平抛运动和圆周运动典型例题
- 格式:doc
- 大小:263.00 KB
- 文档页数:10
绝密★启用前平抛运动与圆周运动训练题第I卷(选择题)一、选择题(题型注释)1.船在静水中的速度为3.0 m/s,它要渡过宽度为30 m的河,河水的流速为2.0 m/s,则下列说法中正确的是A.船不能渡过河B.船渡河的速度一定为5.0 m/sC.船不能垂直到达对岸D.船到达对岸所需的最短时间为10 s2.2013年7月7日,温网女双决赛开打,“海峡组合”彭帅、谢淑薇击败澳大利亚组合夺得职业生涯首个大满贯冠军。
如图所示是比赛场地,已知底线到网的距离为L,彭帅在网前截击,若她在球网正上方距地面H处,将球以水平速度沿垂直球网的方向击出,球刚好落在底线上。
将球的运动视作平抛运动,重力加速度为g,则下列说法不正确...的是( )A.根据题目条件能求出球的水平速度vB.根据题目条件能求出球从击出至落地所用时间tC.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量无关3.关于平抛物体的运动,下列说法中正确的是A.平抛运动不是匀变速运动B.平抛运动的水平位移只与水平速度有关C.平抛运动的飞行时间只取决于初始位置的高度D.平抛运动的速度和加速度方向不断变化4.人在距地面高h、离靶面距离L处,将质量m的飞镖以速度v0水平投出,落在靶心正下方,如图6所示。
不考虑空气阻力,只改变m、h、L、v0四个量中的一个,可使飞镖投中靶心的是A.适当减小v0B.适当减小LC.适当减小m D.适当增大m5.(双选)关于匀速圆周运动的向心加速度,下列说法正确..的是()A.向心加速度是描述线速度变化的物理量B.向心加速度只改变线速度的方向,不改变线速度的大小C.向心加速度恒定D.向心加速度的方向时刻发生变化6.如图所示,用一根轻细线将一个有孔的小球悬挂起来,使其在水平面内做匀速圆周运动而成为圆锥摆,关于摆球A的受力情况,下列说法中正确的是A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受拉力和重力的作用D.摆球A受重力和向心力的作用7.如图所示,在匀速转动的圆筒内壁上有一个小物体圆筒一起运动,小物体所需要的向心力由以下哪个力来提供A. 重力B. 弹力C.静摩擦力D. 滑动摩擦力8.(双选)质量相同的小球A和B分别悬挂在长为L和2L的不伸长绳上。
[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。
专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。
2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。
【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。
动能定理与圆周运动 平抛运动班级 姓名 得分1.如图所示,物体沿一个光滑曲面从A 点无初速度滑下,滑至曲面最低点B 时,下滑的高度为5m. 求物体在B 点的速度。
2.如图所示,物体沿一曲面从A 点无初速度滑下,滑至曲面最低点B 时,下滑的高度为5m.若物体的质量为1㎏,到B 点的速度为6m/s,则在下滑过程中克服阻力所做的功是多少?3、光滑的水平面AB 与光滑的半圆形轨道相接触,直径BC 竖直,圆轨道半径为R 一个质量为m 的物体放在A 处,AB=2R ,物体在水平恒力F 的作用下由静止开始运动,当物体运动到B 点时撤去水平外力之后,物体恰好从圆轨道的定点C 水平抛出,求水平力F 的大小4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求(1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解:RO m B C4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求(1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?(3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解: (1)m :A →B 过程:∵动能定理2B 102mgR mv =- 2KB B 12E mv mgR ∴== ① (2) m :在圆弧B 点:∵牛二律2B B v N mg m R -= ② 将①代入,解得 N B =3mg在C 点:N C =mg(3) m :A →D :∵动能定理211022D mgR mv =-D v ∴=30.B CB R/C D。
高考物理《机械能》常用模型最新模拟题精练专题34机械能+圆周运动+平抛运动模型1.(2022四川遂宁重点高中质检)25.(20分)倾斜直轨道AB 和圆轨道BCD 组成了竖直平面内的光滑轨道ABCD ,如图甲所示。
AB 和BCD 相切于B 点,C 、D 为圆轨道的最低点和最高点,O 为圆心,OB 与OC 夹角为37°小滑块从轨道ABC 上离C 点竖直高度为h 的某点由静止滑下,用力传感器测出滑块经过C 点时对轨道的压力为F ,多次改变高度得到如图乙所示的压力F 与高度h 的关系图像(该图线纵轴截距为2N ),重力加速度210m/s g =求:(1)滑块的质量和圆轨道的半径;(2)若要求滑块在圆轨道上运动时,在圆弧CD 间不脱离轨道,则h 应满足的条件;(3)是否存在某个h 值,使得滑块经过最高点D 飞出后恰好落在B 处?若C 存在,请求出h 值;若不存在,请计算说明理由。
【名师解析】.(1)当0H =时,由图象截距可知:2N F mg ==得:0.2kgm =有图象可知,当10.5m =H 时,对轨道的压力17NF =21112mgH mv =211v F mg mR=-解得:0.4mR =(2)不脱离轨道分两种情况:其一是到圆心等高处速度为零,有能量守恒可知,滑块从静止开始下滑高度10.4mh R ≤=其二是通过最高点,通过最高点的临界条件只有重力提供重力,由:2Dv mg mR=解得:D v gR=设下落高度为0H ,由动能定理:()20122D mg H R mv -=解得:01mH =则应该满足下落高度差:21mh ≥(3)过B 点作BE 垂直于OC 与点E ,则:sin 370.24mDE R =︒=假设小球从D 点以最小速度抛出后落在与B 等高的水平面上,有:()211cos372R gt +︒=水平位移:D x v t=联立并带入数据解得:0.76m 0.24m x DE ≈>=故不能落到B 处。
