匀速圆周运动力的分析讲义
- 格式:pdf
- 大小:193.84 KB
- 文档页数:4
匀速圆周运动知识点解析1.匀速圆周运动的定义(1)轨迹是圆周的运动叫圆周运动。
(2)质点沿圆周运动,如果在相同时间里通过的弧长相等,这种运动叫匀速圆周运动。
(3)匀速圆周运动是最简单的圆周运动形式,也是最基本的曲线运动之一。
(4)匀速圆周运动是一种理想化的运动形式。
许多物体的运动接近这种运动,具有一定的实际意义。
一般圆周运动,也可以取一段较短的时间(或弧长)看成是匀速圆周运动。
2.周期(1)物体做匀速圆周运动时,运动一周所用的时间。
(2)周期用符号T表示,单位是秒。
(3)周期是反映重复性运动的运动快慢的物理量。
它从另一个角度描述了物体的运动。
3.线速度(1)物体做匀速圆周运动时,通过的弧长s跟通过这段弧长所用时间t的比值,叫运动物体线速度大小。
线速度的方向为圆周上某点的切线方向。
(2)线速度的计算公式:(3)线速度的意义:线速度实质上还是物体某一时刻的瞬时速度,虽然是用弧长和时间的比定义了速度大小,但当时间t趋于零时,弧长和为区别角速度而取名为线速度。
4.角速度转过这些角度所用时间t的比值,叫物体做匀速圆周运动的角速度。
(2)角速度计算公式:(3)角速度单位为:弧度/秒(rad/s)。
(4)角速度是矢量,方向为右手螺旋法则的大拇指的指向。
(5)角速度是描述转动快慢的物理量。
在描述转动效果时,它比用线速度描述更具有代表性。
5.向心加速度(1)匀速圆周运动的加速度方向匀速圆周运动的速度大小不变,速度的方向时刻在变,由于速度方向的变化,质点一定具有加速度,该加速度反映速度方向变化的快慢,该加速度的方向沿着半径指向圆心。
设质点沿半径是r的圆周做匀速圆周运动,在某时刻它处于A点,速度是vA,经过很短时间Δt后,运动到B点,速度为vB。
根据矢量合成的三角形法则可知,矢量vA与Δv之和等于vB,所以Δv是质点在A点时的加速度。
如图4-20。
时Δv便垂直于vA。
而vA是圆的切线,故Δv是指向圆心的。
即A点加速度指向圆心,所以匀速圆周运动的加速度又叫向心加速度。
物体做匀速圆周运动的力学定律分析运动,是物体存在于时间中的状态。
而物体的运动有很多种形式,例如直线运动、曲线运动等等。
其中,匀速圆周运动作为一种常见的运动形式,引起了物理学家的浓厚兴趣。
本文将通过分析物体做匀速圆周运动的力学定律,探讨这种运动的特征和规律。
首先,我们来理解匀速圆周运动的概念。
匀速圆周运动是指物体在半径固定的圆轨道上做匀速运动的现象。
在这种运动中,物体的速度大小保持不变,但方向会不断改变。
这是因为物体在圆周运动中受到向心力的作用,导致其沿着圆周方向加速运动。
在分析匀速圆周运动的力学定律之前,我们首先来看看向心力的作用。
向心力是指物体在圆周运动中受到的指向圆心的力。
其大小可以通过以下公式进行计算:向心力 = 质量 ×向心加速度向心加速度的计算可以使用以下公式:向心加速度 = 速度的平方 ÷半径由此可见,向心力与物体的质量、速度大小以及圆周半径有关。
当速度增大或者半径变小时,向心力也会增大。
这就解释了为什么在匀速圆周运动中,物体的速度越大,向心力越大,而当物体离圆心越远时,向心力越小。
在匀速圆周运动中,除了向心力外,还存在着惯性力。
惯性力是指物体在其相对参考系中受到的惯性抵抗力。
在匀速圆周运动中,惯性力与向心力大小相等,方向相反。
这是因为物体在运动过程中会产生一种惯性,试图使其沿着直线运动而不是圆周运动。
通过分析惯性力和向心力的相互作用,我们可以得到匀速圆周运动的力学定律。
根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
因此,在匀速圆周运动中,惯性力和向心力的合力会产生一个加速度,使物体能够沿着圆周方向运动。
而这个加速度大小正好等于向心加速度,即:向心加速度 = 合力 ÷质量根据这个定律,我们可以进一步推导出匀速圆周运动的速度和周期之间的关系。
首先,根据向心力与向心加速度的关系,我们有:向心力 = 质量 ×向心加速度而根据向心力与速度的关系,我们有:向心力 = 质量 ×速度的平方 ÷半径将上述两个等式联立,可以得到:速度的平方 ÷半径 = 向心加速度进一步整理可得:速度的平方 = 向心加速度 ×半径由此可见,匀速圆周运动的速度大小与向心加速度和圆周半径有关。
物理匀速圆周运动的考点理解及方法讲解物理匀速圆周运动的考点理解及方法讲解物理匀速圆周运动的考点理解及方法讲解 1一、考点理解1、关于匀速圆周运动(1)条件:①物体在圆周上运动;②任意相等的时间里通过的圆弧长度相等。
