第七章 常微分方程习题课
- 格式:ppt
- 大小:723.50 KB
- 文档页数:40
(完整版)高等数学第七章微分方程试题及答案第七章常微分方程一.变量可分离方程及其推广 1.变量可分离的方程(1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()?+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+??1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式(1)齐次方程=x y f dx dy 令u xy=,则()u f dx du x u dx dy =+= ()c x c xdxu u f du +=+=-??||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()?-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式令()()?-=dxx P ex C y 代入方程求出()x C 则得()()()[]+=??-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1)二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
习题7.1—7.3一、判断1.×;2.×;3. √;4.×;5.√;6.×;7.×。
二、选择二、选择题1.D ; 2.A ; 3.A ;4.B ;;5.A ; 6.B ;7.C ; 8.D 。
三、填空1.在横线上填上方程的名称①可分离变量微分方程;②可分离变量微分方程;③齐次方程;④一阶线性微分方程;⑤二阶常系数齐次线性微分方程。
2.3; 3.3; 4.2;5.2Cx y =; 6.C y x =+22;7.22x Cxe y =;四、解答题1.验证函数x x e e C y 23--+⋅=(C 为任意常数)是方程y e dx dy x 32-=-的通解,并求出满足初始条件0|=x y 的特解。
解:略2.求微分方程()()⎩⎨⎧==-++=1|011022x y dy x y dx y x 的通解和特解。
解:C x y =-+2211,1222=+y x 。
3.求微分方程x y x y dx dy tan +=的通解。
解:Cx xy =sin 。
4.求微分方程⎪⎩⎪⎨⎧=+='=2|1x y x y y x y 的特解。
解:()2ln 222+=x x y 。
5.求微分方程x x y dx dy sin =+的通解。
解:()C x x x x y +-=cos sin 1。
习题7.41.求微分方程()()⎪⎩⎪⎨⎧==+--'+=1|0121027x y x y y x 的特解。
解:()()223131132+⎥⎦⎤⎢⎣⎡++=x x y 。
2. 求下列微分方程的通解.解:(1)直接用常数变量法.对应的齐次线性方程为 21dy y dx x =+,通解 2(1)y C x =+ 令非齐次线性方程522(1)1dy y x dx x -=++时,通解为 2()(1)y C x x =+ 代入方程得12()(1)C x x '=+,322()(1)3C x x C =++故所述方程的通解为 3222(1)(1)3y x C x ⎡⎤=+++⎢⎥⎣⎦=7222(1)(1)3x C x +++ (2)此题不是一阶线性方程,但把x 看作未知函数,y 看作自变量,所得微分方程4dx x y dy y+=即31dx x y dy y -= 是一阶线性方程 1()P y y=-,3()Q y y = 113413dy dy y y x e y e dy C y Cy -⎡⎤⎰⎰⎢⎥=+=+⎢⎥⎣⎦⎰ (3)这是一阶线性微分方程,原方程变形为2ln dy y x dx x+=,两边同乘22dx x e x ⎰=得 22()ln d x y x x dx= 积分得223311ln ln 39x y C x xdx C x x x =+=+-⎰ 由1(1)9y =-得0C =⇒11ln 39y x x x =- 3. 求下列微分方程的通解(1)()2ln dy y x y dx x+= (2)22x y xy y '+= 解 (1)用2y 除方程的两边,得211ln dy y y x dx x --+= ()111ln d y y x dx x ---+=令1z y -=,则得一阶线性方程1ln dz z x dx x-=- ()11ln dx dx z e x e dx C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰ ()21ln 2x x C ⎡⎤=-+⎢⎥⎣⎦用1z y -=代入,得()21ln 12yx x C ⎡⎤-+=⎢⎥⎣⎦ (2)所给方程既属于齐次方程又属于伯努利方程故两种方法以便对照解一 222d y y x y y y d x x x x -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ 令y u x =,则得2du u x u u dx +=-22du x u u dx =- 112ln 2du dx C x C u u x ==+-⎰⎰()11ln 2ln ln 2u u x C --=+⎡⎤⎣⎦22u Cx u -=,故22y x Cx y -=()22212 =1x y Cx x y Cx-=-, 解二 221x d y x y d xy +=,令1z y =,得21dz x xz dx -+= 211dz z dx x x -=-,通解 112z C x x=+ 22122121x x y C x Cx ==+- 习题 7.5略习题 7.6略习题 7.7略习题 7.8略自测题答案一、判断1.×;2.√;二、填空1.()x C x C e y x sin cos 212+=; 2.()()111221+-+-=x C x C y ;3.()1sin cos 21++=x C x C e y x三、选择1.B ;2.C ;3.A ;4.A ;5.D ;6.D .四、解答1.设x e y =是微分方程()x y x p y x =+'的一个解,求此微分方程满足条件0|2ln ==x y 的特解。
