江苏省徐州市树人初级中学2019-2020学年度第一学期期中考试九年级数学试题 图片版含答案
- 格式:pdf
- 大小:540.03 KB
- 文档页数:3
2020-2021学年徐州市九年级上学期期中数学试卷一、选择题(本大题共8小题,共24.0分)1.方程x=x2的解为()A. x=1B. x=0C. x=±1D. x1=0,x2=12.如果关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,则k的取值范围是()A. k<1B. k<1且k≠0C. k>1D. k≤1且k≠03.把方程x2−8x+3=0化成(x+m)2=n的形式,则m,n的值是()A. 4,13B. −4,19C. −4,13D. 4,194.下表是满足二次函数y=ax2+bx+c的五组数据,x=m是方程0=ax2+bx+c的一个解,则下列选项中正确的是()A. 1.6<m<1.8B. 1.8<m<2.0C. 2.0<m<2.2D. 2.2<m<2.45.二次函数y=ax2+bx+c的图象过点(−1,0),对称轴为直线x=2,若a>0,则下列结论错误的是()A. 当x>2时,y随着x的增大而增大B. (a+c)2=b2C. 若A(x1,m)、B(x2,m)是抛物线上的两点,当x=x1+x2时,y=cD. 若方程a(x+1)(5−x)=−1的两根为x1、x2,且x1<x2,则−1<x1<5<x26.抛物线y1=−x2+4x和直线y2=2x的图象如图所示,那么不等式y1>y2的解集是()A. x<0B. 0<x<4C. 0<x<2D. 2<x<47.如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(9,0).直线y=kx−3恰好平分⊙P的面积,那么k的值是()A. 65B. 12C. 56D. 28.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A. π4B. π−√32C. π−√34D. √32π二、填空题(本大题共10小题,共30.0分)9.已知,函数y=ax2−6ax+9a+1与线段AB有交点,且已知点A(0,1)与点B(2,3)的坐标,则a的取值范围______.10.如果关于x的一元二次方程2x(kx−4)−x2+6=0没有实数根,那么k的最小整数值是______.11.写出一个有根x=1的一元二次方程为______ .12.在平面直角坐标系中,把抛物线y=12x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是______ .13.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为______.14.如图,⊙O的半径为2,弦AB的长为2√3,点C是优弧AB上的一动点,BD⊥BC交直线AC于点D,当点C从△ABC面积最大时运动到BC最长时,点D所经过的路径长为______.15.如图,圆锥的高PC=4,母线PB=5,则此圆锥的全面积为______.16.如图1,正方形每条边上放置相同数目的小球,设一条边上的小球数为n,请用含n的代数式表示正方形边上的所有小球数;将正方形改为立方体,如图2,每条边上同样放置相同数目的小球,设一条边上的小球数仍为n,请用含n的代数式表示立方体上的所有小球数.17.如图,△ABC是⊙O的内接正三角形,图中阴影部分的面积是12π,则⊙O的半径为______.18.若关于x的方程x2−2ax+a−2=0的一个实数根为x1≥1,另一个实数根x2≤−1,则抛物线y=−x2+2ax+2−a的顶点到x轴距离的最小值是______.三、计算题(本大题共2小题,共30.0分)19.解方程:(1)x2−5x−6=0;(2)3x2−x−2=0.20.某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元;(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前800户(含第800户)每户每天奖励10元,800户以后每户每天奖励5元,按租房400天计算,求2018年该地至少有多少户享受到优先搬迁租房奖励.四、解答题(本大题共6小题,共66.0分)21.如图,AB是⊙O的直径,点C是⊙O外一点,连接AC,BC,AC与⊙O交于点D,弦DE与直径AB交于点F,∠C=∠E.(1)求证:BC是⊙O的切线;(2)若DE⊥AB,AE⏜=2BE⏜,AB=2√3,求CD的长.22.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与抛物线y=ax2−4ax+3a的对称轴交于点A(m,−1),点A关于x轴的对称点恰为抛物线的顶点.(1)求抛物线的对称轴及a的值;(2)横、纵坐标都是整数的点叫做整点.记直线y=kx+b(k≠0)与抛物线围成的封闭区域(不含边界)为W.①当k=1时,直接写出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,求b的取值范围.23.列方程解应用题.白鹿原位于西安市东南方向,白鹿原的上万亩樱桃树在每年五月硕果累累.某水果商以每斤10元的价格从白鹿原上批发樱桃,再按每斤20元价格到市区销售,平均每天可售出100斤,经过调查发现,如果每斤樱桃的售价每降低1元,那么平均每天的销售量会增加20斤,为了尽快减少库存,该水果商决定降价销售.(1)若将樱桃每斤的价格降低x元,则每天的销售量是______ 斤(用含x的代数式表示);(2)水果商销售樱桃每天盈利1120元,每斤樱桃的售价应降至多少元?(其他成本忽略不计)24.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AC=3cm,BC=4cm,求AD,CD的长.25.如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴.桥拱的DGD′部分为一段抛物线,顶点G的高度为8米,AD和A′D′的两侧高为5.5米的支柱,OA和OA′为两个方向的汽车通行区,宽都为15米,线段CD和C′D′为两段对称的上桥斜坡,其坡度为1:4.(1)求桥拱DGD′所在抛物线的解析式及CC′的长;(2)BE和B′E′为支撑斜坡的立柱,其高都为4米,相应的AB和A′B′为两个方向的行人及非机动车通行区.试求AB和A′B′的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米.它能否从OA(或OA′)区域安全通过?请说明理由.26.如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E.(1)求抛物线的对称轴方程.(2)若t=√3时,抛物线与x轴只有一个交点,求抛物线的解析式.(3)若点B的坐标为(−1,0),过点C作x轴的平行线交抛物线的对称轴于点P,当∠APD=∠ACP时,连接CA与抛物线的对称轴交于点D,求抛物线的解析式.参考答案及解析1.答案:D解析:解:x=x2,移项得:x−x2=0,分解因式得:x(1−x)=0,则x=0或1−x=0,解得:x1=0,x2=1,故选:D.首先把方程变形为x−x2=0,再提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.本题考查了一元二次方程的解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.2.答案:B解析:【试题解析】解:根据题意得:4−4k>0且k≠0,解得:k<1且k≠0.故选:B.在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2−4ac>0.本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.答案:C解析:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.根据题意,可得(x−4)2=13,即可得解.解:∵x2−8x+3=0,∴x2−8x=−3,∴x2−8x+16=−3+16,∴(x−4)2=13,∴m=−4,n=13,故选C.4.答案:C解析:解:由表可以看出,当x取2.0与2.2之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x=m的取值范围为2.0<m<2.2.故选:C.利用二次函数和一元二次方程的性质进行解答即可.本题考查了图象法求一元二次方程的近似值,掌握用表格的方式求函数的值的范围是本题的关键.5.答案:D解析:解:∵二次函数y=ax2+bx+c中,a>0,对称轴为直线x=2,∴当x>2时,y随着x的增大而增大,故A正确;=2,∵−b2a∴b=−4a,∵二次函数y=ax2+bx+c的图象过点(−1,0),∴a−b+c=0,即a+c=b,∴(a+c)2=b2,故B正确;∵A(x1,m)、B(x2,m)是抛物线上的两点,∴抛物线对称轴x=x1+x2,2∴2x=x1+x2,∵x=x1+x2,∴2x=x,∴x=0,∴此时,y=ax2+bx+c=c,故C正确;∵抛物线的对称轴为直线x=2,图象与x轴交于(−1,0),∴抛物线x轴的另一个交点是(5,0),∴抛物线与直线y=−1的交点横坐标x1>−1,x2<5,如图,∴方程a(x+1)(x−5)=−1的两根为x1和x2,且x1<x2,则−1<x1<x2<5,故D错误.故选:D.根据二次函数的性质即可判断A;根据对称轴得到b=−4a,经过点(−1,0)得到c=−5a,从而求得a+c=−4a,即可判断B;由抛物线的对称性得到x=x1+x22,结合x=x1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D.本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数的性质是解题的关键.6.答案:C解析:解:由图可知,抛物线y1=−x2+4x和直线y2=2x的交点坐标为(0,0),(2,4),所以,不等式y1>y2的解集是0<x<2.故选:C.根据函数图象写出抛物线在直线上方部分的x的取值范围即可.本题考查了二次函数与不等式,数形结合是数学中的重要思想之一,解决函数问题更是如此.7.答案:A解析:解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(9,0),∴AB=9−1=8,∴AD=12AB=12×8=4,∴OD=AD+OA=4+1=5,∴P(5,3),∵直线y=kx−3恰好平分⊙P的面积,∴3=5k−3,解得k=65.故选:A.连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD的长,进而得出P 点坐标,再把P点坐标代入直线y=kx−3即可得出结论.本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.8.答案:B解析:本题主要考查了图形的旋转,扇形的面积公式,含30°角的直角三角形,熟练掌握扇形的面积公式是解决问题的关键.根据含30°角的直角三角形得到AC=2BC=2,利用勾股定理得到AB=√3,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,由勾股定理得到AB=√3,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′,∴∠CAC′=90°,∴阴影部分面积=90⋅π×22360−60⋅π×(√3)2360−12×1×√3=π−√32故选:B.9.答案:0≤a≤2解析:解:如图:∵函数y=ax2−6ax+9a+1=a(x−3)2+1∴顶点C(3,1)∵函数y=ax2−6ax+9a+1与线段AB有交点∴当a<0时函数与线段AB无交点∴a≥0①当a=0时,函数为y=1,此时与线段AB的交点为点A,符合题意;②当a>0时:若函数恰好经过点B,将点B(2,3)代入函数y=ax2−6ax+9a+1=a(x−3)2+1中解得:a=2,此时a取最大值,∵A(0,1),C(3,1)∴直线AC//x轴∴当a>0时,要使函数y=ax2−6ax+9a+1与线段AB有交点,则a的范围是0<a≤2;综上所述:a的取值范围为0≤a≤2;故答案为:0≤a≤2.根据题意,函数与线段AB有交点,则可得出a≥0,结合图象得出a的临界值即可作答.本题主要考查了函数图象与线段AB有公共点的条件,熟练运用数形结合和分类讨论的思想是解决本题的关键.10.答案:2解析:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式Δ=b2−4ac.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义.先把方程化为一般形式:(2k−1)x2−8x+6=0,由关于x的一元二次方程2x(kx−4)−x2+6=0没有实数根,所以2k−1≠0且Δ<0,即解得k>11,即可得到k的最小整数值.6解:把方程化为一般形式:(2k−1)x2−8x+6=0,∵原方程为一元二次方程且没有实数根,∴2k−1≠0且Δ<0,即Δ=(−8)2−4×(2k−1)×6=88−48k<0,.解得k>116∴k的取值范围为:k>11.6则满足条件的k的最小整数值是2.故答案为2.11.