(2)性质:匀速圆周运动是加速度变化(大小不变而方向不断变化)的变加速运动。
(3)匀速圆周运动的向心力:①是按力的作用效果来命名的力,它不是具有确定性质的某种力,相反,任何性质的力都可以作为向心力。
例如,小铁块在匀速转动的圆盘上保持相对静止的原因是,静摩擦力充当向心力,若圆盘是光滑的,就必须用线细拴住小铁块,才能保证小铁块同圆盘一起做匀速转动,这时向心力是由细线的拉力提供。
②向心力的作用效果是改变线速度的方向。
做匀速圆周运动的物体所受的合外力即为向心力,它是产生向心加速度的原因,其方向一定指向圆心,是变化的(线速度大小变化的非匀速圆周运动的物体所受的合外力不指向圆心,它既要改变速度方向,同时也改变速度的大小,即产生法向加速度和切向加速度)。
③向心力可以是某几个力的'合力,也可以是某个力的分力。
例如,用细绳拴着质量为m的物体,在竖直平面内做圆周运动到最低点时,其向心力由绳的拉力和重力(F向= T拉- mg)两个力的合力充当。
而在圆锥摆运动中,小球做匀速圆周运动的向心力则是由重力的分力(F 向 = mgxtan),其中为摆线与竖直轴的夹角)充当,因此决不能在受力分析时沿圆心方向多加一个向心力。
④物体做匀速圆周运动所需向心力大小可以表示为:F = ma = mv^2/r = mr^2 = mrx4^2/(T^2)2、描述圆周运动的物理量(1)线速度:v = s/t(s是物体在时间t内通过的圆弧长),方向沿圆弧上该点处的切线方向。
描述了物体沿圆弧运动的快慢程度。
(2)角速度:=/t(是物体在时间t内绕圆心转过的角度),描述了物体绕圆心转动的快慢程度。
(3)周期与频率:T = 2r/v = 2 = 1/f(沿圆周运动一周所用的时间叫周期,每秒钟完成圆周运动的转数叫频率)。
匀速圆周运动的力学原理匀速圆周运动是指物体在一个固定半径的圆周上以恒定的速度做运动。
在这种运动中,物体受到一个向心力的作用,使其保持在圆周上运动。
本文将探讨匀速圆周运动的力学原理,并深入分析其相关概念和公式。
一、向心力和向心加速度在匀速圆周运动中,物体受到一个向心力的作用,使其始终保持在圆周上运动。
这个向心力的大小与物体的质量和圆周运动的速度有关。
根据牛顿第二定律,向心力可以表示为:F = m * a_c其中,F为向心力,m为物体的质量,a_c为向心加速度。
向心加速度的大小可以用以下公式表示:a_c = v^2 / r其中,v为物体的速度,r为圆周的半径。
从公式可以看出,向心加速度与速度的平方成正比,与半径的倒数成反比。
这意味着,当速度增大或半径减小时,向心加速度将增大,物体将更容易脱离圆周运动。
二、离心力和离心加速度除了向心力外,物体在匀速圆周运动中还受到一个离心力的作用。
离心力的方向与向心力相反,它试图将物体从圆周上拉出。
离心力的大小可以用以下公式表示:F_e = m * a_e其中,F_e为离心力,m为物体的质量,a_e为离心加速度。
离心加速度的大小可以用以下公式表示:a_e = v^2 / r从公式可以看出,离心加速度与向心加速度相等,但方向相反。
这是因为向心加速度使物体保持在圆周上运动,而离心加速度试图将物体拉出圆周。
三、角速度和周期在匀速圆周运动中,物体的速度是恒定的,但方向不断改变。
为了描述物体在圆周上的运动,引入了一个概念——角速度。
角速度可以用以下公式表示:ω = 2π / T其中,ω为角速度,T为运动一周所需的时间,也称为周期。
从公式可以看出,角速度与周期成反比。
当周期增大时,角速度减小;当周期减小时,角速度增大。
四、力学原理和实际应用匀速圆周运动的力学原理是基于牛顿力学的基本定律得出的。
根据这些原理,我们可以推导出许多与匀速圆周运动相关的公式和定律,如圆周运动的位移公式、速度公式、圆周运动的动能公式等。
