中山大学固体物理第五章参考答案
- 格式:pptx
- 大小:1.95 MB
- 文档页数:32
第五章 习 题 P3051. 解:一维部洛赫电子的能带具有如下性质,)()(αsk E k E +=,⋅⋅⋅±±=210、、s于是有:αs k kE kk E+∂∂∂∂= ……①和kkE kk E -∂∂∂∂-= ……②而布里渊区在边界上,α2s k±=,取α2sk -=代入①、②两式,可得:αα22s kE s k E-∂∂∂∂=, αα22s kEs k E -∂∂∂∂-= 由上两式相容的条件立即得到:02=±∂∂αsk E ,即能量取极值。
(可参看附加题1、2,课本P288例1、P290例3) 2. 解:对面心立方格子,原胞的三个基矢为:)(21a +=α,)(22a +=α,)(23a +=α,倒格子基矢为:)(11b ++-=α)(12b +-=α ,)(13b -+=α倒格矢:332211n b n b n K n ++=])()()[(3213213211n n n n n n n n n -+++-+++-=α面心立方格子是一个边长为α2的体心立方格子,离原点最近的八个倒格点的坐标是:)111(1,,α ,)111(1,,α,)111(1,,α,)111(1,,α)111(1,,α,)111(1,,α,)111(1,,α,)111(1,,αα3=六个次近邻倒格点的坐标是:)002(1,,±α,)02,0(1,±α,)2,00(1±,α,α2= 由最近邻和次近邻倒格矢的中垂面围成的多面体——截角八面体(它是一个十四面体)便是面心立方格子的第一布里渊区。
如课本P261图5-3。
3. 解:(参考徐习P259~260,教材P191,4-19式)(1)按照定义,空间中E=E F的等能面称为费米面,由mk h E F 222=知道,这是半径为F k 的球面。
在绝对零度下,电子全部位于费米球内,T=0K 时,费米能级的能量32223220)3(2)83(2ππn mn m h E F ==式中n 为电子浓度,令3222)83(22πn m h k m h F =得,31)83(πn k F = 设晶体的电子总数为N ,体积为V,对于具有简单立方结构的单价金属,V=N α3,因此,所求费米球半径:m V N k F /10147.010345.3492.0492.0)183()83(101031331⨯=⨯====-ααππ(2)因简单立方边界为α,其第一布里渊区是空间中边长为1/α的立方体,体积为1/α3,故费米球刚好被包含在其内部。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
1、学习了电磁耦合场后,对光吸收谱中剩余辐射带有无更深入的理解?答:1)是电磁耦合,格波中TO 波也具有电磁性2)光波、格波的频率和波矢都应相近当光波与TO 格波的波矢 q ,频率q ω相近时,发生共振,形成耦合场。
2、 试述表面(界面)电耦合场色散关系的特点。
答:光入射到离子晶体中,光波与格波中的长光学横波耦合,光的电磁场发生了变化,格波也发生了变化,形成了新的激发场,即电磁耦合场。
这个耦合场既不是纯光波,也不是纯格波,有着特殊的色散关系。
存在两种横波,它们的偏振方向不同,但频率相同 。
3.一维复式格m =5×1.67×10-24g, M /m =4, β=1.5×10 N (即1.5×104dyn/cm ),求:(1) 光学波0max ω,0min ω;声学波max A ω; (2) 相应声子能量是多少电子伏。
(3) 与0max ω相对应的电磁波波长在什么波段。
解:由电磁耦合场的色散关系可知,两种横波的支解为:221/22221/224{1[1sin ]}()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+ (1)当2sin 0aq =时,ω+取最大值,ω-取最小值014max 1.510Hz ω==⨯当2sin 1aq =时,ω+取最小值,ω-取最大值013min 6.010Hz ω==⨯13max 3.010AHz ω==⨯(2).相应声子能量为0034142max max 1.05410 1.5109.8810E Js Hz evω--==⨯⨯⨯⋅=⨯ 0034132min min 1.05410 6.010 3.9510E Js Hz evω--==⨯⨯⨯⋅=⨯ 34132max max 1.05410 3.010 1.9810A AE Js Hz evω--==⨯⨯⨯⋅=⨯(3) 与0max ω相对应的电磁波波长在红外波段4.试证明LST 关系式: 22LO sTO ωεωε∞=。