答案:x(x−1)=0解析:解:形如(x−1)(ax+b)=0(a≠0)的一元二次方程都有一个根是1,当a=1,b=0时,可以写出一个一元二次方程:x(x−1)=0.故答案可以是:x(x−1)=0.有一个根是1的一元二次方程有无数个,只要含有因式x−1的一元二次方程都有一个根是1.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.(x+1)2+412.答案:y=12x2+1的顶点坐标为(0,1),解析:解:∵抛物线y=12∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(−1,4),(x+1)2+4.∴所得抛物线的解析式为y=12(x+1)2+4.故答案为y=12先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可.本题主要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”.13.答案:2√26−2解析:解:连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,∵BC=4,∴CF=2,∵∠ACB=90°,AC=10,∴AF=√AC2+CF2=√104=2√26,∵CD是⊙O的直径,∴∠CED=∠CEB=90°,∴E点在⊙F上,∵在D的运动过程中,AE≥AF−EF,且A、E、F三点共线时等号成立,∴当A、E、F三点共线时,AE取最小值为AF−EF=2√26−2.故答案为:2√26−2.连接CE,取BC的中点F,作直径为BC的⊙F,连接EF,AF,证明∠CEB=90°,说明E点始终在⊙F 上,再由在整个变化过程中,AE≤AF−EF,当A、E、F三点共线时,AE最最小值,求出此时的值便可.本题主要考查了圆的基本性质,圆周角定理,勾股定理,三角形的三边关系,关键是确定AE取最小值的位置.14.答案:2√3π3解析:解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵FA=FB,OA=OB,∴OF⊥AB,AH=BH=√3,∴sin∠BOH=√3,2∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=12∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=12∠AFB,∴点D的运动轨迹是以F为圆心,FA为半径的圆,∵当点C从△ABC面积最大时运动到BC最长时,BC绕点B顺时针旋转了30°,∴BD绕点B也旋转了30°,∴点D的轨迹所对的圆心角为60°,∴运动路径的长=60π⋅2√3180=2√33π,故答案为2√33π.如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.说明点D的运动轨迹是以F为圆心,FA为半径的圆,再利用弧长公式求解即可.本题考查轨迹,垂径定理,等边三角形的性质,勾股定理,锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.15.答案:24π解析:解:由勾股定理得,圆锥的底面半径=√52−42=3,∴圆锥的底面周长=2π×3=6π,∴圆锥的全面积=12×6π×5+π×32=24π,故答案为:24π.根据勾股定理求出圆锥的底面半径,根据扇形面积公式、圆的面积公式计算即可.本题考查的是圆周角的计算,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.16.答案:4n−4;12n−16解析:正方形有4条边,每边上的小球数为n ,则有4n 个小球,而每个顶点处的小球重复计算一次,则正方形边上的所有小球的个数为4n −4;正方体有12条棱,每条棱上的小球数为n ,则有12n 个小球,而每个顶点处的小球重复计算2次,则正方形边上的所有小球的个数为12n −8×2=12n −16. 17.答案:6解析:解:∵△ABC 是等边三角形,∴∠C =60°,根据圆周角定理可得∠AOB =2∠C =120°,设⊙O 的半径为r ,∵阴影部分的面积是12π, ∴120π×r 2360=12π,解得:r =6,故答案为:6.根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得. 本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.18.答案:169解析:解:∵关于x 的方程x 2−2ax +a −2=0的一个实数根为x 1≥1,另一个实数根x 2≤−1,∴{1+2a +a −2≤01−2a +a −2≤0, 解得:−1≤a ≤13.抛物线y =−x 2+2ax +2−a 的顶点坐标为(a,a 2−a +2),∵a 2−a +2=(a −12)2+74, ∴当a =13时,a 2−a +2取最小值169.故答案为:169.由一元二次方程根的范围结合图形,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由二次函数的性质可得出抛物线的顶点坐标,利用配方法即可求出抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值.本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数的最值,通过解一元一次不等式组求出a的取值范围是解题的关键.19.答案:解:(1)(x−6)(x+1)=0,x−6=0或x+1=0,所以x1=6,x2=−1;(2)(3x+2)(x−1)=0,3x+2=0或x−1=0,,x2=1.所以x1=−23解析:(1)利用因式分解法把方程化为x−6=0或x+1=0,然后解两个一次方程即可;(2)利用因式分解法把方程化为3x+2=0或x−1=0,然后解两个一次方程即可.本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20.答案:解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=−2.5(舍),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:800×10×400+(a−800)×5×400≥5000000,解得:a≥1700,答:2018年该地至少有1700户享受到优先搬迁租房奖励.解析:(1)设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得;(2)设2018年该地有a户享受到优先搬迁租房奖励,根据:前800户获得的奖励总数+800户以后获得的奖励总和≥500万,列不等式求解可得.本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系与不等关系并据此列出方程或不等式是解题的关键.21.答案:(1)证明:连接BD,则∠BAE=∠BDE,∵∠AFE=∠DFB,∴∠E=∠ABD,∵∠C=∠E,∴∠C=∠ABE,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∴∠C+∠CBD=90°,∴∠ABD+∠CBD=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)解:∵AB是⊙O的直径,DE⊥AB,∴AD⏜=AE⏜,BD⏜=BE⏜,∵AE⏜=2BE⏜,∴AD⏜=2BD⏜,∴∠ABD=2∠DAB,∴∠BAC=30°,∠ABD=60°,∴∠C=60°,∵AB=2√3,AB=2,∴BC=√33BC=1.∴CD=12解析:(1)连接BD,根据圆周角定理得到∠BAE=∠BDE,推出∠C=∠ABE,由AB是⊙O的直径,得到∠ADB=90°,推出AB⊥BC,于是得到结论;(2)根据垂径定理得到AD⏜=AE⏜,BD⏜=BE⏜,等量代换得到AD⏜=2BD⏜,求得∠ABD=2∠DAB,解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,解直角三角形,圆周角定理,熟练掌握切线的判定和性质是解题的关键.22.答案:解:(1)变形得:y=a(x2−4x)+3a=a(x−2)2−a,∴对称轴为x=2,∴点A的坐标为(2,−1)可得抛物线顶点为(2,1),把点A坐标代入抛物线可得:a=−1;(2)①当k=1时,y=x+b,把A(2,−1)代入得−1=2+b,解得:b=−3,∴y=x−3,如图1,区域W内的整点个数为2个,分别为(2,0)与(1,−1).②如图2,i.若k>0,当直线过(1,−2),(2,−1)时,b=−3.当直线过(0,−4),(2,−1)时,b=−4.∴−4≤b<−3,ii.若k<0,由对称性可得:1<b≤2.∴b的取值范围是:−4≤b<−3或1<b≤2.解析:此题主要考查二次函数与一次函数综合问题,会运用待定系数法求解析式,会运用边界点分析问题是解题的关键.(1)配方求出抛物线的对称轴,进而确定点A坐标,代入点A的对称点坐标即可求出a的值;(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;②当k>0时分别以(1,−2),(2,−1);(0,−4),(2,−1)为边界点代入确定解析式,进而根据对称性分析当k小于0的情况即可.23.答案:(100+20x)解析:解:(1)∵按每斤20元价格到市区销售,平均每天可售出100斤,如果每斤樱桃的售价每降低1元,那么平均每天的销售量会增加20斤,∴将樱桃每斤的价格降低x元,则每天的销售量为(100+20x)斤.故答案为:(100+20x).(2)依题意得:(20−x−10)(100+20x)=1120,整理得:x2−5x+6=0,解得:x1=2,x2=3.又∵为了尽快减少库存,∴x=3,∴20−x=17.答:每斤樱桃的售价应降至17元.(1)利用每天的销售量=100+20×降低的价格,即可用含x的代数式表示出每天的销售量;(2)根据水果商销售樱桃每天盈利的盈利=每斤的利润×每天的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合为了尽快减少库存,即可确定x的值,将其代入(20−x)中即可求出每斤樱桃的售价.本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天的销售量;(2)找准等量关系,正确列出一元二次方程.24.答案:解:∵∠ACB=90°,AC=3cm,BC=4cm,∴AB=5cm.=2.4cm.根据直角三角形的面积公式,得CD=AC⋅BCAB在Rt△ACD中,AD=√AC2−CD2=1.8cm.解析:首先根据勾股定理求得直角三角形的斜边,再根据直角三角形的面积公式求得斜边上的高,进一步根据勾股定理即可求得AD的长.考查了勾股定理、此题要熟练运用勾股定理以及直角三角形的面积公式,直角三角形斜边上的高等于两条直角边的乘积除以斜边.25.答案:解:(1)设DGD′所在的抛物线的解析式y=ax2+c.由题意得G(0,8),D(15,5.5).∴{8=c5.5=225a+c解得{a=−190 c=8∴DGD′所在的抛物线的解析式为y=−190x2+8∵ADAC =14,且AD=5.5,∴AC=5.5×4=22(米)∴CC′=2OC=2×(OA+AC)=2×(15+22)=74(米).答:CC′的长为74米.(2)∵EBBC =14,BE=4∴BC=16∴AB=AC−BC=22−16=6(米).答:AB和A′B′的宽都是6米.(3)答:该大型货车可以从OA(或OA′)区域安全通过.在y=−190x2+8中,当x=4时,y=−190×16+8=73745∵73745−(7+0.4)=1945>0该大型货车可以从OA(或OA′)区域安全通过.解析:(1)抛物线的对称轴是y轴,因而解析式一定是y=ax2+c的形式,根据条件可以求得抛物线上G,D的坐标分别是(0,8)和(15,5.5),利用待定系数法即可求解;(2)根据坡度的定义,即垂直高度与水平宽度的比,即可求解;(3)在抛物线解析式中,令x=4,得到的函数值与7+0.4=7.4米进行比较即可判断.本题主要考查了待定系数法求二次函数解析式,以及坡度的定义,利用二次函数解决形状是抛物线的物体的计算问题.26.答案:解:(1)∵由抛物线的解析式y=ax2+4ax+t(a>0),∴x=−b2a =−4a2a=−2,∴抛物线的对称轴方程为:x=−2;(2)当t=√3时,得抛物线为y=ax2+4ax+√3(a>0),又∵抛物线与x轴只有一个交点,∴令y=0得:ax2+4ax+√3=0,∴△=b2−4ac=(4a)2−4√3a=0,解得:a1=0(舍去)或a2=√34,∴抛物线的解析式为:y=√34x2+√3x+√3;(3)∵抛物线的对称轴为x=−2,B(−1,0),∴A(−3,0),E(−2,0),由抛物线y=ax2+4ax+t,令x=0,∴y=t,∴C(0,t),∴AE=1,AO=3,CO=t,∵DE//y轴,∴△ADE∽△ACO,∴DECO =AEAO,即DEt=13,∴DE=13t,又∵P点在对称轴上,PC//x轴,∴P(−2,t),∠ACP=∠CAE,∴PC=2,PE=t,∵∠APD=∠ACP,∴∠APD=∠CAE,又∵∠AED=∠AEP=90°,∴△APE∽△DAE,∴AEPE =DEAE,∴1t =13t1,解得:t=√3(负值舍去),∴抛物线为y=ax2+4ax+√3,又∵抛物线过点B(−1,0),∴(−1)2a+4×(−1)a+√3=0,解得a=√33,∴抛物线的解析式为:y=√33x2+4√33x+√3.解析:(1)由对称轴为直线x=−b2a,可求解;(2)由抛物线与x轴只有一个交点,可得△=0,解方程可求解;(3)通过证明△ADE∽△ACO,可得DE=13t,通过△APE∽△DAE,可得AEPE=DEAE,可求t=√3,再把点B坐标代入解析式可求解.本题是二次函数综合题,考查了二次函数的性质,待定系数法可求解析式,相似三角形的判定和性质等知识,灵活运用这些性质解决问题是本题的关键.。
