实验指导书-生物质好氧降解过程耗氧速率的测定
- 格式:pdf
- 大小:193.26 KB
- 文档页数:10
实验二化学耗氧量(COD)的测定一实验目的1. 了解水质指标中 COD 的含义2. 掌握水体中耗氧有机污染物COD 测定技术3. 掌握容量法测定化学需氧量的原理和技术二实验原理人类赖以生存的地球,为我们提供了充足的阳光、空气、水、土地和大量的生物及矿物资源。
人们通常将我们居住的地球环境,划分为大气圈、水圈和岩石圈。
人类的生活和生产活动不断地影响和改变着这些环境条件,甚至引起对环境的污染。
其中,水圈的一种污染是向水中带入有机物、肥料和洗涤剂等。
这类有机物污染中,在水中被耗氧细菌分解,使水中含氧量降低,因此,我们称这类有机物为耗氧污染物。
由于有机污染物的组成十分复杂,通常用水中耗氧量来标志水被污染的程度,单位为mg·L-1。
它又分为化学耗氧量(COD)和生物耗氧量(BOD)两种。
本实验中我们测定化学耗氧量。
化学耗氧量(Chemical Oxygen Demand,COD)是指在一定严格的条件下,水中的有机物质在外加的强氧化剂重铬酸钾的作用下被氧化分解时所消耗氧化剂的数量,以O2 的mg/L 表示。
它反映了有机物、亚硝酸盐、亚铁盐、硫化物等还原性物质对水的污染程度,是评价水体中有机污染物质相对含量的一项重要综合性指标,也是对河流、工业污水的研究以及污水处理厂控制的一项重要的测定参数。
本实验采用容量法测定化学需氧量,其原理在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。
三仪器和试剂1. 仪器三颈烧瓶、电加热套、50mL酸式滴定管、锥形瓶(250ml)4个、移液管(10ml)、容量瓶(1000ml)、玻璃棒、烧杯等2. 试剂重铬酸钾标准溶液(0.25mol/L)、试亚铁灵指示液、硫酸亚铁铵标准溶液、硫酸-硫酸银溶液[将6g Ag2SO4 溶于500mL 浓H2SO4中)]3.溶液配置(1)重铬酸钾标准溶液(0.2500 mol/L(1/6K2Cr2O7)):称取预先在120℃烘干2h的基准或优质纯重铬酸钾12.258g溶于水中,移入1000mL容量瓶,稀释至标线,摇匀。
耗氧量作业指导书一、引言耗氧量是描述生物在进行呼吸作用时消耗氧气的量的指标。
它是衡量生物体代谢活动水平的重要参数,对于了解生物体能量代谢和适应环境的能力具有重要意义。
本指导书旨在介绍耗氧量的概念、测量方法和实验步骤,帮助学生正确理解和掌握这一实验技巧。
二、耗氧量的概念耗氧量是指在单位时间内,生物体或细胞呼吸过程中消耗氧气的量。
它通常以单位时间内消耗的氧气体积来表示,常见的单位有毫升/分钟(ml/min)和升/小时(L/h)。
三、测量方法1. 呼吸计法:使用呼吸计测量生物体在闭合环境中的氧气消耗量。
首先将生物体放入呼吸计中,然后通过观察呼吸计内气泡的变化来计算氧气的消耗量。
2. 氧气电极法:利用氧气电极测量环境中氧气的浓度变化,从而计算生物呼吸消耗的氧气量。
这种方法需要使用专门的氧气电极和相应的设备。
四、实验步骤1. 准备工作:清洗实验设备,校准仪器,并保证设备正常运行。
检查生物体,确保其处于健康且适于实验的状态。
2. 实验设计:根据实验目的和要求,设计相应的实验方案。
可以根据不同的实验目的选择不同的测量方法。
3. 实验操作:a. 将生物体或细胞放置在测量设备中,确保生物体与环境隔离且无外界干扰。
b. 按照测量方法的要求进行实验操作。
