紧束缚近似
- 格式:ppt
- 大小:1.25 MB
- 文档页数:35
§5-4 紧束缚近似理论原子结合为原子时,电子的状态发生了根本性的变化,电子从孤立原子的束缚态变为晶体中的共有化状态。
电子状态变化的大小取决于电子在某原子附近所受该原子势场的作用与其它诸原子势场作用的相对大小。
若原子所处原子势场的作用较之其它原子势场的作用要大得多,例如对于原子中内层电子,或晶体间距较大时,上面讨论的近自由电子近似就不适用,这时共有化运动状态与束缚态之间有直接联系,即紧束缚近似理论。
紧束缚理论的实质是把原子间相互作用影响看成微扰的简并微扰方法,微扰后的状态是N 个简并态的线性组合,即用原子轨道()i m ϕ-r R 的线性组合来构成晶体中的电子共有化运动的轨道(,)ψk r ,也称原子轨道线性组合法,简写为LCAO 。
5.4.1 原子轨道线性组合设晶体中第m 个原子的位矢为:112233m m m m =++R a a a ……………………………………………………………………………(5-4-1)若将该原子看作一个孤立原子,则在其附近运动的电子将处于原子的某束缚态()i m ϕ-r R ,该波函数满足方程:22()()()2m i m i i m V m ϕεϕ⎡⎤-∇+--=-⎢⎥⎣⎦r R r R r R ………………………………………………(5-4-2) 其中()m V -r R 为上述第m 个原子的原子势场,i ε是与束缚态i ϕ相对应的原子能级。
如果晶体为N 个相同的原子构成的布喇菲格子,则在各原子附近将有N 个相同能量i ε的束缚态波函数i ϕ。
因此不考虑原子之间相互作用的条件下,晶体中的这些电子构成一个N 个简并的系统:能量为i ε的N 度简并态()i m ϕ-r R ,m=1,2,…,N 。
实际晶体中的原子并不是真正孤立、完全不受其它原子影响的。
由于晶体中其它诸原子势场的微扰,系统的简并状态将消除,而形成由N 个能级构成的能带。
根据以上的分析和量子力学的微扰理论,我们可以取上述N 个简并态的线性组合(,)()()mi m maψϕ=-∑k r k r R ………………………………………………………………………(5-4-3)作为晶体电子共有化运动的波函数,同时把原子间的相互影响当作周期势场的微扰项,于是晶体中电子的薛定谔方程为:22()()()2U E m ψψ⎡⎤-∇+=⎢⎥⎣⎦r r r …………………………………………………………………(5-4-4) 其中晶体势场U (r )是由原子势场构成的,即 ()()()nl nU V U =-=+∑r r Rr R …………………………………………………………………(5-4-5)5.4.2 微扰计算(5-4-4)式可以转化为如下形式:()()22()()()2m m V U V E m ψψ⎡⎤-∇+-+--=⎢⎥⎣⎦r R r r R r r 代入(5-4-2)和(5-4-3)后,可得:[()()()]()0mi m i m maE U V εϕ-+---=∑r r R r R ………………………………………………(5-4-5)在紧束缚近似作用下,可认为原子间距较i ϕ态的轨道大得多,不同原子的i ϕ重叠很小,从而有:()()*in i m nm d ϕϕδ--=⎰r R r R r …………………………………………………………………(5-4-6)现以()*in ϕ-r R 左乘方程(5-4-5),并对整个晶体积分,可以得: *()()[()()]()n i m i m m i m ma E a U V d 0εϕϕ-+---⋅-∑⎰r R r r R r R r =…………………………(5-4-7)首先讨论(5-4-7)式中的积分。
紧束缚近似名词解释
紧束缚近似(Tight-Binding Approximation)是一种在固体物理学和材料科学中常用的近似方法,用于描述电子在晶格结构中的行为。
该方法假设电子只在相邻原子之间的相互作用下运动,忽略了更远的相互作用。
这种近似方法特别适用于那些电子波函数重叠较少的材料,因为在这种情况下,电子的波函数主要集中在它们各自的原子附近。
在紧束缚近似下,电子的能量和波函数可以通过一个包含原子轨道和它们之间相互作用的模型来描述。
这种方法的一个优点是它可以处理大规模系统,因为它只需要考虑每个原子周围的有限数量的其他原子。
尽管紧束缚近似有许多优点,但它也有一些局限性。
例如,它不能很好地描述那些电子波函数重叠较大的材料,如金属和半金属。
此外,它也不能描述那些具有强电子关联效应的材料,如某些过渡金属氧化物。
以上信息仅供参考,如有需要,建议您咨询专业人士。
第十八讲:紧束缚近似紧束缚近似的出发点电子在一个原子附近时,将主要受到该原子场的作用,把其它原子场的作用看成是微扰作用,由此可以得到电子的原子能级与晶体中能带之间的相互联系。
紧束缚近似的模型和微扰计算如果完全不考虑原子之间的相互影响,在某格点R m =m 1a 1+m 2a 2+m 3a 3附近的电子将以原子束缚态ϕi (r −R m )的形式环绕点R m 运动,假定是简单晶格,每个原胞中只有一个原子。
ϕi 表示孤立原子的波动方程的本征态()()()222m i m i i m V m ϕεϕ −∇+−−=−r R r R r R (4-49) V (r −R m )为R m 格点的原子势场,εi 为某原子能级。
在紧束缚近似中,这些看作微扰的零级近似。
晶体中电子运动的波动方程为()()()222U E m ψψ−∇+=r r r U (r )为周期性势场,它是各格点原子势场之和。