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。
江苏省徐州市XX中学九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.2.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣43.在比例尺为1:400 000的工程示意图上,徐州地铁一号线(大龙湖站至彭城广场站)的长度约为5.3cm,则它的实际长度约为()A.0.212 km B.2.12km C.21.2 km D.212km4.抛物线y=﹣4(x+2)2﹣3的顶点坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3) D.(4,﹣3)5.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm6.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.只有一个实数根7.如图,四边形ABCD是⊙O的内接四边形,若∠DAB=60°,则∠BCD的度数是()A.60°B.90°C.100° D.120°8.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A.B.C.2D.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案填写在答题卡相应位置上)9.9的平方根是.10.若=3,则=.11.若关于x的一元二次方程ax2+bx+5=0的一个解是x=1,则2015﹣a﹣b=.12.△ABC的三条边的长分别为6、8、10,与△ABC相似的△A′B′C′的最长边为30,则△A′B′C′的最短边的长为.13.若二次函数y=x2﹣2x+m的图象与x轴只有一个公共点,则常数m的值是.14.已知圆锥的底面半径为6cm,母线长为8cm,它的侧面积为cm2.15.抛物线y=x2+2x+3的对称轴是直线x=.16.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=40°,那么∠C等于.17.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则当x=2时,y=.、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、解答题(本大题共9小题,共计86分.请在答题卡指定区域内作答,解答时应写出证明过程或演算步骤)19.(1)计算:()﹣2﹣(π﹣)0﹣|﹣3|(2)解方程:2x2﹣x﹣1=0.20.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(网格小正方形边长为1)(1)请写出该圆弧所在圆的圆心P的坐标;⊙P的半径为(结果保留根号);(2)判断点M(﹣1,1)与⊙P的位置关系.21.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.22.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.23.已知二次函数y=x2+4x.(1)用配方法把它变成y=a(x﹣h)2+k的形式,(2)在给定的平面直角坐标系中,画出这个函数的图象;y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.24.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为52平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值吗?如果有,求出最大值;如果没有,请说明理由.25.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径.26.定义:如果二次函数y1=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y2=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=﹣x2+3x﹣2函数的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y1=x2﹣x+n与y2=﹣x2+mx﹣3互为“旋转函数”,求(m+n)2016的值;(3)已知函数y=2(x+1)(x﹣4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,请指出经过点A1、B1、C1的二次函数与y=2(x+1)(x ﹣4)是否互为“旋转函数”.填(是或不是).27.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交与O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(1)直接写出点B坐标;判断△OBP的形状;(2)将抛物线向下平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP:①当S△PCD=S△POC时,求平移后的抛物线的顶点坐标;②在向下平移的过程中,试探究S△PCD 和S△POD之间的数量关系;直接写出它们之间的数量关系及对应的m的取值范围.江苏省徐州市XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.2.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4【考点】解一元二次方程-因式分解法.【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选C3.在比例尺为1:400 000的工程示意图上,徐州地铁一号线(大龙湖站至彭城广场站)的长度约为5.3cm,则它的实际长度约为()A.0.212 km B.2.12km C.21.2 km D.212km【考点】比例线段.【分析】设它的实际长度约为xcm.根据比例尺=图上距离:实际距离,可得5.3:x=1:400000,解方程即可求出x.【解答】解:设它的实际长度约为xcm,则5.3:x=1:400000,解得x=2120000,2120000cm=21.2km,故选C.4.抛物线y=﹣4(x+2)2﹣3的顶点坐标是()A.(﹣2,﹣3)B.(2,﹣3)C.(2,3) D.(4,﹣3)【考点】二次函数的性质.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣4(x+2)2﹣3,∴抛物线顶点坐标为(﹣2,﹣3),故选A.5.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC的值为()A.6cm B.5cm C.4cm D.3cm【考点】垂径定理;勾股定理.【分析】连接OA,先根据垂径定理求出AC的长,再由勾股定理求出OC的长即可.【解答】解:连接OA,∵弦AB=6cm,OC⊥AB于点C,∴AC=AB=3cm.∵OA=5cm,∴OC===4cm.故选C.6.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.只有一个实数根【考点】根的判别式.【分析】根据根的判别式b2﹣4ac=﹣8<0,即可得知方程没有实数根.【解答】解:∵根的判别式b2﹣4ac=(﹣2)2﹣4×1×3=4﹣12=﹣8<0,∴方程没有实数根.故选B.7.如图,四边形ABCD是⊙O的内接四边形,若∠DAB=60°,则∠BCD的度数是()A.60°B.90°C.100° D.120°【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质:圆内接四边形的对角互补,求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°.∵∠DAB=60°,∴∠BCD=180°﹣60°=120°.故选D.8.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A .B .C .2D .【考点】正多边形和圆;扇形面积的计算.【分析】由于六边形ABCDEF 是正六边形,所以∠AOB=60°,故△OAB 是等边三角形,OA=OB=AB=2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,OG=OA•sin60°,再根据S 阴影=S △OAB ﹣S 扇形OMN ,进而可得出结论.【解答】解:∵六边形ABCDEF 是正六边形, ∴∠AOB=60°,∴△OAB 是等边三角形,OA=OB=AB=2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG=OA•sin60°=2×=,∴S 阴影=S △OAB ﹣S 扇形OMN =×2×﹣=﹣.故选A .二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案填写在答题卡相应位置上) 9.9的平方根是 ±3 . 【考点】平方根.【分析】直接利用平方根的定义计算即可. 【解答】解:∵±3的平方是9, ∴9的平方根是±3. 故答案为:±3.10.若=3,则=4.【考点】比例的性质.【分析】根据合比性质:=⇒=,可得答案.【解答】解:由合比性质,得==4,故答案为:4.11.若关于x的一元二次方程ax2+bx+5=0的一个解是x=1,则2015﹣a﹣b=2020.【考点】一元二次方程的解.【分析】把x=1代入方程即可求得a+b的值,然后将其整体代入所求的代数式并求值即可.【解答】解:∵x=1是关于x的一元二次方程ax2+bx+5=0(a≠0)的一个根,∴a+b+5=0,∴a+b=﹣5,∴2015﹣a﹣b=2015﹣(a+b)=2015+5=2020.故答案是:2020.12.△ABC的三条边的长分别为6、8、10,与△ABC相似的△A′B′C′的最长边为30,则△A′B′C′的最短边的长为18.【考点】相似三角形的性质.【分析】设△A′B′C′的最短边的长为x,再根据相似三角形的对应边成比例即可得出结论.【解答】解:设△A′B′C′的最短边的长为x,∵△ABC∽△A′B′C′,△ABC的最短边是6,最长边是10,△A′B′C′的最长边为30,∴=,解得x=18.故答案为:18.13.若二次函数y=x2﹣2x+m的图象与x轴只有一个公共点,则常数m的值是1.【考点】抛物线与x轴的交点.【分析】二次函数y=x2﹣2x+m的图象与x轴只有一个公共点,则b2﹣4ac=0,据此即可求得.【解答】解:a=1,b=﹣2,c=m,b2﹣4ac=4﹣4m=0,解得m=1.故答案是:1.14.已知圆锥的底面半径为6cm,母线长为8cm,它的侧面积为48πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面积等于展开以后扇形的面积以及扇形的面积公式计算即可.【解答】解:圆锥母线长=8cm,底面半径r=6cm,则圆锥的侧面积为S=πrl=π×6×8=48πcm 2.故答案为:48π.15.抛物线y=x2+2x+3的对称轴是直线x=﹣1.【考点】二次函数的性质.【分析】把解析式化为顶点式可求得答案.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴对称轴是直线x=﹣1,故答案为:﹣1.16.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=40°,那么∠C等于25°.【考点】切线的性质.【分析】连接OB,由切线的性质可求得∠AOB,再由圆周角定理可求得∠C.【解答】解:如图,连接OB,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣40°=50°,∴∠C=∠AOB=25°,故答案为:25°.17.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则当x=2时,y=7.【分析】当y=3时,x=﹣2或1,根据抛物线的对称性可知,抛物线的对称轴为x==﹣,所以x=2和x=﹣3时,对应的函数值相等,据此求解即可.【解答】解:抛物线的对称轴为:x==﹣,∴x=2和x=﹣3时,对应的函数值相等,∴当x=2时,y=7.故答案为:7.18.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.【考点】垂径定理;圆周角定理.