《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
1、什么是Peierl不稳定性和Peierls相变?【解答】:假设的晶格内原子状态:假定一维系统是由晶格常数为 a 的N个原子组成,每个晶格原胞只带一个传导电子,电子波函数满足周期条件;第一布里渊区边缘在±π/a,第一布里渊区可以填充2N个电子,因为N个价电子正好填充了最低能带的一半,费米能量恰好位于能带1/2处(Kf=±π/2a),空能级和占据能级各一半。
然而,Peierls指出这种等距离排列的一维晶格是不稳定的,在低温下,原子发生移动,晶格常数由a变为2a,即第一布里渊区边缘移至费米面且打开了一个能隙,系统总能量降低(。
这就说明,原来等距离排列的具有较高能量的一维晶格经原子移动后变成具有较低能量的畸变晶格,所以原来的晶格是不稳定的。
经过晶格畸变,从半满能带的导体变成为稳定的只有满带和空带的半导体,这就是Peierls不稳定性。
只有在0K时,体系才完全处于上述半导体基态中,当T升高,晶格原子的振动逐步加强以至畸变模糊。
存在相变温度Tp,T<Tp,体系呈现半导体;T≥Tp,体系相变为导体,这种半导体变为导体的相变称为Peierls相变。
2、简述金刚石、石墨的结构和物性,比较它们性质的异同?【解答】:金刚石和石墨的化学成分都是碳,科学家们称之为“同质多像变体”,也有人称“同素异形体”。
从这种称呼可以知道它们具有相同的“质”,但“形”或“性”却不同,且有天壤之别,金刚石是目前最硬的物质,而石墨却是最软的物质之一。
大家都知道铅笔芯就是用石墨粉和粘土配比而制成的,石墨粉多则软,用“B“表示,粘土掺多了则硬,用“H”表示。
矿物学家用摩氏硬度来表示相对硬度,金刚石为10,而石墨的摩氏硬度只有1。
它们的硬度差别那么大,关键在于它们的内部结构有很大的差异。
石墨内部的碳原子呈层状排列,一个碳原子周围只有3个碳原子与其相连,碳与碳组成了六边形的环状,无限多的六边形组成了一层。
层与层之间联系力非常弱,而层内三个碳原子联系很牢,因此受力后层间就很容易滑动,这就是石墨很软能写字的原因。
固体物理学第五章答案固体物理学第五章答案【篇一:固体物理习题解答】>( 仅供参考)参加编辑学生柯宏伟〔第一章〕,李琴〔第二章〕,王雯〔第三章〕,陈志心〔第四章〕,朱燕〔第五章〕,肖骁〔第六章〕,秦丽丽〔第七章〕指导教师黄新堂华中师范大学物理科学与技术学院2022级2022年6月第一章晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个na+和一个cl-组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于nacl和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:a?a??12(j?k)?a?a?(k?i) ?22?a?a??32(i?j)?相应的晶胞基矢都为:?a?ai,??b?aj,?c?ak.?2. 六角密集结构可取四个原胞基矢a1,a2,a3与a4,如下图。
试写出o?a1a3、a1a3b3b1、a2b2b5a5、a1a2a3a4a5a6这四个晶面所属晶面族的晶面指数?hklm?。
解:(1).对于o?a1a3面,其在四个原胞基矢1上的截矩分别为:1,1,?,1。
所以,2其晶面指数为??。
(2).对于a1a3b3b1面,其在四个原胞基矢上的截矩分别为:1,1,?所以,其晶面指数为??。
1 1,?。
2(3).对于a2b2b5a5面,其在四个原胞基矢上的截矩分别为:1,?1,?,?。
所以,其晶面指数为?1?。
(4).对于a1a2a3a4a5a6面,其在四个原胞基矢上的截矩分别为:?,?,?,1。
所以,其晶面指数为?0001?。
3. 如将等体积的硬球堆成以下结构,求证球体可能占据的最大体积与总体积的比为:简立方:。
?;六角密集:;金刚石:66证明:由于晶格常数为a,所以:(1).构成简立方时,最大球半径为rm?a,每个原胞中占有一个原子,24?a?? ?vma3 3?26??vm?? 3a63(2).构成体心立方时,体对角线等于4倍的最大球半径,即:4rm,每个晶胞中占有两个原子,4?3?2vm?2??? ??3??3?2vm?3a(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4rm,每个晶胞占有4个原子,4?3??4vm?43??3?4vm? a36(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高那么正好是其原胞基矢c的长度的一半,由几何知识易知2c?m。