4-留数定理 (1)
- 格式:pptx
- 大小:438.74 KB
- 文档页数:38
04_留数定理04_留数定理,又称为四象限定理,是数学中一个重要的结论。
这个定理的本意是说,如果在一个坐标系中有n 个不同的数,那么在这n个数中至少有四个数会具有相同的余数。
04_留数定理的定义:设a1,a2,...,an是不同的正整数,m是正整数,则必有四个数ai,aj,ak,al满足ai mod m=aj mod m= ak mod m= al mod m。
04_留数定理推导:这个定理可以用反证法来证明。
假设有n个正整数a1,a2,...,an,其中有m个不同的余数,即有m种形式:ai mod m=0, ai mod m=1, ai modm=2,..., ai mod m=m-1。
令A={ai|ai mod m=0}, B={ai|ai mod m=1},C={ai|ai mod m=2}, ..., D={ai|ai mod m=m-1},则A,B,C,...,D是n个正整数的一个划分。
由于n>m,所以至少有一个集合包含至少两个数,假设A包含至少两个数,即ai mod m=aj mod m=0,则ai mod m=ak mod m=al mod m,即得证。
04_留数定理的应用:1、留数定理在抽样调查中有着广泛的应用。
例如,当希望从一个总体中进行抽样时,可以使用留数定理来实现随机抽样,从而减少样本选择的随机性。
2、留数定理在有线电视信号中也有应用。
有线电视信号是通过在一个坐标系中将图像的N个像素点的坐标转换成多个余数来表示的,其中N是像素点的数量。
因此,通过使用留数定理,可以减少由于信号传输的原因而导致的图像像素混乱的情况。
3、留数定理还可以用来加速数据处理的速度。
当需要处理大量数据时,可以将这些数据按照其余数分成多个组,这样可以减少处理时间。