单片机外围电路扩展讲解
- 格式:ppt
- 大小:771.50 KB
- 文档页数:70
第六章单片机的并行扩展技术6·1 什么是并行外围扩展? 并行外围扩展有哪两种方式?这两种方式本质上的区别是什么?答:(1)并行外围扩展单片机的并行外围扩展是指单片机与外围扩展单元采用并行接口的连接方式,数据传输为并行传送方式。
并行扩展体现在扩展接口数据传输的并行性。
(2)并行外围扩展的方式并行外围扩展方式有两种I/O方式与总线方式。
题图6-1是80C5l两种并行外围扩展接口示意图。
图中的并行口数据宽度为8位。
①并行I/O口方式: I/O口并行扩展由I/O口完成与外围功能单元的并行数据传送任务,单片机与外围功能单元数据传送过程中的握手交互也由I/O口来完成的。
②并行总线方式:并行扩展采用三总线方式,即数据传送由数据总线DB完成;外围功能单元寻址由地址总线AB完成;控制总线CB则完成数据传输过程中的传输控制,如读、写操作等。
(3)两种方式本质上的区别两种并行外围扩展方式本质上的区别列于题表6-1中。
6·2 单片抗应用系统中有哪几种键盘类型?为什么这些键盘都是通过I/O 口扩展?答: (1)单片机应用系统中的键盘类型与通用计算机键盘相比,单片机应用系统中的键盘种类很多,键盘中按键数量的设置依系统操作要求而定。
一般说来,单片机应用系统中键盘有独立式和行列式两种,如题图6-2 所示。
题图6-2①独立式键盘:独立式键盘中,每个按键占用一根I/O口线,每个按键电路相对独立如题图6-2(a)所示。
I/O口通过按键与地相连。
I/O口有上拉电阻,无键按下时,引脚端为高电平;有键按下时,引脚端电平被拉低。
1/0端口有内部上拉电阻时,外部可不接上拉电阻。
②行列式键盘:行列式键盘采用行列电路结构。
行列交点处通过按键相连,列线为输出口,行线为输人口,如题图6-2(b)所示。
列线口输出全零电平时,若没有键按下则行线引脚上全部为高电平"1"状态;若有任何一个按键按下则行线引脚上为非全"1"状态;在有键按下后,通过列线逐个送"0",然后逐行检查哪根行线为"0"状态,即可查出是哪个键按下。
单片机IO口扩展技术] 0 引言在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术、高可靠性和高性价比,占领了工业测控和自动化工程应用的主要市场,并成为国内单片机应用领域中的主流机型。
MCS-51单片机的并行口有P0、P1、P2和P3,由于P0口是地址/数据总线口,P2口是高8位地址线,P3口具有第二功能,这样,真正可以作为双向I/O口应用的就只有P1口了。
这在大多数应用中是不够的,因此,大部分MCS-51单片机应用系统设计都不可避免的需要对P0口进行扩展。
由于MCS-51单片机的外部RAM和I/O口是统一编址的,因此,可以把单片机外部64K字节RAM空间的一部分作为扩展外围I/O口的地址空间。
这样,单片机就可以像访问外部RAM存储器单元那样访问外部的P0口接口芯片,以对P0口进行读/写操作。
用于P0口扩展的专用芯片很多。
如8255可编程并行P0口扩展芯片、8155可编程并行P0口扩展芯片等。
本文重点介绍采用具有三态缓冲的74HC244芯片和输出带锁存的74HC377芯片对P0口进行的并行扩展的具体方法。
1 输入接口的扩展MCS-51单片机的数据总线是一种公用总线,不能被独占使用,这就要求接在上面的芯片必须具备“三态”功能,因此扩展输入接口实际上就是要找一个能够用于控制且具备三态输出的芯片。
以便在输入设备被选通时,它能使输入设备的数据线和单片机的数据总线直接接通;而当输入设备没有被选通时,它又能隔离数据源和数据总线(即三态缓冲器为高阻抗状态)。
1.1 74HC2244芯片的功能如果输入的数据可以保持比较长的时间(比如键盘),简单输入接口扩展通常使用的典型芯片为74HC244,由该芯片可构成三态数据缓冲器。
74HC244芯片的引脚排列如图1所示。
74HC244芯片内部共有两个四位三态缓冲器,使用时可分别以1C和2G作为它们的选通工作信号。
当1 C和2G都为低电平时,输出端Y和输入端A状态相同;当1G和2G都为高电平时,输出呈高阻态。
单片机外围电路设计攻略(全)!单片机外围电路设计之一:电阻对于电阻,想必大家都觉得简单,没有什么好说的。
其实电阻的应该还是非常广泛的,在不同的应用场合其作用是完全不同的。
本人将总结其基本用法,及容易被忽略的地方。
1、概念电阻(Resistance,通常用“R”表示),在物理学中表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。
电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。
而超导体则没有电阻。
电阻元件的电阻值大小一般与温度,材料,长度,还有横截面积有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
电阻在电路中通常起分压、分流的作用。
对信号来说,交流与直流信号都可以通过电阻。
导体的电阻通常用字母R表示,电阻的单位是欧姆(ohm),简称欧,符号是Ω(希腊字母,读作Omega),1Ω=1V/A。
比较大的单位有千欧(kΩ)、兆欧(MΩ)(兆=百万,即100万)。
KΩ(千欧),MΩ(兆欧),他们的换算关系是:1TΩ=1000GΩ;1GΩ=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω(也就是一千进率)两个电阻并联式也可表示为串联: R=R1+R2+...+Rn并联:1/R=1/R1+1/R2+...+1/Rn 两个电阻并联式也可表示为R=R1·R2/(R1+R2)定义式:R=U/I决定式:R=ρL/S(ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积)电阻元件的电阻值大小一般与温度有关,还与导体长度、横截面积、材料有关。
衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
多数(金属)的电阻随温度的升高而升高,一些半导体却相反。