第七章一阶线性偏微分方程§7.1 首次积分和求解常微分方程组基本概念(,,)ni 1n i 1i u X x x 0x =∂=∂∑(,,)(,,)ni1n1ni 1iuX x x Z x x x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1i uY x x u Z x x u x =∂=∂∑例丨例1解x yu uc0u cu0 x y∂∂+=+=∂∂即例2例2 解(,,)(,,)x y y x u g x y u u g x y u 0-=(,)()()(,)xy x y y x x y u y y x u x x y y u xyu u u v u v u v u g g u u g g u u g u g 0v v x y ∂==-=-⋅--⋅=-⋅=∂(,(,,))((,,))u g x y u 0u g x y u ϕΦ==或特征方程定义•齐次线性偏微分方程特征方程•拟线性偏微分方程特征方程(,,)ni1n i 1iu X x x 0x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1iu Y x x u Z x x u x =∂=∂∑d d d n1212nx x x X X X ===d d d d n 1212n x x x uY Y Y Z====首次积分定义首次积分d (,,,),(),,,6d 0ii 1n i 0i y f x y y y x y i 1nx===()首次积分彼此独立彼此独立(,,)(,,)n 1111n 1n n 1nny y D D y y y y ψψψψψψ∂∂∂∂=∂∂∂∂n 1111n 11nn x x x x ϕϕϕϕ--∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦一阶线性偏微分方程与常微分方程组的关系d (,)d yf x y 8x=()d (,)d y f x y 0x y x x yψψψψ∂∂∂∂+=+=∂∂∂∂(,)u u f x y 09x y∂∂+=∂∂()d d (,)d d u u u y u uf x y 0x x y x x y ∂∂∂∂=+=+=∂∂∂∂定理1定理112n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()证(,,,)0001n x y y G∈()(,,,)i i 0y x i 12n ϕ==(,(),,())1n x x x const ψϕϕ=d(,(),,())d 1n x x x 0x ψϕϕ=(,,,)(,,,)(,,,)n00000001n i 01n 01n i 1i x y y f x y y x y y 0x y ψψ=∂∂+=∂∂∑(,,,)0001n x y y G ∈12n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()(),,,d(,(),,())d i i 1n 12n y x 12n i 12nx x x f f f 0xxy y y ϕψψψψψϕϕ==⎛⎫∂∂∂∂=++++= ⎪∂∂∂∂⎝⎭(,(),,())1n x x x constψϕϕ=d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()§7.3 利用首次积分求解常微分方程组定理2d(,,,),,,dii1nyf x y y i1n11x==()(,,,),,,i1n ix y y c i1n12ψ==(),证(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,),,,i 1n i x y y c i 1n 13ϕ==()(,(,,,),,(,,,)),,,j 11n n 1n j x x c c x c c c j 12n ψϕϕ==d (,,,)(,,,),,,d n i j 1n j 1n i 1ix x 0j 12nxy xϕψϕϕψϕϕ=∂∂+⋅==∂∂∑,,,,j j j1n 1nf f 0j 12n 14x y y ψψψ∂∂∂+++==∂∂∂()(,,,),,,nj ii 1n d f x 0j 12ny dxψϕϕϕ∂⎡⎤-==⎢⎥∂⎣⎦∑(,,,)(,,,)(,,,),,,nj 1n i 1n j 1n i 1i x f x x 0j 12n x y ψϕϕϕϕψϕϕ=∂∂+⋅==∂∂∑d (,,,),,,d ii 1n y f x y y i 1n 11x==()(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂d (,,,),,,d ii 1n f x j 12nx ϕϕϕ==(,,,),,,,i i 1n y x c c i 12nϕ==(,,,,),,,,i i 01n y x x y y i 12nϕ==(,,,)(,,,)i i 01n c x y y i 12n ψ==(,,,)(,,,)i i 1n y x c c i 12n ϕ==(,,,,)(,,,)(,,,)i 001n i i 01n x x y y y x c c i 12n ϕϕ===(,,,)(,,,,),,,,i 1n i 01n x c c x x y y i 12n ϕϕ==(,,,,)(,,,)i i 01n y x x y y i 12n ϕ==(,,,)(,,,)i i i 