【分析】过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的于S四边形MANB距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×面积的最大值=S四边形DAEB4=4.【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,=S△MAB+S△NAB,∵S四边形MANB∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=此时四边形MANB面积的最大值=S四边形DAEBAB•DE=×2×4=4.故答案为:4.三、解答题(本大题共9小题,共计86分.请在答题卡指定区域内作答,解答时应写出证明过程或演算步骤)19.(1)计算:()﹣2﹣(π﹣)0﹣|﹣3|(2)解方程:2x2﹣x﹣1=0.【考点】解一元二次方程-因式分解法;实数的运算;零指数幂;负整数指数幂.【分析】(1)利用零指数幂和负整数指数幂的意义计算;(2)利用因式分解法解方程.【解答】解:(1)原式=4﹣1﹣3=0;(2)(2x+1)(x﹣1)=0,所以x1=﹣,x2=1.20.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(网格小正方形边长为1)(1)请写出该圆弧所在圆的圆心P的坐标(2,0));⊙P的半径为(结果保留根号);(2)判断点M(﹣1,1)与⊙P的位置关系圆内.【考点】点与圆的位置关系;坐标与图形性质;垂径定理.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0),r==,d==<,故答案为:(2,0),,圆内.21.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均增长率为x,根据“从2013年的200万元增长到2015年的392万元”,即可得出方程.【解答】解:设该购物网站平均每年销售额增长的百分率为x,根据题意,得:200(1+x)2=392,解得:x1=0.4,x2=﹣2.4(不符合题意,舍去).答:该购物网站平均每年销售额增长的百分率为40%.22.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.【考点】圆的认识;等边三角形的判定与性质.【分析】利用圆周角定理、圆弧、弧所对的弦的关系,进而得出∠DAB=∠B=60°,进而得出答案.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴BC=AB=1,∠B=60°,以A圆心BC长为半径画弧可得点D,再连接AD即可;∵AD=BC,∴=,∴∠DAB=∠B=60°,∴∠DAC=60°﹣30°=30°;同理可得:∠D′AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.23.已知二次函数y=x2+4x.(1)用配方法把它变成y=a(x﹣h)2+k的形式,(2)在给定的平面直角坐标系中,画出这个函数的图象;y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式y=x2﹣2x﹣4.【考点】二次函数的三种形式;二次函数图象与几何变换.【分析】(1)直接利用配方法写成顶点式的形式即可;(2)利用顶点坐标以及对称轴以及图象与坐标轴交点画出图象即可;(3)根据向右平移横坐标加,向下平移纵坐标减求出平移后的二次函数图象的顶点坐标,然后利用顶点式形式写出即可.【解答】解:(1)y=x2+4x=(x+2)2﹣4;(2)列表如下:.故答案为﹣5,﹣4,﹣2,0,1,5,0,﹣4,0,5;(3)∵将此图象沿x轴向右平移3个单位,再沿y轴向下平移1个单位,∴平移后的二次函数图象的顶点坐标为(﹣2+3,﹣4﹣1),即(1,﹣5),∴平移后图象所对应的函数关系式为:y=(x﹣1)2﹣5,即y=x2﹣2x﹣4.故答案为y=x2﹣2x﹣4.24.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为52平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值吗?如果有,求出最大值;如果没有,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得到关于x的一元二次方程,从而可以解答本题,注意平行于墙的一般长不能超过18米;(2)根据题意可以的熬S关于x的二次函数,从而可以解答本题.【解答】解:(1)由题意可得,x(30﹣2x)=52,解得,x1=2,x2=13,当x=2时,平行于墙的边长为30﹣2×2=26>18,故x=2不和题意,应舍去,当x=13时,平行于墙的边长为30﹣2×13=4<18,符合题意,即x的值是13;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值,最大值是平方米,理由:设矩形的面积为S平方米,则S=x(30﹣2x)=﹣2(x﹣)2+,∵8≤30﹣2x≤18,解得,6≤x≤11,∴当x=时,S取得最大值,此时S=,即若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值,最大值是平方米.25.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径.【考点】切线的性质.【分析】(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,根据AB=AC推出52﹣r2=(2)2﹣(5﹣r)2,求出r.【解答】解:(1)AB=AC,理由如下:连接OB.如图1,∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,如图2,设圆半径为r,则OP=OB=r,PA=5﹣r,则AB2=OA2﹣OB2=52﹣r2,AC2=PC2﹣PA2=(2)2﹣(5﹣r)2,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=3.答:⊙O的半径为3.26.定义:如果二次函数y1=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y2=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=﹣x2+3x﹣2函数的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y1=x2﹣x+n与y2=﹣x2+mx﹣3互为“旋转函数”,求(m+n)2016的值;(3)已知函数y=2(x+1)(x﹣4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,请指出经过点A1、B1、C1的二次函数与y=2(x+1)(x ﹣4)是否互为“旋转函数”.填是(是或不是).【考点】二次函数综合题.【分析】(1)根据“旋转函数”的定义求出a2,b2,c2,从而得到原函数的“旋转函数”;(2)根据“旋转函数”的定义得到﹣=m,﹣3+n=0,再解方程组求出m和n的值,然后根据乘方的意义计算;(3)先根据抛物线与坐标轴的交点问题确定A(﹣1,0),B(4,0),C(0,﹣8),再利用关于原点对称的点的坐标特征得到A1(1,0),B1(﹣4,0),C1(0,8),则可利用交点式求出经过点A1,B1,C1的二次函数解析式为y=﹣2(x﹣1)(x+4)=﹣2x2﹣6x+8,再把y=2(x+1)(x﹣4)化为一般式,然后根据“旋转函数”的定义进行判断【解答】(1)解:∵a1=﹣1,b1=3,c1=﹣2,∴﹣1+a2=0,b2=3,﹣2+c2=0,∴a2=1,b2=3,c2=2,∴函数y=﹣x2+3x﹣2的“旋转函数”为y=x2+3x+2;(2)解:根据题意得﹣=m,﹣3+n=0,解得m=﹣4,n=3,∴(m+n)2016=(﹣4+3)2016=1;(3)解:当x=0时,y=2(x+1)(x﹣4)=﹣8,则C(0,﹣8),当y=0时,2(x+1)(x﹣4)=0,解得x1=﹣1,x2=4,则A(﹣1,0),B(4,0),∵点A、B、C关于原点的对称点分别是A1,B1,C1,∴A1(1,0),B1(﹣4,0),C1(0,8),设经过点A1,B1,C1的二次函数解析式为y=a2(x﹣1)(x+4),把C1(0,8)代入得a2•(﹣1)•4=8,解得a2=﹣2,∴经过点A1,B1,C1的二次函数解析式为y=﹣2(x﹣1)(x+4)=﹣2x2﹣6x+8,而y=2(x+1)(x﹣4)=2x2﹣6x﹣8,∴a1+a2=2+(﹣2)=0,b1=b2=﹣6,c1+c2=0,∴经过点A1、B1、C1的二次函数与函数y=2(x+1)(x﹣4)互为“旋转函数”.故答案为:是.27.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交与O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(1)直接写出点B坐标(2,0);判断△OBP的形状△OBP是等腰直角三角形;(2)将抛物线向下平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP:①当S△PCD=S△POC时,求平移后的抛物线的顶点坐标;②在向下平移的过程中,试探究S△PCD 和S△POD之间的数量关系;直接写出它们之间的数量关系及对应的m的取值范围.【考点】二次函数综合题.【分析】(1)利用坐标轴上点的坐标特征和抛物线顶点公式即可得出B,P坐标,进而用勾股定理的逆定理即可得出结论;(2)先确定出点C,D坐标,求出点M的坐标,确定出平移后抛物线的顶点坐标,进而得出PM,即可得出△PCD的面积,①求出△POC的面积即可得出△PCD的面积,最后用面积公式即可确定出点P坐标;②求出△POD的面积,进而分三种情况寻找△PCD和△POD的面积关系.【解答】解:(1)∵抛物线y=x2﹣2x=x(x﹣2),∴B(2,0),∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴P(1,﹣2),∴OP2=2,BP2=2OB2=4,∴OP2+BP2=OB2,OP=BP,∴△OBP是等腰直角三角形,故答案为:(2,0),△OBP是等腰直角三角形;(2)如图2,∵直线y=x﹣4与y轴交于点C,与x轴交于点D.∴C (0,﹣4),D (4,0),当x=1时,y=﹣3,∴M (1,﹣3);抛物线向下平移m 个单位长度,∴平移后的抛物线解析式为y=(x ﹣1)2﹣(1+m ),P (1,﹣(1+m ), ∴PM=|﹣(1+m )+3|=|m ﹣2|∴S △PCD =S △PMC +S △PMD =PM•|x D ﹣x C |=×|m ﹣2|×4=2|m ﹣2|, ①S △POC =AC ×|x P |=×4×1=2,∵S △PCD =S △POC ,∴S △PCD =2|m ﹣2|=2,∴m=2+或m=2﹣.∴P (1,﹣(3+))或(1,﹣(3﹣)); ②S △POD =OD•|y P |=×4×|﹣(1+m )|=2|m +1|Ⅰ、当m ≥2时,∴S △PCD =2|m ﹣2|=2m ﹣4S △POD =2|m +1|=2m +2,∴S △POD ﹣S △PCD =6,Ⅱ、当﹣1≤m <2时,∴S △PCD =2|m ﹣2|=4﹣2mS △POD =2|m +1|=2m +2,∴S △POD +S △PCD =6,Ⅲ、当m <﹣1时,∴S △PCD =2|m ﹣2|=4﹣2mS △POD =2|m +1|=﹣2﹣2m ,∴S △PCD ﹣S △POD =6,即:当m ≥2时,S △POD ﹣S △PCD =6,当﹣1≤m <2时,S △POD +S △PCD =6,当m <﹣1时,S △PCD ﹣S △POD =6.2017年2月13日。