1、质量为m的滑块从半径为R的半球形碗的边缘滑向碗底,过碗底时速度为v,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为()A.μmg B.μm C.μm(g+) D.μm(-g)2、质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为,当小球以2的速度经过最高点时,对轨道的压力大小是( )A.0 B.mg C.3mg D.5mg3、质量为m的小球在竖直平面内的圆形轨道内侧运动,经过最高点时恰好不脱离轨道的临界速度为v0,则:(1)当小球以2v0的速度经过轨道最高点时,对轨道的压力为多少?4、如图所示,长度为L=的绳,系一小球在竖直面内做圆周运动,小球的质量为M=5kg,小球半径不计,小球在通过最低点的速度大小为v=20m/s,试求:(1)小球在最低点所受绳的拉力 (2)小球在最低的向心加速度5、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力,求:(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大;(2)小球落地点C与B点水平距离为多少。
6、质量为m的小球被一根细线系于O点,线长为L,悬点O距地面的高度为2L,当小球被拉到与O点在同一水平面上的A点时由静止释放,球做圆周运动至最低点B时,线恰好断裂,球落在地面上的C点,C点距悬点O的水平距离为S (不计空气阻力).求:(1)小球从A点运动到B点时的速度大小;(2)悬线能承受的最大拉力;7、如图,AB为竖直半圆轨道的竖直直径,轨道半径R=10m,轨道A端与水平面相切.光滑木块从水平面上以一定初速度滑上轨道,若木块经B点时,对轨道的压力恰好为零,g取10m/s2,求:(1)小球经B点时的速度大小;(2)小球落地点到A点的距离.8、如图所示,半径为R,内径很小的光滑半圆管竖直放置.两个质量均为m 的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为,求:(1)a球在最高点速度.(2)b球在最高点速度.(3)a、b两球落地点间的距离10、我校某兴趣研究小组,为探究一个娱乐项目的安全性问题,提出如下力学模型如图所示,在一个固定点O,挂一根长L=m的细绳,绳的下端挂一个质量为m=的小球,已知细绳能承受的最大拉力为4N。
2.如图所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁上A 点高度为筒高的一半,内壁上A 点有一质量为m 的小物块(视为质点)。
求:(1)当物块在A 点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。
(2)若μ<R H且最大静摩擦力等于滑动摩擦力,求物块在A 点随筒做匀速转动时,求筒转动的角速度范围。
考点:向心力、线速度、角速度、转速(向心力来源、受力分析、临界、牛二)(1、3)答案及解析:2.ω=ω(1)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A 点时受到的重力和支持力作用,它们的合力提供向心力,设筒转动的角速度为ω有:2t a n 2Rm g m θω= 由几何关系得tan HR θ=联立以上各式解得ω=(2)如图当ω比较小时,对物体进行受力分析并建立正交坐标系如图所示,则有: 2cos sin 2Rm f N ωθθ=- mg f N =+θθsin cosN f μ=联立以上各式解得HR R gR H μμω+-=21)(2当ω比较大时,对物体进行受力分析并建立正交坐标系如图所示,则有: 2cos sin 2Rm f N ωθθ=+ mg f N =θθsin -cosN f μ= 联立以上各式解得HR R gR H μμω-)(222+=ω(10分)(2014•扬州模拟)如图所示,在投球游戏中,小明坐在可沿竖直方向升降的椅子上,停在不同高度处将小球水平抛出落入固定的球框中.已知球框距地面的高度为h 0,小球的质量为m ,抛出点与球框的水平距离始终为L ,忽略空气阻力.(1)小球距地面高为H 0处水平抛出落入球框,求此过程中小球重力势能的减少量;(2)若小球从不同高度处水平抛出后都落入了球框中,试推导小球水平抛出的速度v 与抛出点高度H 之间满足的函数关系;(3)为防止球入框时弹出,小明认为球落入球框时的动能越小越好.那么,它应该从多高处将球水平抛出,可以使小球入框时的动能最小?并求该动能的最小值.答案及解析:3.(1)此过程中小球重力势能的减少量为mg(H0﹣h0).(2)球水平抛出的速度v与抛出点高度H之间满足的函数关系是:(H>h0).(3)球应该从h0+L高处将球水平抛出,可以使小球入框时的动能最小,该动能的最小值是mgL.考点:机械能守恒定律;牛顿第二定律;向心力(2、3)专题:机械能守恒定律应用专题.分析:(1)小球重力势能的减少量等于等于重力做功mg(H0﹣h0).(2)小球做平抛运动,根据平抛运动的规律求解.(3)小球平抛运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律得到小球入框时的动能与高度的关系,由数学知识求解.解答:解:(1)小球重力势能的减少量为:△E p=mg(H0﹣h0).(2)设小球做平抛运动的时间为t,则水平方向有:L=vt竖直方向有:解得:(H>h0)或:.(3)小球平抛过程,只受重力,机械能守恒,则得:结合上题结论有:得:E K=+mg(H﹣h0)当H=h 0+L 时,E K 有极小值,得:E Kmin =mgL3.