例如,对于呼吸计法,观察呼吸计内气泡的变化情况。
对于氧气电极法,将氧气电极插入测量容器中,记录氧气浓度的变化。
c. 根据实验结果,计算出单位时间内消耗的氧气量。
4. 数据处理和分析:根据实验数据,进行数据处理和分析。
可以利用统计学方法对数据进行统计学分析,计算平均值和标准差等指标。
5. 结果与讨论:根据实验结果,进行结果分析和讨论。
可以比较不同实验条件下的耗氧量差异,探讨影响耗氧量的因素。
六、实验注意事项1. 实验前需仔细阅读实验指导书和相关文献,了解实验流程和操作要点。
2. 实验操作时要严格按照实验要求进行,确保操作准确无误。
3. 注意实验设备的清洁和校准,确保实验结果的准确性。
能动工程基础实验2014
生物质热解
实验指导书
轻工与能源学院能源与动力工程系
一、实验目的
熟悉并掌握生物质热解的基本过程;掌握实验室管式热解炉的工作原理和方法;掌握热解过程和热解产物的相关概念。
二、实验内容和要求
管式炉实验在自行设计的实验仪器上进行。
实验所选温度为500℃,实验过程如下:首先将实验所需物料精确称量后放入瓷舟(4),并检查整个系统的气密性;再用气瓶(1)中高纯氮气对整个密闭系统进行吹扫,排空系统中残留的空气;之后按照10℃/min的升温速率升到设定温度,迅速将瓷舟(4)推入炉膛内适宜位置进行反应;热解过程中产生的气体经过气体收集过滤装置(9、10、11)进行收集。
拓展实验:设定不同的分解温度,进行上述实验。
三、实验主要仪器设备和材料
23
热解实验装置
1、气瓶
2、流量计
3、流量计
4、热电偶和瓷舟
5、石英管
6、管式炉
7、温度控制器8、电源9、过滤器10、冷却收集系统11、气体收集装置
四、实验报告要求
描述整个实验过程,记录实验数据,能准确回答思考题。
五、思考题
若改变热解温度,实验过程现象有无变化,产物有无区别?。
活性污泥耗氧速率及脱氢酶活性测定1 活性污泥耗氧速率的测定及废水可生化性与毒性的评价1.1 目的和原理活性污泥的耗氧速率(OUR)是评价污泥微生物代谢活性的一个重要指标,在日常运行中,污泥OUR 值的大小及其变化趋势可指示处理系统负荷的变化情况,并可以此来控制剩余污泥的排放。
活性污泥的OUR若大大高于正常值,往往提示污泥负荷过高,这时出水水质较差,残留有机物较多,处理效果亦差。
污泥OUR值长期低于正常值,这种情况往往在活性污泥负荷低下的延时曝气处理系统中可见,这时出水中残存有机物数量较少,处理完全,但若长期运行,也会使污泥因缺乏营养而解絮。
处理系统在遭受毒物冲击,而导致污泥中毒时,污泥OUR的突然下降常是最为灵敏的早期警报。
此外,还可通过测定污泥在不同工业废水中的OUR值的高低,来判断该废水的可生化性及污泥承受废水毒性的极限程度。
1.2 材料与器皿(1)电极式溶解氧测定仪(2)电磁搅拌器、充气泵、离心机;(3)恒温室或恒温水浴;(4)BOD测定瓶、烧杯、滴管;(5)0.025M、pH7磷酸盐缓冲液。
1.3 方法与步骤(1)测定活性污泥的耗氧速率①取曝气池活性污泥混合液迅即置于烧杯中,由于曝气池不同部位的活性污泥浓度和活性有所不同,取样时可取不同部位的混合样。
调节温度至20℃并充氧至饱和。
②将已充氧至饱和的20℃的污泥混合液倒满内装搅拌棒的BOD测定瓶中,并塞上安有溶氧仪电极探头的橡皮塞,注意瓶内不应存有气泡。
③在20℃的恒温室(或将BOD测定瓶置于20℃恒温水浴中),开动电磁搅拌器,待稳定后即可读数并记录溶氧值,整个装置如图5-2所示,一般每隔1分钟读数一次。