2019-2020学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项 是正确的,请将正确选项前的字母填写在答题卡上) 1. 一元二次方程x 2-9=0的根为A. x = 3B. x =-3C. x 1= 3,x 2 =-3D. x = 9 2. 如图,点A 、B 、C 是⊙O 上的三点,若∠BOC =80º,则∠A 的度数是 A .40º B .60º C .80º D .100º 3.用配方法解方程x 2-4x -1=0时,配方后得到的方程为A .(x +2)2= 3 B .( x +2)2= 5 C .(x -2)2= 3 D .( x -2)2= 5 4.下列关于x 的一元二次方程有实数根的是A .x 2+ 1= 0 B .x 2+ x + 1= 0 C .x 2- x + 1= 0 D .x 2-x -1= 05.在下列命题中,正确的是A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 6.对于二次函数 y =-(x +1)2-3,下列结论正确的是A .函数图像的顶点坐标是(-1,-3)B .当 x >-1时,y 随x 的增大而增大C .当x =-1时,y 有最小值为-3D .图像的对称轴是直线x = 17.如图,圆弧形桥拱的跨度AB = 16 m ,拱高CD = 4 m ,则圆弧形桥拱所在圆的半径为 A .6 m B .8 m C .10 m D .12 m8.如图是二次函数y = ax 2+ bx + c 图像的一部分,其对称轴为直线x =-1,且过点( 第2题 )( 第7题 ) ( 第8题 )ABDC(-3,0),下列说法:① abc < 0;② 2a -b = 0;③ 4a + 2b + c < 0;④若(-5,y 1) ,(2.5,y 2)是抛物线上两点,则y 1 > y 2,其中说法正确的是 ( ) A .①②③ B .②③ C .①②④ D .①②③④ 二、填空题(每小题3分,共30分) 9. 方程x 2= x 的解是_______________.10.已知扇形的圆心角为120º,半径为6 cm ,则该扇形的弧长为_______ cm (结果保留π). 11.一元二次方程2x 2+ 4x -1= 0的两根为x 1、x 2,则x 1 + x 2的值是_________. 12.圆锥的底面半径为3 cm ,母线长为5 cm ,则这个圆锥的侧面积是_________cm 2. 13. 抛物线y = x 2沿x 轴向右平移1个单位长度,则平移后抛物线对应的表达式是________.14.一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意,可列方程是:_________________.15.若关于x 的一元二次方程x 2+2x +m = 0有两个相等的实数根,则m =______.16.如图,PA 、PB 是⊙O 的两条切线,A ,B 是切点,若∠APB = 60°,PO = 2,则PB =_________. 17.如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分的面积为_____. 18. 已知二次函数y = ax 2 + bx + c 中,函数y 与自变量x 的部分对应值如下表:则当y < 7时,x 的取值范围是______________.三、解答题(共66分)19. 解方程 (每题5分,共10分)(1) x 2 + 4x -2 = 0; (2) (x -1)(x +2) = 2(x +2)( 第16题 ) ( 第17题 )20. (6分)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,CD =16,AB =20,求BE 的长.21. (8分) 如图,已知二次函数y = ax 2+ bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).(1) 求二次函数的表达式; (2) 画出二次函数的图像.22. (8分) 如图,学校准备修建一个面积为48 m 2的矩形花园.它的一边靠墙,其余三边利用长20 m 的围栏.已知墙长9 m ,问围成矩形的长和宽各是多少?( 第20题 )( 第21题 )( 第22题 )23. (10分) 如图,在Rt△ABC中,∠C = 90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1) 判断直线BC与⊙O的位置关系,并说明理由;(2) 若AC = 3,∠B = 30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积 ( 结果保留根号和π ) .AOE( 第23题)24. (12分) 某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图像如图:(1) 当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2) 为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电? 工厂每天消耗电产生利润最大是多少元?千度)( 第24题)25. (12分) 在平面直角坐标系中,抛物线y =-x 2-2x + 3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1) 请直接写出点A ,C ,D 的坐标;(2) 如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3) 如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形? 若存在,求出点P 的坐标,若不存在,请说明理由.( 图1 ) ( 图2 )( 第25题 )2019-2020学年度第一学期期中检测 九年级数学试题参考答案及评分标准一、选择题(每题3分,共24分)二、选择题 (每题3分,共30分)9. x 1=0,x 2=1; 10.4π; 11.-2; 12.15π; 13.y = (x -1)2; 14. 60 (1-x )2= 48.6; 15. 1 ; 16.3; 17.41π ; 18. -1< x < 3. 三、解答题 (共66分)19.解法一:(1) x 2 + 4x +4-4-2= 0 ·························· 1分 (x +2)2 = 6 ···································· 2分x +2 =6± ···································· 3分 x 1=-26-,x 2=-26+ ······························ 5分解法二:a =1,b =4,c =-2 ···························· 1分 △= 42-4·1·(-2) = 24 ····························· 2分x =2244±- ···································· 3分 x 1 =62--,x 2 =62+- ······························ 5分(2) 解:(x -1)(x +2)-2(x +2) = 0 ························· 1分 (x +2) (x -3) = 0 ································· 2分x +2 = 0,x -3 = 0 ································ 3分 x 1 =-2 ,x 2 = 3 ································· 5分20.解:连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =21CD = 8 ··············· 2分 ∵AB =20,∴OB = OC =10 ····························· 4分 ∵∠OEC =90°,∴22810-=OE = 6 ························ 5分 又∵BE = OB -OE ,∴BE =10-6 = 4 ·························· 6分 21. 解:(1)∵二次函数y =ax 2 + bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).∴⎪⎩⎪⎨⎧-=++-==+-212c b a c c b a ·································· 3分 题号 1 2 3 4 5 6 7 8 答案CADDBACC解得⎪⎩⎪⎨⎧-=-==121c b a ···································· 4分∴二次函数的表达式为y = x 2-2x -1 ························ 5分 (2) 图像如图:······························ 8分22. 解:设宽为x m ,则长为(20-2x ) m . ························ 1分 由题意,得 x ·(20﹣2x ) = 48, ·························· 3分 解得 x 1 = 4,x 2 = 6. ······························· 5分 当x = 4时,20-2×4 = 12>9 (舍去), ······················ 6分 当x =6时,20-2×6= 8. ····························· 7分 答:围成矩形的长为8 m 、宽为6 m . ························ 8分 23. 解:(1) 连结OD ,∵OA =OD ,∴∠OAD =∠ODA . ···················· 1分 ∵∠BAC 的角平分线AD 交BC 边于D ,∴∠CAD =∠OAD . ················ 2分 ∴∠CAD =∠ODA ,∴OD ∥AC , ···························· 3分 ∴∠ODB =∠C =90°,即OD ⊥BC . ··························· 4分 又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切. ················· 5分 (2) ① 设OA = OD = r ,在Rt△BDO 中,∠B = 30°,∴OB = 2r . ··········· 6分 在Rt△ACB 中,∠B =30°,∴AB = 2AC = 6. ····················· 7分 ∴3r = 6,解得r =2. ······························· 8分 ② 在Rt△ACB 中,∠B =30°,∴∠BOD = 60°.∴ππ322360602=⋅⋅︒=︒ODES 扇形. ······· 9分 ∴所求图形面积为π3232-=-∆ODE BOD S S 扇形. ······················ 10分 24. 解:(1) 设工厂每千度电产生利润y (元/千度)与电价x (元/千度)的函数表达式为:y = kx + b 1分∵该函数图象过点(0,300),(500,200),∴⎩⎨⎧=+=200500300b k b ··············· 3分解得⎩⎨⎧=-=3002.0b k ··································· 4分所以y =-0.2x + 300(x ≥0) ··························· 5分当电价x = 600元/千度时,该工厂消耗每千度电产生利润y =-0.2×600 + 300 =180(元/千度) 6分(2) 设工厂每天消耗电产生利润为w 元,由题意得:w = my = m (-0.2x + 300). ····· 7分 = m [-0.2(5m +600) + 300]=-m 2+180m =-(m -90)2+8100. ··············· 9分 在m ≤ 90时,w 随m 的增大而最大,由题意,m ≤ 60. ················ 10分 ∴当m =60时,w 最大=-(60-90)2+ 8100 = 7200. ··················· 11分 即当工厂每天消耗60千度电时,工厂每天消耗电产生利润为最大,最大利润为7200元. ·· 12分 25. 解:(1) 当y =-x 2-2x +3中y =0时,有-x 2-2x +3=0,解得:x 1=-3,x 2=1.∵A 在B 的左侧,∴A (-3,0),B (1,0). ······················· 1分 当y =-x 2-2x + 3中x = 0时,则y = 3,∴C (0,3). ················ 2分 ∵y = -x 2-2x +3 =-( x + 1 )2+ 4,∴顶点D (-1,4). ··············· 3分 (2) 作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小. 如图1所示.∵C (0,3),∴C′(0,-3).设直线C′D 的表达式为y = kx + b , 则有⎩⎨⎧-=+--=33b k b ,解得:⎩⎨⎧-=-=37b k , ·························· 5分∴直线C′D 的表达式为y =-7x -3,当y =-7x -3中y = 0时,x = , ······· 6分 ∴当△CDE 的周长最小,点E 的坐标为)073(,-. ···················· 7分(3) 设直线AC 的表达式为y = ax + c ,则有⎩⎨⎧=+-=033c a c ,解得⎩⎨⎧==31c a , ·········· 8分∴直线AC 的解析式为y = x + 3.假设存在,设点F (m ,m + 3), △ AFP 为等腰直角三角形分三种情况(如图2所示):① 当∠PAF =90°时,P (m ,-m -3),∵点P 在抛物线y =-x 2-2x +3上,∴-m -3=-m 2-2m +3,解得:m 1=-3(舍去),m 2 = 2,此时点P 的坐标为(2,-5); ············· 9分73-②当∠AFP = 90°时,P(2m + 3,0)∵点P在抛物线y =-x2-2x+3上,∴0=-(2m+3)2-2(2m+3)+3,解得:m3 =-3(舍去),m4 =-1,此时点P的坐标为(1,0);·············10分③当∠APF=90°时,P(m,0),∵点P在抛物线y =-x2-2x+3上,∴0=-m2-2m+3,解得:m5=-3(舍去),m6 = 1,此时点P的坐标为(1,0).··············11分综上:存在点P使得△AFP为等腰直角三角形,点P的坐标为(2,-5)或(1,0).····12分( 第25题)。