小结⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧====∅==⎩⎨⎧fTTrvTrvfTbtwasmcbtsvaba1;2;;2343::2/::;:121πωωπ、关系:)频率()周期(单位;)角速度(单位:矢量;)线速度(、描述快慢的物理量的弧长在相等的时间通过相等物体在圆周上运动、定义:匀速圆周运动【复习检测】1、分析下图中,A、B两点的线速度有什么关系?2、分析下列情况下,轮上各点的角速度有什么关系?3、皮带传动装置BArr21=,BCrr21=,求A、B、C三点的ω与v的大小关系?4、如图所示,质点P以O为圆心、r为半径作匀速圆周运动,周期为了T,当质点P经过图中位置A时,另一质量为m、初速度为零的质点Q受到沿OA方向的拉力F作用从静止开始在光滑水平面上作直线运动,为使P、Q在某时刻速度相同,拉力F必须满足条件______.A AB BBCO(1)如图1和图2所示,没有物体支撑的小球,注意:绳对小球只能产生沿绳收缩方向的拉力①临界条件:在最高点,绳子或轨道对小球没有力的做用:mg =m v 2Rv 临界=gR②能过最高点的条件:v ≥gR ,当v >gR 时,绳对球产生拉力,轨道对球产生压力.v <v 临界时,实际上球还没到最高点时就脱离了轨道)例1. 如右图所示,质量为0.1kg 的木桶内盛水0.4kg 后,用50cm 的绳子系桶,使它在竖直面内做圆周运动。
如果木桶在最高点和最低点时的速度大小分别为9m/s 和10m/s ,求木桶在最高点和最低点对绳的拉力和水对桶底的压力。
(g=10m/s 2)(2)如图3和图4所示,有物体支撑或光滑硬管中的小球,注意:杆对球既能产生拉力,也能对球产生支持力。
①当v =0时,F N =mg (F N 为支持力).②当0<v <gR 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =gR 时,F N =0.④当v >gR 时,F N 为拉力,F N 随v 的增大而增大.例2.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 (3)如图5,小物体在竖直平面内的外轨道,做圆周运动。
质点在匀速圆周运动中的受力分析质点在匀速圆周运动中是一种常见的物体运动形式,它的运动轨迹为圆,速度大小不变。
在这种运动中,质点所受的力有向心力和离心力两个方面。
接下来我们将详细分析质点在匀速圆周运动中的受力情况。
1. 向心力的作用向心力是质点在圆周运动中指向圆心的力。
它是保持质点做圆周运动的主要力。
向心力的大小与物体的质量和速度呈正相关,与运动半径的倒数呈正比。
向心力的表达式为F = mv²/r,其中m为质点的质量,v为质点的速度,r为运动半径。
向心力的作用使质点沿着圆的轨迹运动,其方向与质点的加速度方向一致,即指向圆心。
它不对质点的速度大小产生影响,只改变质点的运动方向。
如果没有向心力的作用,质点将沿一条直线运动。
2. 离心力的作用离心力是质点在圆周运动中指向圆周切线方向的力。
它与向心力相反,是向心力的另一种表现形式。
离心力的大小与向心力相等,方向相反。
离心力的作用使质点在圆周运动中产生离心加速度,该加速度与质点的速度大小呈正比,与运动半径的倒数呈反比。
离心力的表达式也为F = mv²/r,其中m为质点的质量,v为质点的速度,r为运动半径。
离心力使质点在圆周运动中受到一个向外的力,使质点趋向于远离圆心。
它产生的结果是质点对圆心有一个离心的加速度。
离心力是一种虚拟力,它并不存在于实际物体上,只是一种惯性力。
3. 受力平衡在匀速圆周运动中,质点所受的向心力和离心力大小相等,方向相反,互相抵消。
因此,质点在匀速圆周运动中处于力的平衡状态。
向心力和离心力的平衡使得质点的速度大小保持恒定,只改变方向。
这种平衡状态使质点能够沿着圆周轨迹做匀速运动,而不会离开轨迹。
4. 影响运动形态的因素在匀速圆周运动中,影响质点运动形态的因素有质量、运动速度和运动半径。
质点的质量越大,所需的向心力和离心力就越大,运动半径越小,所需的向心力和离心力也越大。
质点的运动速度越快,所需的向心力和离心力就越大,运动半径越小,所需的向心力和离心力也越大。
第四讲匀速圆周运动受力分析★匀速圆周运动(1)线速度:V=_________=____________(2)角速度:w=_________=____________(3)线速度与角速度关系:____________(4)周期与频率关系:________________(5)周期与角速度关系:______________(6)向心力公式:F=_________=___________=__________=___________(7)向心加速度公式:a=_________=___________=__________=___________二、知识讲解知识点1:匀速圆周运动基本物理量关系的应用解题技巧:在熟记公式(1)~(5)的基础上,根据相等关系做计算。