01n c c x y y i 12n ψ===,d (,,,),,,d ii 1n y f x y y i 1n 11x==()求首次积分方法(,)(,,)x c y x c 00c cϕψ∂∂≠≠∂∂或d d d d n12012ny y y x g g g g ====(,,)i 0i g g f i 1n ==,,,01nμμμ,d d d d 0011n n 011n n g g g 0x y y μμμμμμϕ+++=+++=d (,,,),,,d ii 1n y f x y y i 1n 11x==()例1 求解方程组d d d d 222222y2xy x x y z z 2xz x x y z ⎧=⎪--⎪⎨⎪=⎪--⎩d d d 222x y zx y z 2xy 2xz==--d d y z yz=1y c z=d d d d ()222x x y y z z yx x y z 2xy++=++2222x y zc y++=12222yc z x y z c y ⎧=⎪⎪⎨++⎪=⎪⎩例2 求方程组的通积分d d d x y z xz yz xy==,,012g xz g yz g xy===,,012y x 2z μμμ===-001122g g g 0μμμ++=()2012dx dy dz d xy z μμμ++=-21xy z c -=2xc y=212xy z c x cy ⎧-=⎪⎨=⎪⎩。
常微分方程课后练习题含答案练习1:考虑动力学方程组:$$ \\begin{align} \\frac{dx}{dt}&=x(1-y)\\\\ \\frac{dy}{dt}&=y(1-x)\\end{align} $$a)画出相图b)确定方程组的固定点及其稳定性c)求出轨道在极限$\\lim\\limits_{t\\to\\infty}$时的行为答案1:a)相图如下所示:image-1b)如果(x,y)是方程组的一个固定点,则:$$ \\begin{aligned} \\frac{dx}{dt}&=0 \\\\ \\frac{dy}{dt}&=0\\end{aligned} $$由$\\frac{dx}{dt}=x(1-y)$得,固定点必须是x=0或y=1•当x=0时,$\\frac{dy}{dt}=y$,因此固定点为(0,0),是不稳定的。
•当y=1时,$\\frac{dx}{dt}=0$,因此固定点为(1,1),是稳定的。
综上,方程组的固定点为(0,0)和(1,1),其中(1,1)是稳定的。
c)当$t\\to\\infty$时,我们需要检查轨道的极限行为。
假设(x(t),y(t))是由方程组确定的轨迹,x0=x(0)和y0=y(0)是轨迹的起点。
轨迹的限制曲线由y(1−x)=x(1−y)确定,展开可得y=x或xy=0.5。
将方程组改写为$$ \\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)} $$则在y=x处,$$ \\frac{dy}{dx}=1 $$这意味着沿着这个轨道移动的速度是恒定的,因此轨迹沿着一条直线移动。
由$\\frac{dy}{dx}=\\frac{y(1-x)}{x(1-y)}$可知,在非负轴上,当y>1−x时$\\frac{dy}{dx}>0$,当y<1−x时$\\frac{dy}{dx}<0$。
常微分方程练习题及答案(复习题)(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常微分方程练习试卷一、23210d x x dt +=()x dyf xy y dx=_______3230d yy x dx--=(0)1,(0)2y y '== x y y y e αβγ'''++=*2()x x xy x e e xe =++α=β=γ=()0W t ≡12(),(),,()n x t x t x t a x b ≤≤22(2320)0xydx x y dy ++-=y()X A t X '=()t Φ()A t =20'05⎡⎤=⎢⎥⎣⎦x x251y y y y ''''''+++=20y y y '''''-+=二、13dy x y dx x y +-=-+222()0d x dxx dt dt +=sin y y x'=+22(cos sin )(1)0x x xy dx y x dy -+-=3124A -⎡⎤=⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡-=11ηX A dtdX =)(t ΦX A dt dX=η=)0(x 2213dyx y dx=--(1,0)x Ax '=(),t ϕ12(0),ηϕηη⎡⎤==⎢⎥⎣⎦(),()t t Φψ()X A t X '=C ()()t t C ψ=Φ),()(0βαϕ≤≤x x x],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx)}({x n ϕ],[βα)(x ψ],[βα],[βα)()(x x ϕψ≡)(t ϕAX dtdX=ηϕ=)(0t ηϕ)(exp )(0t t A t -=u xy =11(()1)du dx u f u x=+3,2,1αβγ=-==-3y1()()t t -'ΦΦ25 00t Att e e e ⎡⎤=⎢⎥⎣⎦2114A ⎡⎤=⎢⎥-⎣⎦32()480dy dyxy y dx dx-+=13dy x y dx x y +-=-+10,30x y x y +-=⎧⎨-+=⎩1,2x y =-=1,2,x y ξη=-⎧⎨=+⎩.d d ηξηξξη+=-z ηξ=2(1)1z dz d z ξξ-=+21arctan ln(1)ln ||2z z C ξ-+=+ 222arctanln (1)(2)1y x y C x -=++-++222()0d x dxx dt dt+=sin y y x'=+y y '=x