2019-2020学年度第一学期期中调研九年级数学试题参考答案一、 选择题(每小题3分,共24分)1—8 CADB CDBB二、填空题(每小题4分,共32分)9. x 1=0,x 2=1, 10. 120 , 11. 19 , 12. 3, 13. 2, 14.20 15.1或5, 16.252+. 三、解答题 17.解:(1)(x+1)2 =2,x+1=2±12,1221--=-=x x ……………………………4分(2)a=1,b=-3,c=2b 2-4ac=(-3)2-4×1×2=1>02131213±=⨯±=x , 1,221==x x ……………………………8分(解法不唯一,酌情给分)18.解(1)把x =1代入x 2+ax +a ﹣2=0,得1+a+a-2=0,a=21…………………………4分 (2)a 2-4×1×(a-2)= a 2-4a+8=(a-2)2+4>0故不论a 取何实数,方程都有两个不相等的实数根…………………………8分19.(1)6……………………2分(2)6(1+x )2=17.34解得)(舍7.2,7.021-==x x 答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.……………8分20. (1)连接OB∵AB 是⊙O 的一条弦,OD ⊥AB ,∴=, ∴∠BOD=∠AOD =50°∴∠DEB =21∠BOD =21×50°=25°……………4分 (2)∵半径OD ⊥AB∴AC=21AB=5, ∠ACO =90° 设CD=x ,则OC=2CD=2x∴半径OA=OD=3x由Rt △ACO 中,AO 2=CO 2+AC 2(3x)2=(2x)2+52)(舍5,521-==x x 故CD 长为5.……………8分21.(1)作图略……………4分⊙O 就是所求作的圆……………5分(2)217-……………8分 22.(1)y=(x-1)2-4 ……2分 (2) >……4分(3)k>4……6分列表:x… -1 0 1 2 3 … y… 0 -3 -4 -3 0 ………………9分画图略……………12分23. 解(1)法一:∵AB 是⊙O 的直径,∴∠ADB=900 ∴AD ⊥BC ,又∵DC=BD ∴AB=AC=12,所以⊙O 半径为6法二:连接OD∵DC=BD ,OA=OB ∴OD=21AC=6 ⊙O 半径为6……………4分(2)连接OD∵∠CDE=∠DAC∴∠CDE+∠C =∠DAC+∠C∴∠AED=∠ADB由(1)可知∠ADB=900,∴∠AED=900∵DC=BD ,OA=OB ∴OD ∥AC∴∠ODF=∠AED= 900∴半径O D ⊥EF∴DE 为⊙O 的切线. ……………10分24.解 (1)设其函数关系式为:S =a (t ﹣2)2﹣2.∵所求函数关系式的图象过(0,0),代入得:a (0﹣2)2﹣2=0,解得a =,∴所求函数关系式为:S =(t ﹣2)2﹣2,即S =t 2﹣2t .答:累积利润S 与时间t 之间的函数关系式为:S =t 2﹣2t ;……………4分(2)把S =16代入S =(t ﹣2)2﹣2,得 (t ﹣2)2﹣2=16.解得t 1=8,t 2=﹣4(舍去).答:截止到第8个月公司累积利润可达30万元.……………7分(3)把t =9代入关系式,得S =×92﹣2×9=22.5,由(2)可知t =8时,累计利润16万元22.5﹣16=6.5,答:第9个月的利润是6.5万元. ……………10分25. 解:(1)∵抛物线y =ax 2+bx +3经过A (﹣1,0)、B (3,0),∴∴抛物线的函数关系式为y =﹣x 2+2x +3;……………3分(2)∵点A 与点B 关于直线l 对称,∴P A =PB ,∴PC +P A =PB +PC ,当P 、B 、C 共线时PB +PC 最小,PC +P A 最小 ∴此时△P AC 的周长最小,由y =﹣x 2+2x +3可得C (0,3)设直线BC 的函数关系式为y =kx +b ,把C (0,3),B (3,0)代入得,解得, ∴直线BC 的函数关系式为y =﹣x +3,当x =1时,y =﹣x +3=2,∴点P 的坐标为(1,2).……………8分(3)),)、(,)、(、(1-5-11-511,3-1)1,31(++……………。
江苏省徐州市2020版九年级上学期数学期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八上·罗庄期末) 下列字母或数字具有轴对称性的是()A . 7B . ZC . 1D . N2. (2分) (2019九下·崇川月考) 在同一直角坐标系中,二次函数y=x2与反比例函数y (x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1 , m),B(x2 , m),C(x3 , m),其中m为常数,令ω=x1+x2+x3 ,则ω的值为()A . 1B . mC . m2D .3. (2分) (2019八下·温州期中) 在平面直角坐标系内,点(-1,2)关于原点对称的点的坐标是()A . (2,-1)B . (1,2)C . (1,-2)D . (-1,-2)4. (2分) (2017八上·孝南期末) 如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DAB=30°,以下三个结论:①AF⊥BC;②△ADG≌△AFC;③O为BC的中点;④AG=BG.其中正确的个数为()A . 1B . 2C . 3D . 45. (2分)如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是()A . (2,−1)B . (1,−2)C . (1,2)D . (2,1)6. (2分)(2017·台湾) 已知坐标平面上有两个二次函数y=a(x+1)(x﹣7),y=b(x+1)(x﹣15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A . 向左平移4单位B . 向右平移4单位C . 向左平移8单位D . 向右平移8单位7. (2分)若点(2,5),(4,5)在抛物线y=ax2+bx+c上,则它的对称轴是()A .B . x=1C . x=2D . x=38. (2分)将二次函数y=x2﹣1的图象向右平移一个单位,向下平移2个单位得到()A . y=(x﹣1)2+1B . y=(x+1)2+1C . y=(x﹣1)2﹣3D . y=(x+1)2+39. (2分)如图,已知平行四边形ABCD的对角线的交点是0,直线EF过O点,且平行于AD,直线GH过0点且平行于AB,则图中平行四边形共有()A . 15个B . 16个C . 17个D . 18个10. (2分)下列函数的图像在其所在的每一个象限内,值随值的增大而增大的是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分)(2018·嘉定模拟) 如果函数(为常数)是二次函数,那么取值范围是 ________.12. (1分) (2016九上·苏州期末) 已知抛物线( <0)过A(,0)、O(0,0)、B (,)、C(3,)四点.则 ________ (用“<”,“>”或“=”填空).13. (1分)(2017·盐都模拟) 如果二次函数y=ax2+bx的图像与x轴交于点A(﹣1,0),B(3,0),那么方程ax2+bx=0的根是________.14. (2分) (2016九上·大石桥期中) 如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.15. (1分) (2019八上·孝感月考) 如图,△ABC的顶点分别为A(0,3),B(﹣4,0),C(2,0),且△BCD 与△ABC全等,则点D坐标可以是________.16. (1分) (2016八上·县月考) 已知抛物线的顶点为(1,-1),且过点(2,1),求这个函数的表达式为________.17. (1分) (2016九上·仙游期末) 一个y关于x的函数同时满足两个条件:①图象过(0,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为________.(写出一个即可)18. (1分) (2016九上·蕲春期中) 已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为________三、解答题 (共9题;共114分)19. (15分)(2017·微山模拟) 已知:如图,在平面直角坐标系xOy中,直线y= x+6与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E 点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由.20. (17分) (2016九上·大石桥期中) 如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A (5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)求△ABC的面积;(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.21. (10分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC=________(度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=________(度),点D的坐标为________.22. (10分) (2019九上·台州期中) 如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)①画出△ABC关于原点成中心对称的三角形△A′B′C′;②将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.23. (15分) (2018九上·宁城期末) 已知,如图,抛物线与x轴交点坐标为A(1,0),C(-3,0),(1)若已知顶点坐标D为(-1,4)或B点(0,3),选择适当方式求抛物线的解析式.(2)若直线DH为抛物线的对称轴,在(1)的基础上,求线段DK的长度,并求△DBC的面积.(3)将图(2)中的对称轴向左移动,交x轴于点p(m,0)(-3<m<-1),与线段BC、抛物线的交点分别为点K、Q,用含m的代数式表示QK的长度,并求出当m为何值时,△BCQ的面积最大?24. (2分) (2019八下·顺德月考) 如图,一次函数的图象经过点与点,且与正比例函数的图象相交于点 .(1)由图可知,求不等式的解集(2)若不等式的解集是 .①求点的坐标;②求的值.25. (15分)(2020·绍兴模拟) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于y轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?26. (15分) (2017九上·拱墅期中) 平面内,如图,在平行四边形中,,,,点为边上任意一点,连接,将绕点逆时针旋转得到线段.(1)当时,求的大小.(2)当时,求点与点间的距离(结果保留根号).(3)若点恰好落在平行四边形的边所在的条直线上,直接写出旋转到所扫过的面积(结果保留).27. (15分) (2019八上·集美期中) 在平面直角坐标系中,点A的坐标是(0,6),点B的坐标是(6,0).(1)如图1,点C的坐标是(﹣2,0),BD⊥AC于D交y轴于点E.求点E的坐标;(2)在(1)的条件下求证:OD平分∠CDB;(3)如图2,点F为AB中点,点G为x正半轴点B右侧一动点,过点F作FG的垂线FH,交y轴的负半轴于点H,那么当点G的位置不断变化时,S△AFH﹣S△FBG的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共114分)19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、第21 页共23 页第22 页共23 页27-3、第23 页共23 页。
2019学年第一学期九年级期中考试(数学)试题卷本卷考试时间120分钟,满分120分,不得使用计算器。
一、选择题(本题有10个小题, 每题3分, 共30分。
请选出各题中唯一的正确选项。
