第四章平面问题的极坐标解答
- 格式:ppt
- 大小:1.72 MB
- 文档页数:152
第四章平面问题的极坐标解答§4-1 极坐标中的平衡微分方程对于由径向线和圆弧线围成的圆形、圆环形、楔形、扇形等的弹性体,宜用极坐标求解。
因为用极坐标表示其边界线非常方便,从而使边界条件的表示和方程的求解得到很大的简化。
在极坐标中,平面内任一点P的位置,用径向坐标ρ及环向坐标ϕ来表示,图4-1。
极坐标和直角坐标都是正交坐标系,但两者有如下区别:在直角坐标系中,x和y坐标线都是直线,有固定的方向,x和y坐标的量纲都是L。
在极坐标系中,ρ坐标线(ϕ=常数)和ϕ坐标线(ρ=常数)在不同的点有不同的方向;ρ坐标线是直线,而ϕ坐标线为圆ϕ坐标为量纲一的量。
这些区别将引弦曲线;ρ坐标的量纲是L,而起弹性力学基本方程的差异。
为了表明极坐标中的应力分量,从所考察的薄板或长柱形体中取出任一厚度等于1的微分体PACB,在xy平面上,这个微分体是由两条径向线(夹角为d ϕ)和两条环向线(距离为ρd )所围成,如图所示,沿ρ方向的正应力称为径向正应力,用ρσ代表;沿ϕ方向的正 应力称为环向正应力或切向正应力,用ϕσ代表;切应力用ϕρρϕττ及代表(根据切应力的互等关系,ϕρρϕττ=)。
各应力分量的正负号规定和直角坐标中一样,只是ρ方向代替了x 方向,ϕ方向代替了y 方向。
即正面上的应力以沿正坐标方向为正,负面上的应力以沿负坐标方向为正,反之为负。
图中所示的应力分量都是正的。
径向及环向的体力分量分别用ϕρf f 及代表,以沿正坐标方向为正,反之为负。
与直角坐标中相似,由于应力随坐标ρ的变化,设PB 面上的径向正应力为ρσ,则AC 面上的将为ρρσσρρd ∂∂+;同样,这两个面上的切应力分别为ρϕρϕττ及+ρρσϕd ∂∂。
PA 及BC 两个面上的环向正应力分别为ϕσ及ϕσ+ϕρσϕd ∂∂;这两个面上的切应力分别为ϕϕτττϕρϕρϕρd ∂∂+及。
对于极坐标中所取的微分体,应注意它的两个ρ面PB 及AC 的面积不相同,分别等于()ϕϕρϕρd d d +及;两个ϕ面PA 及BC 的面积都等于d ρ,但此两面不平行。
第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。
如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。
例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角α0max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。
最大正应力σmax 所在截面的方位角为α0max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成π4方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。
这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。
(2)取极坐标系如图。
由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中α为小孔的半径,而孔边最大与最小正应力由式(b ),在ρ=α处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当φ=0,π时,孔边最小正应力为(σφ)min=−4q ,当φ=±π2时,孔边最大正应力为(σφ)max=4q 。
分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。
也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。
习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。
第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。
如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。
例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。
最大正应力 所在截面的方位角为max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。
这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。
(2)取极坐标系如图。
由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中 为小孔的半径,而孔边最大与最小正应力由式(b ),在 处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当 , 时,孔边最小正应力为,当时,孔边最大正应力为。
分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。
也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。
习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。
【解】 (1)极坐标,直角坐标中的平衡微分方程10210f f ρρϕρϕρρϕϕρϕϕστσσρρϕρτστρρϕρ∂∂-⎧+++=⎪∂∂⎪⎨∂∂⎪+++=⎪∂∂⎩ 00yxx x y xy yf xy f y x τσστ∂⎧∂++=⎪∂∂⎪⎨∂⎪++=⎪∂∂⎩将极坐标中的平衡微分方程与直角坐标中的平衡微分方程相比较,第一式中,前两项与直角坐标相似;而项是由于正 面上的面积大于负 面上的面积而产生的,是由于正负 面上的正应力 在通过微分体中心的 方向有投影而引起的。