如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r =的14圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大?(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)1) (2)v N =5.0m/s【解析】(1)设钢珠在M 轨道最高点的速度为v ,恰过最高点,有:从发射前到最高点,根据机械能守恒定律,得:∴(2)钢珠从最高点飞出后做平抛运动,有:从最高点飞出到曲面N 上,由机械能守恒定律,得:∴v N =5.0m/s好25. (长沙市雅礼中学2014届高三模拟试卷) (13分)如图所示,倾角为37°的粗糙斜面AB 底端与半径R =0.4 m 的光滑半圆轨道BC 平滑相连,O 为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m =1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 等高的D 点,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.(1)求滑块与斜面间的动摩擦因数μ;(2)若使滑块能到达C 点,求滑块从A 点沿斜面滑下时的初速度v 0的最小值;(3)若滑块离开C 处的速度大小为4 m/s ,求滑块从C 点飞出至落到斜面上的时间t 。
2013—2014学年度北京师范大学万宁附属中学平抛运动与圆周运动相结合训练卷考试范围:平抛 圆周 机械能;命题人:王占国;审题人:孙炜煜学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)6.如图所示,半径为R,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为mg 6.0,另一质量也为m 小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C 时与管壁之间的弹力大小为mg 3.0,且21v v >,210s m g =。
当A 、B 两球落地时,落地点与下端管口之间的水平距离B x 、A x 之比可能为( )A.27=A B x x B 。
213=A B x x C 。
47=A B x x D 。
413=A B x x 【答案】CD 【解析】试题分析:若A 球通过最高点时,对细管是向下的压力,则B 也是向下的压力,则根据牛顿第二定律可得,'210.6v mg mg m R -=,解得:'10.4v gR =,'220.3v mg mg m R-=,解得'20.7v gR =不符合题意故对A 只能有:'210.6v mg mg m R+=解得:'1 1.6v gR =对B 有:'220.3v mg mg m R -=,解得'20.7v gR '220.3v mg mg m R+=解得'2 1.3v gR 通过C 点后,小球做平抛运动,所以水平位移x vt =,因为距离地面的高度相同,所以落地时间相同,故可得47=A B x x 或者413=A B x x 故选CD考点:考查了平抛运动点评:做本题的关键是知道小球在C 点的向心力来源,可根据21v v >判断7.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度0v 作平抛运动,从抛出到击中槽面所用时间为gR (g为重力加速度).则平抛的初速度可能是A .gRv 2320-=B .gRv 2320+=C .0332v gR+=D .gR v 2330-=【答案】AB【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.由竖直位移2122Rh gt ==,小球可能落在左半边也可能落在右半边,水平位移有两个值,由勾股定理可求出分别为00cos30,cos30R R R R -+,由水平方向匀速直线运动可求出两个水平速度分别为gRv 2320-=、gRv 2320+=AB 对。
2013-2014学年度北京师范大学万宁附属中学平抛运动与圆周运动相结合训练卷考试范围:平抛 圆周 机械能;命题人:王占国;审题人:孙炜煜学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)6.如图所示,半径为R ,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为mg 6.0,另一质量也为m 小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C时与管壁之间的弹力大小为mg 3.0,且21v v >,210s m g =。
当A 、B 两球落地时,落地点与下端管口之间的水平距离B x 、A x 之比可能为( )A.27=A B x x B. 213=A B x x C.47=A B x x D. 413=A B x x 【答案】CD 【解析】试题分析:若A 球通过最高点时,对细管是向下的压力,则B 也是向下的压力,则根据牛顿第二定律可得,'210.6v mg mg m R-=,解得:'10.4v gR ,'220.3v mg mg m R -=,解得'20.7v gR故对A 只能有:'210.6v mg mg m R+=解得:'1 1.6v gR =对 B 有:'220.3v mg mg m R -=,解得'20.7v gR =或者'220.3v mg mg m R+=解得'2 1.3v gR =通过C 点后,小球做平抛运动,所以水平位移x vt =,因为距离地面的高度相同,所以落地时间相同,故可得47=A B x x 或者413=A B x x 故选CD考点:考查了平抛运动点评:做本题的关键是知道小球在C 点的向心力来源,可根据21v v >判断7.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度0v 作平抛运动,从抛出到击中槽面所用时间为gR(g 为重力加速度)。
