圆周运动问题受力分析
- 格式:doc
- 大小:90.00 KB
- 文档页数:2
圆周运动问题分析【专题分析】圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合(衰变后在磁场中做圆周运动)。
可见,圆周运动一直受到命题人员的厚爱是有一定原因的。
不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。
同时,也可以把常用的解题方法归结为两条。
1、匀速圆周运动匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。
只要受力分析找到合外力,再写出向心力的表达式就可解决问题。
2、竖直面内的非匀速圆周运动物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。
特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。
注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。
另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。
基本解题方法:1、涉及受力,使用向心力方程;2、涉及速度,使用机械能守恒定律或动能定理。
【题型讲解】题型一 匀速圆周运动问题例题1:如图所示,两小球A 、B 在一漏斗形的光滑容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为r A >r B ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?(只比较大小)解析:题目中两个小球都在做匀速圆周运动,其向心力由合外力提供,由受力分析可知,重力与支持力的合力提供向心力,如图3-2-2所示,由几何关系,两小球运动的向心力相等,所受支持力相等。
两小球圆周运动的向心力相等,半径关系为r A >r B ,由公式rvmF 2=向,可得v A >v B ; 由公式2ωmr F =向,可得ωA <ωB ; 由公式ωπ2=T ,可得T A >T B ;A B图3-2-1A B 图3-2-2[变式训练]如图3-3-3所示,三条长度不同的轻绳分别悬挂三个小球A 、B 、C ,轻绳的另一端都固定于天花板上的P 点。
圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
圆周运动中力与运动的关系圆周运动的加速度指向圆心,意味着物体所受的作用力在圆心方向上的合力必定指向圆心,其合力的大小为ma,其中a有多种表达方式。
处理的基本思想:按照受力分析的步骤分析找到具体场景中物体可以得到的作用力,在圆周的任意一点处,根据合力的要求处理力与力之间的关系。
例题7、一辆汽车以54km/h的速率通过一座拱桥的桥顶,汽车对桥面的压力等于车重的一半,这座拱桥的半径是m。
若要使汽车过桥顶时对桥面无压力,则汽车过桥顶时的速度大小至少是m/s。
练习1、如图所示,长为R的轻质杆(质量不计),一端系一质量为m的小球(球大小不计),绕杆的另一端O在竖直平面内做匀速圆周运动,若小球最低点时,杆对球的拉力大小为1.5mg,求:①小球最低点时的线速度大小?②小球通过最高点时,杆对球的作用力的大小?③小球以多大的线速度运动,通过最高处时杆对球不施力?练习2、“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如右图所示,已知桶壁的倾角为θ,车和人的总质量为m,做圆周运动的半径为r.若使演员骑车做圆周运动时不受桶壁的摩擦力,则(1)演员的速度。
(2)演员对桶壁的压力。
练习3、如图所示,水平转台上放着一枚硬币,当转台匀速转动时,硬币没有滑动,关于这种情况下硬币的受力情况,下列说法正确的是A.受重力和台面的支持力B.受重力、台面的支持力和向心力C.受重力、台面的支持力、向心力和静摩擦力D.受重力、台面的支持力和静摩擦力练习4、如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两个质量为m 的小环(可视为质点),同时从大环两侧的对称位置由静止滑下,两小环同时滑到大环底部时,速度都为v,则此时大圆环对轻杆的拉力大小为()A.(2m+2M)g B.Mg-2m v2/RC.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg练习5、如图所示,在半径为R 的转盘的边缘固定有一竖直杆,在杆的上端点用长为L 的细线悬挂一小球,当转盘旋转稳定后,细绳与竖直方向的夹角为θ,则小球转动周期为多大?