高二数学综合法和分析法3
- 格式:pdf
- 大小:1.66 MB
- 文档页数:11
§2. 2 .1 直接证明--综合法与分析法1.教学过程:学生探究过程:1.综合法综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法叫做综合法用综合法证明不等式的逻辑关系是:11223().....n P Q Q Q Q Q Q Q综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法例1、在△ABC 中,三个内角A,B,C 的对边分别为,,a b c ,且A,B,C 成等差数列,,,a b c 成等比数列,求证△ABC 为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是 A + B + C =; a , b ,c 成等比数列,转化为符号语言就是2b ac .此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.例2、已知,,R b a 求证.a b b a b a b a 本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于b a,对称,不妨设.0b a 0)(0b a b a b b a b b a b a b a b a b a b a ,从而原不等式得证。
2)商值比较法:设,0b a ,0,1b a b a .1)(ba ab ba b a b a b a 故原不等式得证。
注:比较法是证明不等式的一种最基本、最重要的方法。
用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。
《综合法和分析法(1)》导学案编写人:马培文 审核人:杜运铎 编写时间:2016-02-24【学习目标】结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法。
【重点难点】1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 会用综合法证明问题;了解综合法的思考过程。
3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法。
【学法指导】① 课前阅读课文(预习教材P 85~P 89,找出疑惑之处)② 思考导学案中的探究问题,并提出你的观点。
【知识链接】复习1 两类基本的证明方法: 和 。
复习2 直接证明的两中方法: 和 。
知识点一 综合法的应用问题 已知,0a b >,求证 2222()()4a b c b c a abc +++≥。
新知 一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法。
反思 框图表示要点 顺推证法;由因导果。
【典型例题】例1已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥变式 已知,,a b c R +∈,1a b c ++=,求证 111(1)(1)(1)8a b c---≥。
小结 用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明。
例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形。
变式 设在四面体P ABC -中,90,,ABC PA PB PC ∠=︒==D 是AC 的中点.求证 PD 垂直于ABC ∆所在的平面。
小结 解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来。
【基础达标】A1. 求证 对于任意角θ,44cos sin cos 2θθθ-=。
高二数学题的解题方法和答题策略(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学题的解题方法和答题策略本店铺高二频道为你整理了以下文章,欢迎阅读!【一】方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
§2.1.2 演绎推理 一、复习思考复习1:归纳推理是由 到 的推理.类比推理是由 到 的推理. 复习2:合情推理的结论 .二、新课导学探究任务一:演绎推理的概念问题:观察下列例子有什么特点?(1)所有的金属都能够导电,铜是金属,所以 ;(2)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ;(3)在一个标准大气压下,水的沸点是100C ︒,所以在一个标准大气压下把水加热到100C ︒时, ; (4)一切奇数都不能被2整除,2007是奇数,所以 ;(5)三角函数都是周期函数,sin α是三角函数,所以 ;(6)两条直线平行,同旁内角互补.如果A 与B 是两条平行直线的同旁内角,那么 .新知:演绎推理是从 出发,推出情况下的结论的推理.简言之,演绎推理是由到 的推理.大前提—— ;小前提—— ;结论—— .例1 在锐角三角形ABC 中,,AD BC BE AC ⊥⊥,D ,E 是垂足. 求证:AB 的中点M 到D ,E 的距离相等.新知:用集合知识说明“三段论”:大前提:小前提:结 论:例2证明函数2()2f x x x =-+在(],1-∞-上是增函数三、课外作业:1. 因为指数函数x y a =是增函数,1()2x y =是指数函数,则1()2x y =是增函数.这个结论是错误的,这是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 A.大前提错误 B.小前提错误C.推理形式错误D.非以上错误4.归纳推理是由 到 的推理;类比推理是由 到 的推理;演绎推理是由 到 的推理.5.合情推理的结论 ;演绎推理的结论 .6. 用三段论证明:在梯形ABCD 中,AD//BC ,AB=DC ,则B C ∠=∠.7. 用三段论证明:3()()f x x x x R =+∈为奇函数.§2.2.1 综合法和分析法(1)一、学习目标:1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 会用综合法证明问题;了解综合法的思考过程.3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.二、课前准备及探究:探究任务一:综合法的应用问题:已知,0a b >,求证:2222()()4a b c b c a abc +++≥.新知:一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法.