1.(·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g 6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.2.(·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图2A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 答案 ACD解析 赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R ,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.3.(·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c ⑥联立①②④⑤⑥可得v 水平=2103m/s.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O 点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向答案 B解析人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob方向即可对甲实施救助.2.如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D .tan α与时间t 成正比 答案 BD解析 由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.3.如图6所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d答案 CD解析 环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则 对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰. (2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等. (4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.( √ ) (2)变速运动一定是曲线运动.( × )(3)做曲线运动的物体所受的合外力一定是变力.( × )考题二 平抛(类平抛)运动的规律4.如图7所示,A 、B 两点在同一条竖直线上,A 点离地面的高度为2.5h .B 点离地面的高度为2h .将两个小球分别从A 、B 两点水平抛出,它们在P 点相遇,P 点离地面的高度为h .已知重力加速度为g ,则( )图7A .两个小球一定同时抛出B .两个小球抛出的时间间隔为(3-2)h gC .小球A 、B 抛出的初速度之比v A v B =32 D .小球A 、B 抛出的初速度之比v Av B =23 答案 BD解析 平抛运动在竖直方向上做自由落体运动,由h =12gt 2,得t =2hg,由于A 到P 的竖直高度较大,所以从A 点抛出的小球运动时间较长,应先抛出.故A 错误;由t =2h g,得两个小球抛出的时间间隔为Δt =t A -t B =2×1.5hg-2hg=(3-2)hg .故B 正确;由x =v 0t 得v 0=xg 2h ,x 相等,则小球A 、B 抛出的初速度之比v A v B= h B h A= h 1.5h=23,故C 错误,D 正确.5.在水平地面上的O 点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A 点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是( )图8A .甲先到达最大高度处B .乙先到达最大高度处C .乙先到达A 点D .甲先到达水平地面 答案 C解析 斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图像可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.6.如图9,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为10 m 处的O 点,以5 m/s 的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g =10 m/s 2)( )图9A .2B .0.5C .1 D. 2答案 A解析 如图所示,由三角形的边角关系可知, AQ =PQ所以在竖直方向上有, OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s. v y =gt =10 m/s 所以tan θ=v yv 0=21.平抛运动规律以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向,竖直向下的方向为y 轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.图10(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.8.如图12所示,质量为m 的竖直光滑圆环A 的半径为r ,竖直固定在质量为m 的木板B 上,木板B 的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m 的小球C .