过关练习1、关于角速度和线速度,下列说法正确的是()A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成正比D.角速度一定,线速度与半径成反比拓展题1 时针、分针和秒针转动时,下列正确说法是A.秒针的角速度是分针的60倍B.分针的角速度是时针的60倍C.秒针的角速度是时针的360倍D.秒针的角速度是时针的86400倍拓展题2 如图所示的传动装置中,B、C两轮固定在一起,绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是r A= r C= 2r B。
若皮带不打滑,三轮边缘a、b、c三点的角速度之比为______线速度之比为____________。
知识点2:匀速圆周运动向心力和向心加速度的特点过关练习1.下列关于向心力的说法中,正确的是A.做匀速圆周运动的质点会产生一个向心力B.做匀速圆周运动的质点所受各力中包括一个向心力C.做匀速圆周运动的质点所受各力的合力是向心力D.做匀速圆周运动的质点所受的向心力大小是恒定不变的过关练习2.关于物体做圆周运动的说法正确的是A.匀速圆周运动是匀速运动B.物体在恒力作用下不可能做匀速圆周运动C.向心加速度越大,物体的角速度变化越快D.匀速圆周运动中向心加速度是一恒量过关练习3.关于向心力的说法正确的是A.向心力不改变做圆周运动物体速度的大小B .做匀速圆周运动的物体受到的向心力即为物体受到的合力C .做匀速圆周运动的物体的向心力是不变的D .物体由于做圆周运动而产生了一个向心力过关练习4.下列说法正确的是A .因为物体做圆周运动,所以才产生向心力B .因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动C .因为向心力的方向与线速度方向垂直,所以向心力对做圆周运动的物体不做功D .向心力是圆周运动物体所受的合外力小结:匀速圆周运动的向心力是___________(填“恒力”或“变力”),方向总是指向_______,向心力只改变速度的________,不不改变速度的_________。
圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。
匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。
2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。
实际上就是该点的瞬时速度。
3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。
③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。
4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。
在国际单位制中,单位是秒(s )。
匀速圆周运动是一种周期性的运动。
②频率f :每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz )。
③转速n:单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。
5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。
描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。
高中圆周运动知识要点、受力分析和题目精讲(复习大全)一、基础知识匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。
为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度( )等物理量,涉及的物理量及公式较多。
因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。
1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。
所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。
【例1】关于匀速圆周运动,下列说法正确的是()A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。
【例2】在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
