留数定理及其应用
- 格式:pdf
- 大小:242.80 KB
- 文档页数:12
留数定理及其应用
留数定理是复变函数理论中的重要定理,用于计算函数在奇点处的留数。
具体来说,如果函数f(z)在区域D内解析,除了有
限个孤立奇点外,则对于D内的任意简单闭曲线C,有如下
留数定理:
∮Cf(z)dz = 2πi * sum(Res(f, z_k))
其中,∮C表示沿C的积分,Res(f, z_k)是函数f(z)在奇点z_k
处的留数。
留数定理的应用主要包括以下几个方面:
1. 计算积分:通过计算函数在奇点处的留数,可以用留数定理来计算复变函数沿闭合曲线的积分。
这样可以简化积分计算,尤其对于实数不易计算的积分,留数定理非常有用。
2. 计算极限:通过留数定理,可以计算复变函数在某个奇点处的极限。
如果函数的极限存在,那么它等于该点处的留数。
3. 解析延拓:通过计算函数在奇点处的留数,可以确定函数在奇点处的性质,如极点的类型(一级极点、二级极点等)以及解析延拓的可能性。
4. 解析函数恢复:留数定理可以用于还原函数原本的性质,即通过计算函数在奇点处的留数,可以还原函数在奇点前的数值。
总之,留数定理是复变函数理论中的重要工具,广泛应用于多个数学和工程领域,如积分计算、边界值问题、电路分析等。
它简化了复变函数的计算和研究,为解决实际问题提供了有效的方法。
第四章 留数定理及其应用 重点难点第一节 留数定理1.留数定义的由来:若函数在单连通区域D 中解析,在D 中作一围线C ,如果在围线C 的内部,)(z f 是解析的,则由柯西定理可知0)(=∫Cdz z f ;如果在围线C 的内部,a z =是)(z f 的奇点,则)(Re 2)(a sf i dz z f Cπ=∫,即留下了一个有限数,因而可把 )(Re a sf 称为留数(留数也可等于零)。
2.留数计算公式:在奇点a 邻域中展成的洛朗级数中1()z a −−项的系数1−c 就是留数Re ()sf a ,这是求留数的一般方法。
但是,在某些情况下,有更简便的方法。
例如,若a 是)(z f 的m 阶极点,则111Re ()[()()](1)!m m z a m d s f a f z z a m dz −=−=−−又如,当a 是函数的可去奇点时,由于此时洛朗级数中不含负幂项,于是留数等于零。
3. 讨论解析函数在无限远点的留数时,要注意:函数在无限远点的留数定义中围线的方向是顺时针转向的。
第二节 留数定理的应用1.应用留数定理计算实变函数的积分是复变函数留数理论的一个重要应用,找到适当的闭合回路或变换是这种方法的关键。
2.若函数在单连(通)区域D 中解析,在D 中作一围线C ,如果在围线C 的内部,)(z f 是解析的,则由柯西定理可知0)(=∫Cdz z f ,如果在围线C 的内部,a z =是)(z f 的奇点,则)(Re 2)(a sf i dz z f Cπ=∫,即留下了一个有限数,因而可把)(Re a sf 称为留数(留数也可等于零)。
通过柯西公式和柯西导数公式可导出一阶极点和m 阶极点的留数计算公式。
3. 应用级数分析留数定理。
在奇点k a 邻域中展成的洛朗级数中1)(−−k a z 项的系数1−c 就是留数)(Re k a sf 。
当k a 是函数的本性奇点时,一般只能用洛朗级数展开方法来求留数;当k a 是函数的极点时,也可用这种方法来求取留数;当k a 是函数的可去奇点时,由于此时洛朗级数中不含负幂项,于是留数等于零。
留数及其应用摘 要数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用.关键词 留数定理;留数计算;应用引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法.一. 预备知识 孤立奇点1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点则)(z f 在R z z <-<00某去心邻域解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.以0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点)2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为(1)11(0)()()------+++≠---m mm m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二. 留数的概念及留数定理 1. 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.2. 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…n C -所围成的有界连通区域,函数()f z 在D 解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1[]1(留数定理) 设()f z 在周线或复周线C 所围的区域D ,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大围”积分)()()12Re knz a k Cf z dz i s f z π===∑⎰. (1)证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得()()12Re kn z a k Cf z dz i s f z π===∑⎰.定理2 设a 为()f z 的n 阶极点,()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,()0a ϕ≠,则()()()()11!n z aa Res f z n ϕ-==-.这里符号()()0a ϕ代表()a ϕ,且有()()()()11lim n n z aa z ϕϕ--→=. 推论3设a 为()f z 的一阶极点,()()()z z a f z ϕ=-, 则 ()()z aRes f z a ϕ==.推论4设a 为()f z 的二阶极点,()()()2z z a f z ϕ=-,则 ()()'z aRes f z a ϕ==.3. 留数的引理引理1 设()f z 沿圆弧:i R S z Re θ= (12θθθ≤≤,R 充分大)上连续,且()lim R zf z λ→+∞=于R S 上一致成立(即与12θθθ≤≤中的θ无关),则()()21limRS R f z dz i θθλ→+∞=-⎰.引理2(若尔当引理) 设函数()g z 沿半圆周:i R z Re θΓ= (0θπ≤≤,R 充分大)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.引理3 (1)设a 为()f z 的n 阶零点,则a 必为函数()()'f z f z 的一阶极点,并且()()'z af z Res n f z =⎡⎤=⎢⎥⎣⎦; (2)设b 为()f z 的m 阶极点,则b 必为函数()()'f z f z 的一阶极点,并且 ()()'z bf z Res m f z =⎡⎤=-⎢⎥⎣⎦.三. 留数的计算1. 函数在极点的留数法则1:如果0z 为)(z f 的简单极点,则)()(lim ]),([Re 000z f z z z z f s z z -=-法则2:设)()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且)()(]),([Re 0z Q z P z z f s '=. 法则3:如果0z 为)(z f 的m 阶极点,则)]()[(lim !11]),([Re 01100z f z z dzd m z z f s m m m z z --=---)(.2. 函数在无穷远点的留数定理 1 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在) 为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.关于在无穷远点的留数计算,我们有以下的规则.法则 4: 211Re [,]Re [(),0]s f z s f z z∞=-⋅().例 1 求函数2()1ize f z z =+在奇点处的留数.解()f z 有两个一阶极点z i =±,于是根据(6.5)得2()Re (,)()22i P i e is f i Q i i e ===-'2()Re (,)()22i P i e is f i e Q i i ---==='-- 例 2 求函数3cos ()zf z z =在奇点处的留数. 解 ()f z 有一个三阶极点0z =,故由(6.7)得33001cos 11Re (,0)lim()lim(cos )222z z z s f z z z →→''=⋅=-=-四. 留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.1. 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。