现给小球一水平向右的瞬时速度v 0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v 0必须满足( )图12A.3gr ≤v 0≤5grB.gr ≤v 0≤3grC.7gr ≤v 0≤3grD.5gr ≤v 0≤7gr答案 D解析 在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有: 2mgr +12mv 21=12mv 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg 从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12mv 22=12mv 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .9.如图13所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω; (3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W . 答案 见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有 mg sin θ=ma 解得a =g sin θ 小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为N ,水平方向上有N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有N cos θ-k Δl 2sin θ-mg =0 解得ω=mg sin θ+k Δl 2ml 0+Δl 2cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0, 此时有mg tan θ=mω20L 0cos θ 解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2]根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12mv 201.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型). 3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四 抛体运动与圆周运动的综合10.如图14所示,小球沿水平面以初速度v 0通过O 点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则( )图14A .球进入竖直半圆弧轨道后做匀速圆周运动B .若小球能通过半圆弧最高点P ,则球在P 点受力平衡C .若小球的初速度v 0=3gR ,则小球一定能通过P 点D .若小球恰能通过半圆弧最高点P ,则小球落地点到O 点的水平距离为2R 答案 CD解析 不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =mv 2PR得v P =gR , mg ·2R +12mv 2P =12mv 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确. 11.如图15所示,参加某电视台娱乐节目的选手从较高的平台以v 0=8 m/s 的速度从A 点水平跃出后,沿B 点切线方向进入光滑圆弧轨道,沿轨道滑到C 点后离开轨道.已知A 、B 之间的竖直高度H =1.8 m ,圆弧轨道半径R =10 m ,选手质量m =50 kg ,不计空气阻力,g =10 m/s 2,求:图15(1)选手从A 点运动到B 点的时间及到达B 点的速度; (2)选手到达C 点时对轨道的压力.答案 (1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s 选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12mv 2C -12mv 2B 在C 点:N C -mg =m v 2C RN C =1 200 N由牛顿第三定律得,选手对轨道的压力 N C ′=N C =1 200 N ,方向竖直向下曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破: 1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口. 2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化答案AD解析物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D正确.2.如图16所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图16A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC .小船沿轨迹AB 运动位移最大、时间最长.速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动位移最大、速度最小.则小船的最小速度v min =a va 2+b 2答案 D解析 小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a va 2+b 2,所以C 错误,而D 正确.3.如图17所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,定滑轮到杆的距离OC =h .开始时A 位于P 点,PO 与水平方向的夹角为30°.现将A 、B 同时由静止释放,则下列分析正确的是( )图17A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小 C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B ghm A答案 AD解析 物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.4.