)1.二次函数y =(x -1)2-2的顶点坐标是( ) A.(1,-2) B.(-1,2) C.(-1,-2) D.(1,2) 2.将抛物线22x y =的图象先向右平移4个单位,再向下平移3个单位所得的解析式为( ) A .4)3(22+-=x y B .3)4(22-+=x y C .3)4(22+-=x yD .3)4(22--=x y3. 下列事件中,是必然事件的为( ) A .3天内会下雨 B .打开电视,正在播放广告 C .367人中至少有2人公历生日相同 D .某妇产医院里,下一个出生的婴儿是女孩 4.下列命题为真命题的是( ) A .三点确定一个圆 B .度数相等的弧相等 C .90°的圆周角所对的弦是直径 D .相等的圆心角所对的弧相等 5.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( ) A .20° B . 40° C . 60° D . 80° 6. 如图,AB 是⊙O 的直径,AB ⊥CD , AB =10,CD =8, 则BE 为( ) A. 2 B. 3 C . 4 D.3.57.如图,当半径为30cm 的转动轮转过1200角时,传送带上的物体A 平移的距离为( ) A. 900лcm B.300лcm C. 60лcm D.20лcm8.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为直线x =1,点B 坐标为(-1,0).则下面的四个结论:①2a +b =0;②4a -2b +c <0;③ac >0;④当y <0时,x <-1或x >2。
扬州树人学校2019-2020第一学期期中试卷 九年级数学 2019.11一、选择题(每小题3分,共24分)1. 若x=2是关于x 的一元二次方程082=+-mx x 的一个解,则m 的值是( ) A. 6 B.5 C. 2 D. -6【答案】将x=2代入方程得,4-2m+8=0,解得m=6,故选A2. 用配方法解方程0542=--x x 时,原方程应变形为( ) A. ()612=+x B.()922=+x C.()612=-x D. ()92-x 2=【答案】()924544054222=-+=+-=--x x x x x ,故选D3. 对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:026.0025.022--===乙甲,乙,甲S S x x ,下列说法正确的是( )A. 甲成绩比乙好B.乙成绩比甲好C.甲成绩比较稳定D.乙成绩比较稳定【答案】C4. 在Rt △ABC 中,∠C=90°,若a=3,b=4,则sinB 的值为( )54.A B.53 C.43 D.34 【答案】A5. 下列有关圆的一些结论,其中正确的是( )A. 任意三点可以确定一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦,并且平分弦所对的弧D.圆内接四边形对角互补【答案】D6. 在Rt △ABC 中,∠ACB=90°,AB=5,tan ∠B=2,则AC 的长为( ) A.1 B.2 C.5 D.25【答案】在Rt △ABC 中,∠ACB=90°,tan ∠B=2, ∴2=BC AC ,∴BC=21AC, 由勾股定理得,222BC AC AB +=,即()222215⎪⎭⎫⎝⎛+=AC AC解得,AC=2,故选B7.如图,A、B、C在⊙O上,∠A=50°,则∠OBC度数为()A.50°B.40°C.100°D.80°【答案】B8.如图,在半圆⊙O中,直径AB=4,点C、D是半圆上两点,且∠BOC=84°,∠BOD=36°,P为直径上一点,则PC+PD的最小值为()【答案】二.填空题(每小题3分,共30分)9.数据18,24,28,30,33,26的中位数是________. 【答案】2710.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积_________.【答案】S=ππ2173221=⨯⨯⨯11.已知扇形所在圆的半径为6,所对的弧长为4π,则扇形的面积为________.【答案】ππ126421=⨯⨯=S12.已知α为锐角,且满足tan(α+100)=3,则α的度数为__________ 【答案】∵tan60°=3,∴α+10°=60°,α=50°13.在ABC ∆中,03tan 5.0sin =-+-B A ,则ABC ∆是________三角形. 【答案】由题意得,sinA-0.5=0,tanB-3=0,∴sinA=0.5,tanB=3,∴A=30°,B=60°,∴∠C=90°,∴△ABC 是直角三角形。
2019-2020学年九年级第一学期期中考试数学试题一、选择题(本大题共6小题,共12.0分)1. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A. 平行四边形B. 圆C. 等边三角形D. 正五边形 【答案】B【解析】解:A 、平行四边形,不是轴对称图形,是中心对称图形,故本选项错误; B 、圆,既是轴对称图形,又是中心对称图形,故本选项正确;C 、等边三角形,是轴对称图形,不是中心对称图形,故本选项错误;D 、正五边形,是轴对称图形,不是中心对称图形,故本选项错误. 故选:B .根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2. 已知⊙O 的半径为6cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的交点个数为( ) A. 0 B. l C. 2 D. 无法确定 【答案】C【解析】解:∵⊙O 的半径为6cm ,圆心O 到直线l 的距离为5cm ,6cm >5cm , ∴直线l 与⊙O 相交,∴直线l 与⊙O 有两个交点. 故选:C .先根据题意判断出直线与圆的位置关系即可得出结论.本题考查的是直线与圆的位置关系,熟知设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,当d <r时,直线与圆相交是解答此题的关键.3. −与方差S 2:( )A. 甲B. 乙C. 丙D. 丁 【答案】A【解析】解:∵S 甲2=6.5,S 乙2=6.5,S 丙2=17.5,S 丁2=14.5, ∴S 甲2=S 乙2<S 丁2<S 丙2,∵X 甲−=563,X 乙−=560, ∴X 甲−>X 乙−,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲; 故选:A .根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案. 此题考查了平均数和方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.当m取下列哪个值时,关于x的一元二次方程x2−2x+m=0没有实数根()A. −2B. 0C. 1D. 2【答案】D【解析】解:由题意知,△=4−4m<0,∴m>1故选:D.方程没有实数根,则△<0,建立关于m的不等式,求出m的取值范围.本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,−1),则线段AB的长度为()A. 3B. 4C. 6D. 8【答案】C【解析】解:连接EB,如图所示:∵C(0,9),D(0,−1),∴OD=1,OC=9,∴CD=10,∴EB=ED=1CD=5,OE=5−1=4,2∵AB⊥CD,AB,OB=√EB2−OE2=√52−42=3,∴AO=BO=12∴AB=2OB=6;故选:C.CD=5,OE=4,连接EB,由题意得出OD=1,OC=9,∴CD=10,得出EB=ED=12AB,由勾股定理求出OB,即可得出结果.由垂径定理得出AO=BO=12本题考查了垂径定理、坐标与图形性质、勾股定理;熟练掌握垂径定理,由勾股定理求出OB是解决问题的关键.6.如图,▱ABCD中,AD//BC,AD=8,CD=4,∠B=60∘.若点P在线段BC上,且△ADP为直角三角形,则符合要求的点P的个数有()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】解:如图,连接AC,取BC的中点K,连接AK.∵四边形ABCD是平行四边形,∴AB=CD=4,AD=BC=4,∵BK=KC=4,∴BA=BK,∵∠B=60∘,∴△ABC是等边三角形,AK=BK=KC,∴∠BAC=90∘,∵AB//CD,∴∠ACD=∠BAC=90∘,∴以AD为直径作⊙O交BC于P2,P3,此时△ADP2,△ADP3是直角三角形,当∠DAP1=90∘时,△DAP是直角三角形,∴符合条件的点P有三个,故选:B.如图,连接AC,取BC的中点K,连接AK.首先证明∠BAC=90∘,推出∠ACD=90∘,以AD为直径作⊙O交BC于P2,P3,此时△ADP2,△ADP3是直角三角形,当∠DAP1=90∘时,△DAP是直角三角形,所以符合条件的点P有三个.本题考查圆周角定理,平行四边形的性质,直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共10小题,共20.0分)7.一个不透明的口袋中,装有除颜色以外其余都相同的红、黄两种球共15个,摇匀后从中任意摸出一球,记下颜色放回,摇匀再摸出一个,记下颜色放回….经过大量的重复试验,发现摸到红球的频率为0.4,则估计袋中有红球______个.【答案】6【解析】解:设袋中有红球x个,根据题意得:x=0.4,15解得:x=6,答:袋中有红球6个;故答案为:6.设袋中有红球x个,根据摸到红球的频率列出方程,然后求解即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.2017年金砖国家峰会中,6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,她们的身高的众数是______cm,中位数______cm.【答案】168 168【解析】解:∵168cm出现了3次,出现的次数最多,∴她们的身高的众数是168cm;把这些数从小到大排列为166,167,168,168,168,169,=168cm;则中位数是168+1682故答案为:168,168找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.此题考查了中位数和众数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数;众数是一组数据中出现次数最多的数.9.小明上学期数学的平时成绩80分,期中成绩90分,期末成绩85分,若学期总评成绩按平时:期中:期末=3:3:4计算,则小明上学期数学的总评成绩是______分.【答案】85【解析】解:根据题意,小明上学期数学的总评成绩是80×3+90×3+85×43+3+4=85(分),故答案为:85.根据加权平均数的计算公式计算可得.本题考查了加权平均数的求法,要注意乘以各自的权,直接相加除以3是错误的求法.10.如果关于x的一元二次方程x2+bx+c=0的两根分别为1和−2,则b⋅c=______.【答案】−2【解析】解:根据题意得1+(−2)=−b,1×(−2)=c,所以b=1,c=−2,所以bc=−2.故答案为−2.根据根与系数的关系得到1+(−2)=−b,1×(−2)=c,然后分别求出b、c的值,再计算bc的值.本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,x1+x2=−ba ,x1x2=ca.也考查了根的判别式.11.方程2(x+1)=x(x+1)的解为______.【答案】x1=−1,x2=2【解析】解:∵2(x+1)=x(x+1),∴2(x+1)−x(x+1)=0,∴(x+1)(2−x)=0,则x+1=0或2−x=0,解得:x1=−1,x2=2,故答案为:x1=−1,x2=2.先移项得到2(x+1)−x(x+1)=0,然后利用因式分解法解方程.本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).12.如图,已知CD是⊙O的直径,A、B在⊙O上,∠AOB=35∘,CA//OB,则∠BOD=______.【答案】35∘【解析】解:∵OA=OC,∴∠C=∠A,∵OB//AC,∴∠AOB=∠A,∠BOD=∠C,∴∠AOB=∠BOD=35∘,故答案为35∘只要证明∠AOB=∠BOD即可.本题考查平行线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在⊙O的内接五边形ABCDE中,∠B+∠E=210∘,则∠CAD=______ ∘.【答案】30【解析】解:连接CE,如图,∵四边形ABCE为⊙O的内接四边形,∴∠B+∠AEC=180∘,∵∠B+∠AED=210∘,∴∠CED=210∘−180∘=30∘,∴∠CAD=∠CED=30∘.故答案为30.连接CE,如图,先利用圆的内接四边形的性质得到∠B+∠AEC=180∘,则可计算出∠CED=30∘,然后根据圆周角定理得到∠CAD的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;圆的内接四边形的对角互补.14.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,Rl=300π得l=20π;则由题意得R=30,由12由2πr=l得r=10cm.故答案是:10cm.由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.本题考查的知识点是圆锥的表面积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.15. 今年梦想企业一月份产值200万,二、三月份产值均以相同的增长率持续增长,结果三月份产值比二月份产值增加了22万.