y ce =()x y c x e =()()()sin x x x c x e c x e c x e x '+=+()sin x c x e x -'=1()(sin cos )2x c x e x x c -=-++1(sin cos )2x y ce x x =-+22(cos sin )(1)0x x xy dx y x dy -+-=22(,)cos sin ,(,)(1)M x y x x xy N x y y x =-=-2M Nxy y x∂∂=-=∂∂22cos sin ()0x xdx xy dx yx dy ydy -++=2222111(sin )()()0222d x d x y d y ++=2222sin x x y y C -+=3124A -⎡⎤=⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡-=11ηX A dt dX =)(t ΦX A dt dX=η=)0(x 31det()(2)(5)0,24A E λλλλλ---==++=--122,5λλ=-=-122,5λλ=-=-1211,,(,0).12V V αβαβ⎡⎤⎡⎤==≠⎢⎥⎢⎥-⎣⎦⎣⎦2525().2tt tt e e t ee ----⎡⎤Φ=⎢⎥-⎣⎦1211(0)113-⎡⎤Φ=⎢⎥-⎣⎦=ΦΦ=-ηϕ)0()()(1t t 2525211111132tt tt e e ee ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦25252134t t t t e e e e ----⎡⎤+=⎢⎥-⎣⎦2213dyx y dx=--(1,0)0()0x ϕ=221001()[213()],xx y x x dx x x ϕϕ=+--=-⎰223452011133()[213()],1025xx y x x dx x x x x x ϕϕ=+--=-+-+-⎰3284dy y dx x dy y dx ⎛⎫+ ⎪⎝⎭=dyp dx=3284p y x yp +=322322(4)(8)4dpy p y p y p y p dy-+-=32(4)(2)0dp p y y p dy --=20dp y p dy -=12p cy =2()p y c=2224c p x c =+22224()c p x c p y c ⎧=+⎪⎪⎨⎪=⎪⎩3240p y -=123(4)py =3427y x =x Ax '=(),t ϕ12(0),ηϕηη⎡⎤==⎢⎥⎣⎦221()69014p λλλλλ--==-+=-1,23λ=12n =12v ηηη⎡⎤==⎢⎥⎣⎦111123322120()()(3)()!it i t i t t t e A E e t i ηηηηϕηηηη=⎡⎤+-+⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦∑10()!in tii t e A E i λλ-=-∑[]33310111exp (3)01111ttt t t At e E t A E e t e t t ⎧-⎫-⎡⎤⎡⎤⎡⎤=+-=+=⎨⎬⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎩⎭(),()t t Φψ()X A t X '=C ()()t t C ψ=Φ32()480dy dyxy y dx dx-+=2114A ⎡⎤=⎢⎥-⎣⎦()t Φ1()t -Φ1()()()X t t t -=Φψ()X t det ()0X t ≠()()()t t X t ψ=Φ()()()()()t t X t t X t '''ψ=Φ+Φ()()()()()A t t X t t X t '=Φ+Φ()()()()A t t t X t '=ψ+Φ()()()t A t t 'ψ=ψ()()0t X t 'Φ=()0,X t '=()X t C =()()t t C ψ=Φ),()(0βαϕ≤≤x x x],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx)}({x n ϕ],[βα)(x ψ],[βα],[βα)()(x x ϕψ≡⎰++≡xx d y x 0,])([)(20ξξξψξψ,)(00y x =ϕ⎰∈++≡-xx n n x x d y x 0],[,,])([)(0120βαξξξϕξϕ),2,1( =nβ≤≤x x 00x x ≤≤α),()|||)(|(|)()(|0200x x M d x x xx -≤+≤-⎰ξξξψξϕψ|}||)(|{max 2],[x x x M x +=∈ψβα221000|()()|(|()()|)()(),2!xxx x MLx x d L M x d x x ψϕξψξϕξξξξ-≤-≤-=-⎰⎰ }{max 2],[x L x βα∈=n n n n x x n ML x x )(!|)()(|011-≤---ϕψ21xn n x |(x )(x )|(|()()|)d ψφξψξφξξ--≤-⎰,)(!)1()(!10010+--+=-≤⎰n xx n nn x x n ML d x n ML L ξξk1110|()()|()()!!k k kk k ML ML x x x x k k ψϕβα----≤-≤-k →∞0→)}({x n ϕβ≤≤x x 0)(x ψ)()(x x ϕψ≡β≤≤x x 0)(t ϕAX dtdX=ηϕ=)(0t ηϕ)(exp )(0t t A t -=At t exp )(=ΦAX dtdX=)(t ϕC (t )exp At C φ=⋅ 0t t =C At 0exp =ηη10)(exp -=At C1000(t )exp At (exp At )exp At exp(At )exp A(t t )φηηη-=⋅=⋅-=-。