如图18所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )图18A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍 答案 B解析 根据tan θ=12gt 2v 0t =gt 2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.5.如图19所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中( )图19A .A 做匀变速直线运动,B 做变加速曲线运动 B .相同时间内B 的速度变化一定比A 的速度变化大C .两球的动能都随离地竖直高度均匀变化D .A 、B 两球一定会相碰 答案 C解析 A 球做的是自由落体运动,是匀变速直线运动,B球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.6.如图20所示,一个质量为0.4 kg 的小物块从高h =0.05 m 的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O 点水平飞出,击中平台右下侧挡板上的P 点.现以O 为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y =x 2-6(单位:m),不计一切摩擦和空气阻力,g =10 m/s 2,则下列说法正确的是( )图20A .小物块从水平台上O 点飞出的速度大小为1 m/sB .小物块从O 点运动到P 点的时间为1 sC .小物块刚到P 点时速度方向与水平方向夹角的正切值等于5D .小物块刚到P 点时速度的大小为10 m/s 答案 AB解析 从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m/s ,D 错误.7.如图21所示,一根质量不计的轻杆绕水平固定转轴O 顺时针匀速转动,另一端固定有一个质量为m 的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能( )图21A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向答案 C解析因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F3的方向,故选C.8.如图22所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图22A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB答案BC解析因为A、B两物体的角速度大小相等,根据F n=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对A、B整体分析,f B=2mrω2,对A 分析,有:f A=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,,有沿半径向外滑动的趋势,故C正确;对A、B整体分析,μB×2mg=2mrω2B,解得ωB=μB gr,因为B先滑动,可知B先达到临界角速度,可对A分析,μA mg=mrω2A,解得ωA=μA gr知B的临界角速度较小,即μB<μA,故D错误.9.如图23所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图23(1)若小球通过圆形轨道最高点A 时给轨道的压力大小恰为小球的重力大小,求小球在B 点的初速度多大?(2)若小球从B 点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B 点的初速度大小的范围.答案 (1)2 3 m/s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s 解析 (1)小球在最高点A 处,根据牛顿第三定律可知轨道对小球的压力 N =N ′=mg ①根据牛顿第二定律N +mg =mv 2A R②从B 到A 过程,由动能定理可得-mg ·(2R )=12mv 2A -12mv 20③ 代入数据可解得v 0=2 3 m/s ④(2)情况一:若小球恰好停在C 处,对全程进行研究,则有: -μmgL =0-12mv 21⑤得v 1=4 m/s ⑥ 若小球恰好过最高点A mg =mv A ′2R⑦从B 到A 过程-mg ·(2R )=12mv A ′2-12mv 22⑧得v 2=10 m/s ⑨所以当10 m/s≤v B ≤4 m/s 时,小球停在BC 间.⑩情况二:若小球恰能越过壕沟,则有-μmgL =12mv 2C -12mv 23⑪ h =12gt 2⑪ s =v C t ⑬得v 3=6 m/s ⑭所以当v B ≥6 m/s 时,小球越过壕沟.⑮情况三:若小球刚好能运动到与圆心等高位置,则有 -mgR =0-12mv 24⑯得v 4=2 m/s ⑰所以当v B ≤2 m/s 时,小球又沿圆轨道返回.⑱综上,小球在B 点的初速度大小的范围是v B ≤2 m/s 或10 m/s≤v B ≤4 m/s 或v B ≥6 m/s 10.如图24所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图24(1)小球从P 点抛出时的速度大小v 0;(2)小球从C 点运动到D 点过程中摩擦力做的功W ; (3)小球从D 点返回经过轨道最低点B 的压力大小. 答案 (1)4 m/s (2)-8 J (3)56 N 解析 (1)在A 点有: v 2y =2gh ① v yv 0=tan θ② 由①②式解得:v 0=4 m/s ③(2)整个运动过程中,重力做功为零,根据动能定理得知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能: W =-12mv 20=-8 J。
平抛运动、圆周运动
一、 平抛运动
1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。
2、条件:
a 、只受重力;
b 、初速度与重力垂直.