④待DO降至1mg/l时即停止整个试验,注意整个试验过程以控制在10~30分钟以内为宜,亦即尽量使每升污泥每小时耗氧量在5—40mg内较宜,若DO值下降过快,可将污泥适当稀释后测定。
⑤测定反应瓶内挥发性活性污泥浓度(MLVSS)。
橡皮塞氧电极BOD测定瓶恒温水浴电磁搅拌器溶氧测定仪图5-2 耗氧速率测定装置(2)工业废水可生化性及毒性的测定①对活性污泥进行驯化,方法如下:取城市污水厂活性污泥、停止曝气半小时后,弃去少量上清液,再以待测工业废水补足,然后继续曝气,每天以此方法换水3次,持续15~60天左右,对难降解废水或有毒工业废水,驯化时间往往取上限,驯化时应注意勿使活性污泥浓度有明显下降,若出现此现象,应减少换水量,必要时可适当增补些N、P营养。
江河水中有机物耗氧速率系数k1的
测定方法研究
河流是一种具有特殊环境和复杂系统的水体,其生态系统对污染物、水温、pH
值和有机物耗氧速率等有一定程度的响应。
在污染物控制方面,有机物耗氧速率参数K1具有特殊的意义。
有机物耗氧速率系数K1是一个微小的参数,被认为是水质及水体耗氧力学特性的重要指标,研究和测定它已成为有机污染物研究及活性细菌分析研究的重要内容和指导方针。
本文针对江河水中的有机物耗氧速率系数K1进
行了测定方法的研究。
本研究采用了细菌耗氧实验酶法,具体流程如下:首先,采用微量分析稀释法,将测量样本稀释到所需浓度,并精确测量检测样本体积;其次,将检测样品液放置于实验培养皿中,且每组培养皿包含两种活性,分别为活性1和活性2,然后将培
养皿放入35℃的热水槽中恒温细菌耗氧,同时,使用溶氧枪实时监测培养皿中溶
氧值的变化情况,以此计算出样本的细菌耗氧速率以及有机物耗氧速率系数K1;
最后,将结果与样本的总有机碳含量进行相关性分析。
本研究结果表明,両活性1和活性2均可用于测量江河水中的有机物耗氧速率
系数K1,K1值与样本TOC存在较强的正相关性,其R2值达到0.87,表明细菌耗
氧法能有效的测量江河水中的有机物耗氧速率系数K1。
而且,在此测量过程中,
该方法所耗费的时间较短,且操作较为便捷,具有极强的实用价值。
综上所述,本研究为测定江河水中有机物耗氧速率系数K1提供了一种新的方法,有助于更好地了解江河水体的水质状况、水体生态系统数值判断和水质变化预测,也对现有常规方法提供新的指导。
竭诚为您提供优质文档/双击可除化学耗氧量的测定实验报告篇一:水中化学耗氧量的测定实验报告水中化学耗氧量(coD)的测定(高锰酸钾法)一、实验目的1、对水样中耗氧量coD与水体污染的关系有所了解2、掌握高锰酸钾法测定水中coD的原理及方法二、实验原理化学需氧量(coD)是反映水质受有机物污染情况的一个重大指标,本实验通过用酸性高锰酸钾煮沸消解法,对武汉东湖内的水样进行化学耗氧量的测定。
测定时,在水样中加入h2so4及一定量的Kmno4溶液,置沸水浴中加热使其中的还原性物质氧化,剩余的Kmno4用一定量过量的nac2o4还原,再以Kmno4标准溶液返滴定nac2o4的过量部分。
在煮沸过程中,Kmno4和还原性物质作用:4mno4-+5c+12h+=4mn2++5co2+6h2o剩余的Kmno4用nac2o4还原:2mno4-+5c2o42-+16h+=2mn2++10co2+8h2o再以Kmno4返滴nac2o4过量部分,通过实际消耗Kmno4的量来计算水中还原性物质的量。