ωO60°30°AB解析:A 、B 两点做圆周运动的半径分别为RR r A 2130sin =︒= R R r B 2360sin =︒=它们的角速度相同,所以线速度之比3331====BA B A B A r r r r v v ωω 加速度之比3322==BB A A B A r r a a ωω 2. 质点做匀速圆周运动的条件 (1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。
高中圆周运动知识要点、受力分析和题目精讲(复习大全)一、基础知识匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。
为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度( )等物理量,涉及的物理量及公式较多。
因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。
1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。
所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。
【例1】关于匀速圆周运动,下列说法正确的是()A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。
它们的角速度相同,所以线速度之比3331====BA B A B A r r r r v v ωω 加速度之比3322==BB A A B A r r a a ωω 2. 质点做匀速圆周运动的条件 (1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。
合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。
3. 向心力有关说明向心力是一种效果力。
任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。
一.匀速圆周运动定义:一个物体若在任意相等的时间里通多的圆弧长度都相等,那这个物体就在做匀速圆周运动。
特征:线速度大小不变,周期不变,角速度不变。
向心加速度不变,但是方向时刻变,所以匀速圆周运动时变加速运动。
条件:1.物体具有初速度。
2.物体受到合外力F的方向与速度V的方向始终垂直,并指向圆心。
3.合外力的大小不变但是方向时刻在变。
二.匀速圆周运动的各个物理量,及其相互的联系。
1.线速度:物理意义:描述质点沿圆周运动的快慢。
方向:质点在圆弧某点的线速度方向在该点的切线方向。
大小:v=S/t,S是t时间内通过的弧长。
2.角速度:物理意义:描述质点绕圆心转动的快慢。
大小:w= 是连接质点和圆心半径在t时间内转过的角度。
3.周期T 频率f做圆周运动的物体运动一周所用的时间叫做周期。
做匀速圆周运动的物体在单位时间内沿圆绕圆心转动的圈数,叫做频率,也叫转速。
转数是指做匀速圆周运动的物体每分钟转过的圈数,用N表示,单位是转/分(r/min)注意:a.匀速圆周运动是非匀变速曲线运动b.“匀速”应理解为“匀速率”不能理解为“匀速度”c.合力不为零,不能称作平衡状态4.向心力:(1)定义:做匀速圆周运动的物体所受到的合力指向圆心,叫向心力。
图6-8-1-2图6-8-1-1 (2)特点:指向圆心,大小不变,方向时刻改变,是变力。
F 向=F 合(3)作用:只改变速度大小,不改变方向(4)注意:a.是一种效果力, 它可以由重力、弹力、摩擦力等单独提供,也可以由它们的合力提供。
b.“向心力”只是说明做圆周运动的物体需要一个指向圆心方向的力,而并非物体又受到一个“新的性质”的力。
即在受力分析时,向心力不能单独作为一种力。
c.变速圆周运动的向心力不等于合力,合力也不一定指向圆心。
5.向心加速度(1)定义:由向心力产生的加速度(2)特点:指向圆心,大小不变,方向时刻改变,是矢量。
4.提供的向心力: 通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中F 需向=F 合6.需要的向心力:根据物体实际运动时的质量m 、半径r 、线速度v(或角速度w)求出的向心力 F=mr w 2=m v 2/r7.离心现象(1)做圆周运动物体的运动特点:做圆周运动的物体由于本身的惯性,总有沿圆周切线飞出的倾向。