典型例题例1已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥变式:已知,,a b c R +∈,1a b c ++=,求证:111(1)(1)(1)8a b c ---≥.小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明.例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c成等比数列. 求证:为△ABC 等边三角形.变式:设在四面体P ABC -中,90,,ABC PA PB PC ∠=︒==D 是AC 的中点.求证:PD 垂直于ABC ∆所在的平面.三、课后作业1. 已知22,,"1""1"x y R xy x y ∈≤+≤则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2. 如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )A .5481a a a a >B .5481a a a a <C .5481a a a a +>+D .5481a a a a =3. 设23451111log 11log 11log 11log 11P =+++,则( ) A .01P << B .12P <<C .23P <<D .34P <<4.若关于x 的不等式22133(2)(2)22x x k k k k --+<-+的解集为1(,)+∞,则k的范围是____ . 5. 已知b a ,是不相等的正数,x y ==,则,x y 的大小关系是_________. 6.已知a ,b ,c 是全不相等的正实数,求证:3b c a a c b a b c a b c+-+-+-++>7.在△ABC 中,证明:2222112cos 2cos ba b B a A -=-§2.2.1 综合法和分析法(二)一、新课导学问题:如何证明基本不等式(0,0)2a b a b +>>新知:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 反思:框图表示要点:逆推证法;执果索因二、典型例题例1求证变式:求证:小结:证明含有根式的不等式时,用综合法比较困难,所以我们常用分析法探索证明的途径.例2 在四面体S ABC -中,,SA ABC AB BC ⊥⊥面,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F ,求证AF SC ⊥.三、课外作业1. 要证明,其中最合理的是A.综合法B.分析法C.反证法D. 归纳法2.不等式①233x x +>;②2b a a b +≥,其中恒成立的是A.①B.②C.①②D.都不正确3.已知0y x >>,且1x y +=,那么 A.22x y x y xy +<<< B.22x y xy x y +<<< C.22x y x xy y +<<< D.22x y x xy y +<<< 4.若,,a b c R ∈,则222a b c ++ ab bc ac ++.5.将a 千克的白糖加水配制成b 千克的糖水(0)b a >>,则其浓度为 ;若再加入m 千克的白糖(0)m >,糖水更甜了,根据这一生活常识提炼出一个常见的不等式: .6.已知0a b >>,求证:22()()828a b a b a b a b-+-<<.7. 设,a b R +∈,且a b ≠,求证:3322a b a b ab +>+。
§2. 2 .1 直接证明--综合法与分析法1.教学过程:学生探究过程:1. 综合法综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法叫做综合法用综合法证明不等式的逻辑关系是:()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法例1、在△ABC 中,三个内角A,B,C 的对边分别为,,a b c ,且A,B,C 成等差数列, ,,a b c 成等比数列,求证△ABC 为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是A + B + C =π; a , b ,c 成等比数列,转化为符号语言就是2b ac =.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.例2、已知,,+∈R b a 求证.ab b a b a b a ≥本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于b a ,对称,不妨设.0>≥b a 0)(0≥-=-∴≥---b a b a b b a b b a ba b a b a b a b a Θ,从而原不等式得证。
2)商值比较法:设,0>≥b a ,0,1≥-≥b a ba Θ .1)(≥=∴-b a a b b a b a b a b a 故原不等式得证。
预习导航
直接证明
提示:分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.以证明不等式为例,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证明过程.
思考2证明与推理之间有哪些区别与联系?
提示:(1)区别:①从结论上看,推理包含前提和结论两部分,前提是已知的,结论是根据前提推出来的;而证明是由论题、论据、论证三部分组成的.论题相当于推理的结论,是已知的,论据相当于推理的前提.
②从作用上看,推理只解决形式问题,对于前提和结论的真实性是保证不了的.而证明却要求论据必须是真实的,论题经过证明后其真实性是确信无疑的.
(2)联系:证明过程其实就是推理的过程,就是把论据作为推理的前提,应用正确的推
理形式,推出论题的过程.一个论证可以只含一个推理,也可以包含一系列的推理.所以证明就是推理,是一种特殊形式的推理.。