三、主要试剂0.01mol/LKmno40.01mol/Lna2c2o41:3h2so4四、实验步骤1、na2c2o40.01mol/L标准溶液的配制将na2c2o4于100-105℃干燥2h,准确称取6.701g于烧杯中,加水溶解后定量转移至1000ml容量瓶中,以水稀释至刻度线。
取上液100ml稀至1升,得到0.01mol/L标准溶液。
2、Kmno40.01mol/L溶液的配制称取3.3gKmno4溶于1.05升水中,煮沸15min,静置2天,以“4”号砂芯漏斗过滤,保存于棕色瓶中(此溶液约0.1mol/LKmno4溶液)。
取上液100ml稀至1升,摇匀。
3、水中耗氧量的测定用移液管准确移取100ml的水样,置于250ml锥形瓶中。
加入5ml1:3h2so4,再加入10ml0.01mol/LKmno4溶液,若此时紫红色消失,应补加Kmno4溶液,记录Kmno4总体积用量V1(若紫红色不消失,则V1=10ml),置沸水浴锅30min(或加热煮沸10min),取出趁热加10ml0.01mol/Lna2c2o4溶液,充分振荡,此时溶液应由红色转为无色(若仍为红色,可再补加5ml)。
生物质好氧降解过程耗氧速率测定嘿,咱今天就来唠唠生物质好氧降解过程耗氧速率测定这事儿。
你说这耗氧速率,就好像是一场赛跑,氧气就是那个终点线,我们得想办法准确地知道生物质在这场赛跑中跑得有多快。
想象一下,生物质就像是一群小运动员,它们在努力地进行好氧降解这个大项目。
而氧气呢,就是它们争夺的目标。
我们要做的,就是在旁边当个公正的裁判,准确地记录下它们消耗氧气的速度。
那怎么测定这个耗氧速率呢?这可得有点小技巧啦。
首先,咱得有合适的设备吧,就像运动员得有好的跑鞋一样。
这些设备要能精确地测量氧气的变化。
然后呢,我们得把生物质放进去,让它们开始比赛。
在这个过程中,咱可得瞪大了眼睛,仔细观察着。
这可不是闹着玩的,稍微一走神,可能就错过了关键的数据。
就好像看比赛时,你一不注意,运动员就冲过终点线了。
有时候我就想啊,这大自然可真神奇,能创造出这么复杂又有趣的过程。
生物质好氧降解,听着好像很专业很复杂,但其实就是大自然的一种奇妙运作。
咱测定这个耗氧速率有啥用呢?这用处可大了去了!就好比你知道了运动员的速度,就能更好地了解他们的实力一样。
我们知道了耗氧速率,就能更好地掌握生物质好氧降解的情况,这对很多领域都很重要呢。
比如说在环保领域,这能帮助我们更好地处理废物,让环境更美好。
而且啊,这个测定可不是一次就能搞定的,得反复尝试,就像运动员要不断训练才能提高成绩一样。
每次测定可能都会有新的发现,新的问题。
但这就是探索的乐趣呀,不是吗?你说,要是没有我们这些好奇的人去研究这些,那得多无趣啊。
我们就是要把这些看似深奥的东西,一点点地弄明白,就像解开一个复杂的谜题一样。
这过程中可能会遇到困难,可能会出错,但那又怎样呢?我们可以再来呀,就像运动员失败了还会再来参加比赛一样。
总之呢,生物质好氧降解过程耗氧速率测定可真是个有意思又有意义的事儿。
咱得认真对待,仔细钻研,这样才能发现更多的奥秘,为我们的生活带来更多的好处呀!你说是不是这个理儿?。
I 线粒体的制备【实验目的】了解和掌握植物离体线粒体制备的方法。
【实验原理】线粒体是进行呼吸氧化作用的细胞器,是能量的转换器,为了对这个细胞器的结构和功能进行研究,需要把它从细胞中分离出来,并测定其活性。
在接近生物材料自身的生理状态(合适的pH、一定的渗透浓度和低温条件)下破碎细胞,可采用分级离心方法将线粒体颗粒与其他细胞内含物在亚细胞水平上分开,然后在一定的离心力下收集线粒体。