3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。
g a =
4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.
5、平抛运动的规律
①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2
2y x v v v +=
物体的合速度v 与x 轴之间的夹角为:
tan v gt v v x
y =
=
α ②水平位移:t v x 0=,竖直位移22
1gt y = 合位移(实际位移)的大小:22y x s +=
物体的总位移s 与x 轴之间的夹角为:
2tan v gt x y ==
θ 可见,平抛运动的速度方向与位移方向不相同。
而且θαtan 2tan =而θα2≠ 轨迹方程:由t v x 0=和2
21gt y =消去t 得到:22
2x v g y =。
可见平抛运动的轨迹为抛物线。
6、平抛运动的几个结论
①落地时间由竖直方向分运动决定: 由221gt h =
得:g
h t 2=
②水平飞行射程由高度和水平初速度共同决定:
g
h
v t v x 20
0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。
④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:2
21tan 20x s s gt v gt =⇒==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下(与g
同向)。
任意相同时间内的Δv 都相同(包括大小、方向),如右图。
二、
V
V
V
⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。
(飞行的时间与速度有关,速度越大时间越长。
)
三、
如右图:所以θtan 20
g
v t =
)tan(v gt v v a x
y =
=
+θ 所以θθtan 2)tan(=+a ,θ为定值故a 也是定值与速度无关。
⑦速度v 的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,
θtan 变大,↑θ,速度v 与重力 的方向越来越靠近,但永远不能到达。
⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个运动过程中机械能守恒。
例题分析:
[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A 处越过的壕沟,沟面
对面比A 处低
,摩托车的速度至少要有多大?
图1
[例2] 如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为
的斜面上。
可知物体完成这段飞行的时间是( ) A.
B.
C.
D.
[例3] 在倾角为
的斜面上的P 点,以水平速度
向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度。
[例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右
抛出两个小球A 和B ,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气
阻力,则A 和B 两小球的运动时间之比为多少?
[例5] 某一平抛的部分轨迹如图4所示,已知,,,求。
图4
[例6] 从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。
两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。
图5
[例7] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
图6
[例8] 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?
[例9] 宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。
已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。
[例10] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。
图11
二、圆周运动
匀速圆周运动
1、定义:物体运动轨迹为圆称物体做圆周运动。
2、分类:
⑴匀速圆周运动:
质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。
注意:这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.
⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.
3、描述匀速圆周运动的物理量
(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。
(2)线速度(v ):
①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。
②定义式:t
s v =
③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。
(3)角速度(ω,又称为圆频率):
①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。
②大小:T
t
πϕ
ω2=
=
(φ是t 时间内半径转过的圆心角)
③单位:弧度每秒(rad/s )
④物理意义:描述质点绕圆心转动的快慢
(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。
(5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。
各物理量之间的关系:
r t r v f T t rf T
r t s v ωθππθωππ==⇒⎪⎪
⎭⎪⎪
⎬
⎫
======
2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。
(6)圆周运动的向心加速度
①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。
②大小:r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 22
22ππω=⎪⎭
⎫ ⎝⎛==)
③方向:其方向时刻改变且时刻指向圆心。
对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)圆周运动的向心力
匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力,常见的提供向心力的典型力有万有引力、洛仑兹力等。
对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。
向心力的大小为:r m r
v m ma F n n 22
ω===(还有其它的表示形式,如: ()r f m r T m mv F n 2
2
22ππω=⎪⎭
⎫ ⎝⎛==)
;向心力的方向时刻改变且时刻指向圆心。
实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。
例题解析
[例1] A.
[例2] 的夹角分别为
[例3] 如图2轮上,已知A r =(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。
个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是()
A. 球
B. 球
C. 球
D. 球
[例6]
的是(
A.
B. 两人的角速度相同,为6rad/s
C. 两人的运动半径相同,都是0.45m
D. 两人的运动半径不同,甲为0.3m,乙为0.6m。