高中数学学习材料金戈铁骑整理制作基础巩固强化一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的“两头凑”法D.分析法又叫逆推证法或执果索因法[答案] C[解析]综合法是由因导果,分析法是执果索因,故选项C错误.2.“对任意角θ,都有cos4θ-sin4θ=cos2θ”的证明过程:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”应用了()A.分析法B.综合法C.综合法与分析法结合使用D.间接证法[答案] B[解析] 证明过程是利用已有的公式顺推得到要证明的等式,因此是综合法.3.设a 、b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22 B .ab <1<a 2+b 22 C .ab <a 2+b 22<1 D.a 2+b 22<1<ab[答案] B[解析] ab <⎝⎛⎭⎪⎫a +b 22<a 2+b 22(a ≠b ). 4.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( )A .aB .bC .cD .不能确定[答案] C[解析] 因为b -c =(1+x )-11-x =1-x 2-11-x =-x 21-x <0,所以b <c .又因为(1+x )2>2x >0,所以b =1+x >2x =a ,所以a <b <c .5.p =ab +cd ,q =ma +nc ·b m +dn (m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小为( )A .p ≥qB .p ≤qC .p >qD .不确定 [答案] B [解析] q =ab +mad n +nbcm +cd ≥ab +2abcd +cd =ab +cd =p .6.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a 、b ∈R +,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A 、B 、C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤A D .C ≤B ≤A[答案] A[解析] a +b 2≥ab ≥2ab a +b ,又函数f (x )=(12)x 在(-∞,+∞)上是单调减函数,∴f (a +b 2)≤f (ab )≤f (2aba +b).二、填空题7.已知a >0,b >0,m =lg a +b 2,n =lg a +b2,则m 与n 的大小关系为________.[答案] m >n[解析] 因为(a +b )2=a +b +2ab >a +b >0,所以a +b2>a +b2,所以m >n .8.如果a a +b b >a b +b a ,则实数a 、b 应满足的条件是________.[答案] a ≠b 且a ≥0,b ≥0[解析] a a +b b >a b +b a ⇔a a +b b -a b -b a >0⇔a (a -b )+b (b -a )>0⇔(a -b )(a -b )>0⇔(a +b )(a -b )2>0只需a ≠b 且a 、b 都不小于零即可. 三、解答题9.设a≥b>0,求证:3a3+2b3≥3a2b+2ab2.[解析]3a3+2b3-(3a2b+2ab2)=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a-b).因为a≥b>0,所以a-b≥0,3a2-2b2>0,从而(3a2-2b2)(a-b)≥0,即3a3+2b3≥3a2b+2ab2.。
高考数学证明法高二第一篇:高考数学证明法高二數學证明法(高二)明确复习目标1.理解不等式的性质和证明;2.掌握分析法、综合法、比较法证明简单的不等式。
建构知识网络1.比较法证明不等式是最基本的方法也是最常用的方法。
比较法的两种形式:(1)比差法:步骤是:①作差;②分解因式或配方;③判断差式符号;(2)比商法:要证a>b且b>0,只须证 a 1。
b说明:①作差比较法证明不等式时,通常是进行通分、因式分解或配方,利用各因式的符号或非负数的性质进行判断;②证幂、乘积的不等式时常用比商法,证对数不等式时常用比差法。
运用比商法时必须确定两式的符号;2.综合法:利用某些已经证明过的不等式(如均值不等式,常用不等式,函数单调性)作为基础,再运用不等式的性质推导出所要证的不等式的方法。
3.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
这种证明方法叫做分析法。
要注意书写的格式, 综合法是分析法的逆过程4.对较复杂的不等式先用分析法探求证明途径,再用综合法,或比较法加以证明。
5.要掌握证明不等式的常用方法,此外还要记住一些常用不等式的形式特点,运用条件,等号、不等号成立的条件等。
经典例题做一做【例1】(1)已知a,b∈R,求证:a2+b2+1>ab+aa22b22(2)设a>0,b>0,求证()+()≥a2+b2.ba【例2】已知a+b+c=0,求证:ab+bc+ca≤0.1111【例3】已知∆ABC的三边长为a,b,c,且m为正数.求证:abc+>.a+mb+mc+m【例4】设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两根x1、x2满足1<x1<x2<1.a(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,求证x0<x1.2【研讨.欣赏】已知a>1,m>0,求证:loga(a+m)>loga+m (a+2m).提炼总结以为师1.比较法是一种最重要的、常用的基本方法,其应用非常广泛,一定要熟练掌握.步骤是:作差→变形(分解因式或配方)→判断符号.对于积或幂的式子可以作商比较,作商比较必须弄清两式的符号.2.对较复杂的不等式需要用分析法,分析使不等式成立的充分条件,再证这个条件(不等式)成立.3.综合法是最简捷明快的方法,常需用分析法打前站,用分析法找路,综合法写出.有时也需要几种方法综合运用.4.要熟练掌握均值不等式、四种平均值之间的关系,记住一些常用的不等式,记住它们的形式特点、证明方法和内在联系。
高二数学选修 §2.2 分析法【学习目标】1. 掌握分析法的定义和思维过程,能用分析法证明较简单的数学命题.2. 能把综合法和分析法有机结合,提高分析问题,解决问题的能力.【学习重点】1. 分析法的定义和思维过程.2. 分析法的特点与证明步骤.【学习难点】1. 分析法证明的思维过程,步骤,与书写格式.2. 综合法与分析法的综合应用.【复习回顾】1.什么叫综合法?它的证明思路是什么?
2.在斜三角形ABC中,求证:tanA+tanB+tanC=tanAtanBtanC
【自主预习】1. 分析法的定义:
2.分析法的思维过程是:
3. 分析法的书写格式是: 4.点评课本例4,例5,例6进一步体会如何用分析法进行数学证明.
【合作探究】活动一: 求证: < 活动二: 若a,b,c是三角形的三边,试证方程b2x2+(b2+c2-a2)x+c2=0没有实根.
.活动三: 证明:对于任意实数x,y,有x4+y4≥xy(x+y)2 . 活动四: 证明:在中,成等差数列的充要条件是 【达标测评】1.已知 <1, <1,求证: <1 2. 已知{an}是等差数列,Sn表示数列前n项的和,试证明:S3n=3(S2n-Sn)
3.求证,当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.
【高考链接】已知a>b>0,求证<-<
【课堂小结】 1. 什么叫分析法?
2. 分析法的思维过程是:
3. 分析法的书写格式是: 4. 你的学习体会是: 【课外作业】课本习题1-2 1,4,5.