针对植物组织比较脆弱及其细胞含有较大量的有机酸等特点,不宜采取激烈的破碎方式,根据不同种类材料灵活掌握介质的pH。
在介质中加入一些高分子化合物可除去酚类的干扰。
为了去除其它细胞器的污染,获得纯净的线粒体,本实验采用蔗糖衬垫离心法进行提取。
【仪器设备】冰冻高速离心机、研钵或、组织捣碎机、制冰机、冰箱、100ml离心管、烧杯、培养皿、恒温培养箱、移液器、纱布、漏斗、电子天平、容量瓶、磁力搅拌器等。
【材料及试剂】1. 材料挑选籽粒饱满的绿豆种子20g,用沸水烫后,均匀铺在带有湿润滤纸的培养皿中,37℃下黑暗萌发3-4d。
去掉种皮和胚根,用滤纸吸干表面水分,放在4°C冰箱备用。
2. 试剂①提取及洗涤介质:50mmol/LTris-HCl 缓冲液,pH8.0。
内含0.3mol/L甘露醇、0.2mol/L蔗糖、1mmol/L EDTA、0.2mmol/L二硫苏糖醇和1mg/mL PVP(聚乙烯基吡咯烷酮);②悬浮介质:除不加牛血清蛋白外,其余与提取介质相同;③蔗糖溶液:0.6mol/L蔗糖,全用悬浮介质配制。
【实验步骤】1. 离体线粒体的提取:称取10g去除种皮及胚根的绿豆幼苗放在4°C冰箱中饥饿1h,然后迅速在冰浴中研磨,开始加入少量提取介质,最后加至材料体积的一倍。
2. 匀浆用4层纱布过虑,滤液在4℃、1000g离心10min。
3. 取上清液,4℃、11000g离心20min。
4. 弃上清液,向沉淀中加入提取介质5mL,悬浮,4℃、11000g离心15min。
测OUR比好氧速率的原理好氧速率(oxidative rate)是指生物体在正常氧气水平下进行氧化代谢的速率。
它反映了生物体对氧气的利用效率,对于了解生物体的能量代谢和健康状况具有重要意义。
为了测量好氧速率,通常会采用与生物体相关的方法。
以下是一些常用的测量好氧速率的方法及其原理:1. 呼吸氧气消耗法:这种方法通过测量生物体在呼吸过程中消耗的氧气量来评估好氧速率。
实验中,可以将生物体置于一个封闭的系统中,并测量系统中氧气的浓度变化。
通过将生物体在不同状态下的氧气消耗量与时间关联起来,就可以计算出好氧速率。
2. 乳酸阈值测试法:这种方法通常用于评估人体运动耐力。
实验中,被测试者进行高强度运动,例如长时间的跑步或游泳。
乳酸阈值是指人体制造和排除乳酸的速度达到平衡的运动强度。
通过测量乳酸的产生和排除速率,可以推断出好氧速率的高低。
3. 呼吸商测定法:这种方法通过测量呼出气体中二氧化碳和氧气的浓度来评估好氧速率。
实验中,生物体通过特定的器械呼吸,将呼出气体收集起来,并用气体分析仪测量其中的气体成分。
通过比较呼气中二氧化碳和氧气的含量,可以推断出产生二氧化碳的代谢速率,从而评估好氧速率。
4. 血液生化指标测定法:这种方法通过测量血液中特定代谢产物的浓度变化来评估好氧速率。
例如,血液中乳酸和乳酸脱氢酶等代谢产物的浓度升高可以反映好氧速率的下降。
这种方法可以用于评估个体的健康状况和代谢途径的选择。
以上方法只是测量好氧速率的一部分,还有其他许多方法可以用于测量好氧速率。
每种方法都有其特定的优缺点和适用范围。
在实际应用中,选择合适的方法需要考虑到实验对象和研究目的。
总之,好氧速率测定是研究生物体能量代谢和健康状况的重要手段。
通过测量生物体在正常氧气水平下进行氧化代谢的速率,可以了解生物体对氧气的利用效率和氧化代谢途径的选择。
这对于健康管理、运动训练和疾病诊断具有重要意义。