工的方式,即可以同时进行数据发送和接收。
SPI通信技术的关键在于主从设备之间的时钟同步和数据传输协议。
在SPI通信中,主设备控制通信的时序和数据传输的规则,从设备负责响应主设备的指令并返回数据。
SPI通信使用了四根信号线,分别是时钟信号(SCK)、主设备输出从设备输入信号(MOSI)、从设备输出主设备输入信号(MISO)和片选信号(SS)。
SPI通信技术具有高速、全双工、多设备共享总线等特点,因此被广泛应用于数据存储器、显示设备、模数转换器(ADC)、数模转换器(DAC)等外围设备的通信。
单片机电路一、概述单片机电路是由单片机和其他外围电路组成的一种电子系统,它具有微处理器、存储器、输入输出接口等功能模块。
单片机电路广泛应用于各种电子设备中,如智能家居、智能穿戴设备、工业自动化等领域。
二、单片机的基本结构1. CPUCPU是单片机的核心部件,它负责执行指令和控制整个系统的运行。
常见的单片机CPU有AVR、PIC等。
2. 存储器存储器用于存储程序代码和数据。
常见的存储器有闪存、EEPROM和SRAM等。
3. 输入输出接口输入输出接口用于与外部设备进行数据交换。
常见的输入输出接口有GPIO、SPI和I2C等。
4. 定时器计数器定时器计数器用于产生精确的时间延迟或周期信号,可以实现各种定时控制功能。
三、单片机电路设计流程1. 系统需求分析在设计之前需要明确系统需求,包括功能要求、性能要求和可靠性要求等。
2. 选型与方案设计根据系统需求选择合适的单片机芯片,并设计相应的硬件电路方案。
3. PCB设计根据方案设计出PCB电路板,包括电路图设计、元器件布局和走线等。
4. 软件编程根据硬件电路设计编写相应的软件程序,实现系统功能。
5. 系统测试与调试将硬件电路和软件程序进行组装,进行系统测试和调试,确保系统功能正常。
四、单片机电路中常用的外围电路1. 时钟电路时钟电路用于提供单片机的时钟信号,使其能够按照一定的频率运行。
常见的时钟源有晶体振荡器和RC振荡器等。
2. 复位电路复位电路用于在系统启动或异常情况下将单片机复位,保证系统稳定性。
常见的复位方式有手动复位和自动复位。
3. 电源管理电路电源管理电路用于对单片机芯片进行供电管理,包括稳压、滤波和过压保护等。
4. 外设驱动电路外设驱动电路用于驱动各种外部设备,如LED灯、LCD显示屏、继电器等。
常见的接口有GPIO、PWM和ADC等。
五、单片机开发工具介绍1. 开发板开发板是一种集成了单片机芯片和外围电路的开发工具,可以帮助开发人员快速搭建单片机电路并进行软件编程。
单片机常见英文缩写(二)引言概述:本文将介绍一些与单片机相关的常见英文缩写。
这些缩写是在单片机领域中使用较为频繁的,了解并熟练运用这些缩写有助于我们更好地理解和应用单片机技术。
正文内容:一、单片机内部组成1.1 MCU:Microcontroller Unit,意为微控制器单元,是指能够完成微处理器和外围器件集成在一块芯片上的单片机。
1.2 CPU:Central Processing Unit,中央处理器,是单片机内部用来执行指令和处理数据的核心部件。
1.3 RAM:Random Access Memory,随机存储器,是单片机内部用来存储数据和程序的临时存储器件。
1.4 ROM:Read-Only Memory,只读存储器,是单片机内部用来存储程序固化后的指令和数据的非易失性存储器件。
1.5 Flash:一种可擦写和重新编程的存储器技术,常用于单片机中存储程序代码。
二、通信相关缩写2.1 UART:Universal Asynchronous Receiver and Transmitter,通用异步收发器,是常用的串行通信接口。
2.2 SPI:Serial Peripheral Interface,串行外围接口,是一种用于单片机和外围设备之间进行通信的接口协议。
2.3 I2C:Inter-Integrated Circuit,集成电路互联总线,是一种常用的串行通信协议,用于连接多个设备。
2.4 CAN:Controller Area Network,控制器局域网,是一种广泛应用于汽车、工控等领域的串行通信协议。
2.5 USB:Universal Serial Bus,通用串行总线,是一种用于连接计算机和外围设备的通信接口标准。
三、外设和模块缩写3.1 ADC:Analog-to-Digital Converter,模数转换器,用来将模拟信号转换为数字信号的电路。
3.2 PWM:Pulse Width Modulation,脉宽调制技术,用于控制模拟电路的输出功率。
单片机最小系统单片机最小系统是指以单片机为核心,配以必要的外围电路,实现一定功能的电路系统。
它通常包含单片机、电源、时钟电路、复位电路和程序存储器等部分。
下面将详细介绍单片机最小系统的构成和特点。
单片机:单片机是整个系统的核心,它负责数据处理和控制信号输出。
常用的单片机型号有AT89CPIC16F877A等。
电源:为单片机提供电能,一般采用直流电源,如5V、3V等。
时钟电路:为单片机提供时钟信号,常用的时钟芯片有0592MHz和4MHz等。
复位电路:当单片机出现程序跑飞或异常情况时,可以通过复位电路使单片机重新启动。
常用的复位芯片有MAX811等。
程序存储器:用于存储单片机程序,常用的存储器有EPROM、EEPROM 和Flash等。
结构简单:单片机最小系统以单片机为核心,配以外围电路,结构简单,易于实现。
功能灵活:通过编程,单片机可以实现各种不同的功能,如数据采集、控制输出、通信等。
可靠性高:由于单片机最小系统结构简单,所以其可靠性较高,适用于各种工业控制和智能家居等领域。
成本低廉:单片机最小系统的硬件成本较低,适用于各种低成本应用场景。
单片机最小系统是一种简单、灵活、可靠且低成本的电路系统,广泛应用于各种嵌入式系统开发中。
随着物联网、智能家居等领域的快速发展,单片机最小系统的应用前景也将更加广阔。
在嵌入式系统和智能硬件领域,单片机最小系统作为一种基本的控制器单元,具有广泛的应用价值。
本文将介绍单片机最小系统的设计与应用,包括系统设计、系统应用和系统优化等方面的内容。
单片机最小系统通常由微处理器(MCU)、电源电路、时钟电路和复位电路等组成。
在设计单片机最小系统时,需要根据具体的应用需求选择合适的微处理器,并搭建相应的电源电路、时钟电路和复位电路。
单片机最小系统的架构设计应考虑应用需求和系统可靠性。
一般而言,系统架构应包括以下几个部分:(1)微处理器:作为系统的核心,微处理器负责数据计算、处理和传输等任务。