U (r )− V (r −R m )看成微扰。
原子轨道线形组合L C A O环绕不同的N 个格点,将有N 个类似的波函数,它们具有相同的能量εi ,也就是说是N 重简并。
这实际上是把原子间相互影响看作微扰的简并微扰方法,微扰以后的状态是N 个简并态的线形组合,即用原子轨道ϕi (r −R m )的线形组合来构成晶体中电子共有化运动的轨道ψ(r ) ,因而也称为原子轨道线形组合L C A O 。
晶体中电子共有化运动的波函数为()()m m mr a ψϕ=−∑r R (4-50)代入波动方程(4-49)得到()()()()mi m i m m i m mmaU V E a εϕϕ+−−−=− ∑∑r r R r R r R (4-51)当原子间距比原子轨道半径大时,不同格点的ϕi 重叠很小,将近似认为()()inimmnd ϕϕδ∗−−=∫r R r R r (4-52)以()i n ϕ∗−r R 左乘波动方程式(4-51)并积分就得到()()()(){}mi mni n m i m n maU V d Ea εδϕϕ∗+−−−−= ∑∫r R r r R r R r (4-53)化简得()()()()()min m i m i nma U V d E aϕϕε∗−−−−=− ∑∫r R r r R r R r (4-53)注意()i n ϕ∗−r R 实际上有N 种可能的选取办法,上式实际上是N 个联立方程中的一个典型方程。
紧束缚近似公式(一)紧束缚近似公式紧束缚近似(Tight Binding Approximation)是一种描述电子在固体晶格中行为的数学方法。
在紧束缚近似中,电子波函数被表示为原子轨道的线性组合,通过求解薛定谔方程来得到能级结构和电子态密度等信息。
Bloch定理Bloch定理表明在理想晶体中,电子波函数可以表示为平面波和某个周期函数的乘积形式。
根据Bloch定理,电子波函数可以用下式表示:Ψk(r)=e ik⋅r u k(r)其中,e ik⋅r是平面波,u k(r)是周期函数。
紧束缚近似基本公式紧束缚近似基本公式是在Bloch定理的基础上,进一步假设电子波函数由最近邻原子的原子轨道线性组合构成。
根据紧束缚近似,电子在晶体中的波函数可以用下式表示:e ik⋅R n u n(r−R n)Ψk(r)=∑c nn其中,R n是最近邻原子的位置矢量,u n(r−R n)是最近邻原子的原子轨道。
紧束缚近似能带关系根据紧束缚近似基本公式,可以得到能带关系,即能量与波矢之间的关系。
能带关系可以用下式表示:E k=∑c n∗c n e ik⋅(R n−R m)ϵnmn其中,E k是能量,c n∗和c n是电子的系数,e ik⋅(R n−R m)是相位因子,ϵnm是最近邻原子间的相互作用能。
紧束缚近似的应用举例紧束缚近似在描述材料的能带结构和电子态密度等方面有广泛的应用。
以下是一些应用举例:1.能带计算:通过紧束缚近似,可以计算材料的能带结构,进而分析材料的导电性、绝缘性等特性。
2.电子态密度计算:紧束缚近似可以用于计算材料的电子态密度,这对于研究材料的化学反应等方面非常重要。
3.值得注意的是,紧束缚近似也有其局限性,适用于描述弱相互作用体系,如共价键、金属键等。
对于强相互作用系统,如强关联电子体系,紧束缚近似可能不适用。
总之,紧束缚近似是一种重要的描述电子在晶体中行为的方法,在材料科学和凝聚态物理等领域有着广泛的应用。
第四章:电子结构的紧束缚近似紧束缚近似是能带结构计算的一种经验方法,1928年,布洛赫提出紧束缚近似的方法,将晶体中的电子态用原子轨道的线性组合展开。
紧束缚近似能够给出任何类型晶体(金属、半导体和绝缘体)电子占据态的合理描述,对于半导体,最低的导带态,也可以很好近似。
4.1基本理论4.1.1分子轨道:原子中s、p、d轨道的电子云分布如图1所示,3d/站程3d yz3d^3^./。
常见的轨道类型P\4.1.1简单晶格:首先考虑简单格子构成的晶体,每个原胞只有一个原子,假定原子的轨道用 子数,晶体中其它原子的对轨道波函数表示为 ]r-R 。
由晶体中所有原子的相应轨道建立以k 为博士的晶体的布洛赫和,表示为:其中,N 为晶体原胞数。
在紧束缚近似中,以 k 为波失的晶体电子波函数,用所有以k 为波失的布洛赫和展开,表示如下:'i八 C i k i k,ri式中C i k ,为展开式系数,可以通过标准的矩阵对角化程序求出。
晶体的哈密顿量为如下形势:晶体的能量本征值和本征失(展开式系数)可以有下列行列式方程给出:M j k -ES j k =0式中M y (k )为由布洛赫和构建的晶体哈密顿矩阵元 Mj (k )=(叫(k,r |H |®j (k,r 》,q 为晶体布洛赫 之间的交叠积分 S jk,r < k,r :)。
这样求晶体的的电子态就主要转化为求上述(4-4)式中的哈密顿矩阵元和交叠积分,可以通过对原胞实空间进行具体积分求得,但计算复杂,计算代价高。
通常, 紧束缚近似方法中矩阵元是通过半经验的方法给出。
4.1.2半经验方法在半经验方法中,首先假定原子轨道具有高度局域性,这样以不同原子为中心的原子轨道之间的交 叠积分为零,又由于,相同原子的不同轨道正交,这样,式( 是计算哈密顿矩阵元:Mj (k )=丄瓦送 exp 「ik 依-Rm )WM r -Rm l H pU r -尺》(必)NR m R ni r 表示,其中i 为量i一卜 exp ik & i r — R(4-1)(4-2)(4-3)(4-4)4-4 )中的交叠积分 $二。