若设该企业二、三月份产值平均增长率为x ,根据题意可列方程______.【答案】200(1+x)2−200(1+x)=22 【解析】解:设该企业二、三月份产值平均增长率为x ,则该企业二月份产值为200(1+x)万,三月份产值为200(1+x)2万,根据题意得:200(1+x)2−200(1+x)=22. 故答案为:200(1+x)2−200(1+x)=22.设该企业二、三月份产值平均增长率为x ,则该企业二月份产值为200(1+x)万,三月份产值为200(1+x)2万,由三月份产值比二月份产值增加了22万,即可得出关于x 的一元二次方程,此题得解.本题考查了由实际问题抽出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16. 如图,Rt △ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD =3,BD =2,则Rt △ABC 的面积为______. 【答案】6【解析】解:∵Rt △ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD =3,BD =2,∴AD =AF =3,BD =BE =2,FC =EC , 设FC =EC =x ,则(3+x)2+(2+x)2=52,解得:x 1=1,x 2=−6(不合题意舍去), 则AC =4,BC =3,故Rt △ABC 的面积为:12×4×3=6.故答案为:6.直接利用切线长定理得出AD =AF =3,BD =BE =2,FC =EC ,再结合勾股定理得出FC 的长,进而得出答案.此题主要考查了切线长定理以及勾股定理,正确得出FC 的长是解题关键.三、解答题(本大题共11小题,共88.0分) 17. 解方程:(1)4x 2−2x −1=0; (2)(y +1)2=(3y −1)2.【答案】解:(1)4x 2−2x −1=0;解:a =4,b =−2,c =−1,b 2−4ac =20, ∴x =2±2√58, ∴x 1=1+√54,x 2=1−√54;(2)(y +1)2=(3y −1)2. 解:(y +1)=±(3y −1)y +1=3y −1或y +1=−3y +1 y 1=1,y 2=0.【解析】(1)找出a ,b 及c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)移项,然后利用因式分解法即可求解.此题考查了解一元二次方程−公式法及因式分解法,利用公式法解方程时,首先将方程整理为一般形式,找出a ,b 及c 的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.18. 如图,转盘A 中的4个扇形的面积相等,转盘B 中的3个扇形面积相等.小明设计了如下游戏规则:甲、乙两人分别任意转动转盘A 、B 一次,当转盘停止转动时,将指针所落扇形中的2个数相乘,如果所得的积是偶数,那么是甲获胜;如果所得的积是奇数,那么是乙获胜.这样的规则公平吗?为什么?【答案】解:列表如下: 1 1 2 3 4 2 2 4 6 9 336912以上共有12个等可能的结果,其中积为偶数的有8个结果,积为奇数的有4个结果, ∴P(甲胜)=23,P(乙胜)=13,∵P(甲胜)>P(乙胜), ∴规则不公平.【解析】首先根据题意画出表格,然后由表格求得所有等可能的结果,由两个数字的积为奇数和偶数的情况,再利用概率公式即可求得答案.本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.19. 一个不透明的口袋里装有白、红两种颜色的球,这些球除了颜色外都相同,其中白球1个,红球若干个.已知随机地从袋中摸出1个球,摸到白球的概率为13. (1)袋中有红色球______个;(2)从袋中任意摸出一球记下颜色放回、搅匀,再从中任意摸出一球,像这样有放回地先后摸球3次,请列出所有摸到球的可能结果,并求出三次都摸到红球的概率. 【答案】2 【解析】解:(1)袋中有红色球为:2个,故答案为:2;(2)画树状图得:以上共27个等可能的结果,其中三次都为红色的有8个结果,∴P(三次都为红色)=8.27(1)根据概率公式即可得到结论;(2)先利用画树状图展示所有27种等可能的结果数,再找出8次都摸到红球的结果数,然后根据概率公式求解.此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.20.某区对即将参加2019年中考的3000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)在频数分布表中,a=______,b=______,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是这次抽样调查所得数据的中位数”,问甲同学的视力情况在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?【答案】60 0.05【解析】解:(1)20÷0.1=200(人),所以本次调查的样本为200名初中毕业生的视力情况,则a=200×0.3=60,b=10÷200=0.05;如图,(2)∵共有200个数据,其中位数是第100和第101个数据的平均数,而第100和第101个数据均落在4.6≤x<4.9,∴甲同学的视力情况在4.6≤x<4.9;(3)(0.3+0.05)×3000=1050答:估计全区初中毕业生中视力正常的学生有1050人.(1)先根据4.0≤x<4.3的频数和频率求得总人数,再根据频数=频率×总数分别求得a 和b,据此可补全图形;(2)根据中位数的定义求解可得;(3)用样本值后面两组的频率和乘以3000可估计全区初中毕业生中视力正常的学生数.本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.也考查了用样本估计总体.21.如图,⊙I是△ABC的内切圆,切点分别是D、E、F.(1)若∠B=50∘,∠C=70∘,则∠DFE的度数为______;(2)若∠DFE=50∘,求∠A的度数.【答案】60∘【解析】解:(1)连接ID、IE,∵∠B=50∘,∠C=70∘,∴∠A=60∘,∵⊙I是△ABC的内切圆,切点分别是D、E、F,∴∠IDA=∠IEA=90∘,∴∠DIE=180∘−60∘=120∘,∴∠DFE的度数为:60∘;故答案为:60∘;(2)∵∠DFE=50∘,∴∠DIE=100∘,∵AB、AC分别与⊙I相切于点D、E,∴∠ADI=∠AEI=90∘,∴∠A=80∘.(1)直接利用切线的性质结合三角形内角和定理以及圆周角定理得出答案;(2)利用圆周角定理得出∠DIE的度数,进而得出∠A的度数.此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.22.已知关于x的一元二次方程x2−mx+m−2=0.(1)若该方程有一个根为−1,求m的值;(2)求证:不论m为任何实数,该方程都有两个不相等的实数根.【答案】解:(1)x=−1代入得:1+m+m−2=0,;解得m=12(2)∵a=1,b=−m,c=m−2,∴b2−4ac=m2−4m+8,∴b2−4ac=(m−2)2+4,∵(m−2)2≥0,∴(m−2)2+4>0,∴不论m为任何实数,该方程都有两个不相等的实数.【解析】(1)根据方程的解的概念将x=−1代入,解关于m的方程即可得;(2)根据△=m2−4m+8=(m−2)2+4>0即可得.本题考查了根的判别式以及一元二次方程的解,解题的关键是:(1)代入x=1求出m值;(2)牢记“当△>0时,方程有两个不相等的实数根”.23.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:BD=CD;(2)若∠BAC=50∘,求∠EBC和∠EDC的度数.【答案】(1)证明:连接AD∵AB⊙O的直径,∴∠ADB=90∘,又∵AB=AC,∴BD=CD.(2)∵AB=AC,∠BAC=50∘,(180∘−50∘)=65∘,∴∠ABC=∠C=12∵AB⊙O的直径,∴∠AEB=90∘,∵∠BAC=50∘,∴∠ABE=40∘,∴∠EBC=25∘,∵四边形ABDE内接于⊙O,∴∠BAC+∠BDE=180∘,∵∠EDC+∠BDE=180∘,∴∠EDC=∠BAC=50∘.【解析】(1)连接AD,利用等腰三角形的三线合一的性质即可解决问题.(2)根据∠EBC=∠ABC−∠ABE,求出∠ABC,∠ABE即可,证明∠DEC=∠ABC即可求出∠DEC.本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,熟练掌握基本知识,属于中考常考题型.24.如图,在以O为圆心的两个同心圆中,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若大圆的半径为5,且AB=8,求小圆的半径.【答案】(1)证明:连接OM、ON,∵大圆的弦AB、AC分别切小圆于点M、N.∴AM=AN,OM⊥AB,ON⊥AB,∴AM=12AB,AN=12AC,∴AB=AC;(2)解:连接AO,则AO=5∵AB=8,∴AM=4,在Rt△AOM中,OM2=OA2−AM2OM2=52−42,∴OM=3,即小圆的半径为3.【解析】(1)连接OM、ON,根据切线长定理得出AM=AN,OM⊥AB,ON⊥AB,根据垂径定理得出AM=12AB,AN=12AC,即可证得结论;(2)连接AO,则AO=5,然后根据勾股定理即可求得.此题考查了切线的性质,勾股定理以及垂径定理,熟练掌握性质定理是解本题的关键.25.某商店经销的某种商品,每件成本价为40元.经市场调研,售价为50元/件,可销售150件;销售单价每提高1元,销售量将减少5件.如果商店将一批这种商品全部售完,盈利了1500元,问:该商店销售了这种商品多少件?每件售价多少元?【答案】解:设每件售价为x元,则可售出这种商品[150−5(x−50)]件,根据题意得:(x−40)[150−5(x−50)]=1500,整理得:x2−120x+3500=0,解得:x1=50,x2=70,当x=50时,150−5(x−50)=150;当x=70时,150−5(x−50)=50.答:每件售价为50元时,销售这种商品150件;每件售价为70元时,销售这种商品50件.【解析】设每件售价为x元,则可售出这种商品[150−5(x−50)]件,根据总利润=每件的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.如图,在Rt△ABC中,∠C=90∘,∠ABC的角平分线BD交AC边于D.⊙O过B、D两点,且圆心O在AB边上.(1)用直尺和圆规作出⊙O(不写作法,保留作图痕迹);(2)判断直线AC与⊙O的位置关系,并说明理由;(3)若AB=9,AD=3,求⊙O的半径.【答案】解:(1)如图所示:(2)连接OD,∵BD平分∠ABC,∴∠ABD=∠CBD,∵OB、OD是半径,OB=OD,∴∠ODB=∠ABD,∴∠CBD=∠ODB,∴OD//BC,∵∠C=90∘,∴∠ODA=90∘,∵D是半径的外端点,∴AC与⊙O相切.(3)设⊙O的半径为x,在Rt△AOD中,由勾股定理得:32+x2=(9−x)2,解得:x=4,∴⊙O的半径为4.【解析】(1)作线段AB的中垂线与AB交于点O,以O为圆心、OB长度为半径作图可得;(2)连接OD,由BD平分∠ABC知∠ABD=∠CBD,根据OB=OD知∠ODB=∠ABD,从而得∠CBD=∠ODB,再由OD//BC知∠C=90∘,据此即可得证;(3)设⊙O的半径为x,在Rt△AOD中,由勾股定理得:32+x2=(9−x)2,解之即可得出x的值.此题考查了作图−复杂作图、切线的判定与性质等知识.此题综合性很强,解题的关键是注意数形结合思想的应用.27.【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半.那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考】(1)如图1,AB是⊙O的弦,∠AOB=100∘,点P1、P2分别是优弧AB和劣弧AB上的点,则∠AP1B=______ ∘,∠AP2B=______ ∘.(2)如图2,AB是⊙O的弦,圆心角∠AOB=m∘(m<180∘),点P是⊙O上不与A、B重合的一点,求弦AB所对的圆周角∠APB的度数(用m的代数式表示).【问题解决】(3)如图3,已知线段AB,点C在AB所在直线的上方,且∠ACB=135∘.用尺规作图的方法作出满足条件的点C所组成的图形(不写作法,保留作图痕迹).【答案】50 130【解析】解:(1)∠AP1B=12∠AOB=12×100∘=50∘,∠AP2B=180∘−∠APB=180∘−50∘=130∘;故答案为50,130;(2)当P在优弧AB上时,∠A PB=12∠AOB=(m2)∘;当P在劣弧AB上时,∠A PB=180∘−(m2)∘;(3)如图劣弧AB(实线部分且不包含A、B两个端点)就是所满足条件的点C所组成的图形.(1)根据圆周角定理计算∠AP1B的度数,然后根据圆内接四边形的性质求∠AP2B的度数;(2)与(1)的求法一样(注意分类讨论);(3)先作AB的垂直平分线得到AB的中点P,再以AB为直径作圆交AB的垂直平分线于O,然后以O点为圆心,OA为半径作⊙O,则⊙O在⊙P内的弧为满足条件的点C所组成的图形.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.。