练习6、如图所示,半径为R ,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同速率进入管内,A 通过最高点C 时,对管壁上部的压力为3mg ,B 通过最高点C 时,对管壁下部的压力为0.75mg .求A 、B 两球落地点间的距离.练习7、据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形轨道距月球表面分别约为200 km 和100 km ,运行速率分别为v 1和v 2.那么,v 1和v 2的比值为(月球半径取1 700 km)( )A.1918B. 1918C. 1819D.1819练习8、已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响.(1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T .(结合黄金代换式GM=gR 2)练习9、“嫦娥二号”卫星开始绕地球做椭圆轨道运动,经过变轨、制动后,成为一颗绕月球做圆轨道运动的卫星。
高一物理圆周运动实例分析试题答案及解析1.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对筒无滑动,物体所受向心力是()A.筒壁对物体的弹力B.物体的重力C.筒壁对物体的静摩擦力D.物体所受重力与弹力的合力【答案】A【解析】物体做匀速圆周运动,合力指向圆心,对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,如图所示其中重力G与静摩擦力f平衡,支持力N即弹力提供向心力,A正确【考点】考查了向心力2.如图,汽车过桥可近似看做圆周运动,当汽车以一定的速度通过拱桥顶点时向心力由重力和支持力的合力提供,关于两个力的关系正确的是A.N>G B.N<G C.N=G D.无法确定【答案】B【解析】汽车过拱桥顶时重力和支持力的合力充当向心力,方向竖直向下,根据牛顿第二定律可得:,故解得,所以,B正确。
【考点】考查了牛顿第二定律,向心力公式3.如图所示,汽车以受到v通过一弧形的拱桥顶端时,关于汽车受力的说法中正确()A.汽车的向心力就是它所受的重力B.汽车所受的重力与支持力的合力提供向心力,方向指向圆心C.汽车受重力、支持力、牵引力、摩擦力和向心力的作用D.以上说法均不正确【答案】B【解析】汽车过拱桥,做圆周运动,在最高点,重力和支持力的合力提供向心力,方向指向圆心,故A错误,B正确;汽车受重力、支持力、牵引力、摩擦力作用,不受向心力,故CD错误;【考点】考查了圆周运动实例分析4.套着弹簧与小球P的粗糙细杆固定在如图所示的装置上,弹簧的一端固定在装置的A点,另一端连接一质量为m的小球P,当整个装置静止时,弹簧处于拉伸状态,小球P离A点的距离为4L,离B点的距离为2L,那么当整个装置绕竖直中心轴以角速度ω匀速转动时,下列说法正确的是()A.小球P一定会更靠近B点B.小球P可能相对B点距离不变C.小球P受到的合力可能为D.小球受到的静摩擦力一定变小【答案】BC【解析】由题意知AB之间距离为6L,则OB=3L,则OP=3L-2L=L,若,则小球P相对B点距离不变,小球P受到的合力为;若小球转动的角速度比较大,则小球需要的向心力较大,可能会受到向左的较大的静摩擦力,因此小球受到的静摩擦力不一定变小,所以正确选项为B、C。
今天我们要讲解的是匀速圆周运动中的惯性力分析教案。
匀速圆周运动是指物体在以相同速度绕圆周运动的过程。
随着半径的增加,线速度也会增加,但角速度不变。
在这个过程中,物体需要克服惯性力的影响才能继续运动。
下面让我们具体地来学习一下。
一、匀速圆周运动的概念匀速圆周运动是指物体在圆形轨道内,以相同的速度做圆周运动的过程。
在这个过程中,物体以相同的速度绕圆周做匀速的圆周运动。
二、惯性力的定义在匀速圆周运动中,物体绕圆周运动会受到惯性力的影响。
惯性力是由于物体惯性的存在,使物体在瞬间改变运动状态时所产生的一种力。
例如,在圆周运动中,因为物体的运动方向不断改变,所以它会受到惯性力的影响。
三、惯性力的计算方法在匀速圆周运动中,物体的运动方向不断改变,所以会产生一个向心力的作用。
这个向心力大小可以用以下公式计算。
F = mv^2/r其中,F为向心力,m为物体的质量,v为物体的速度,r为绕圆周运动的半径。
同样地,惯性力的大小也可以用以下公式来计算。
F' = -ma其中,F'为惯性力的大小,m为物体的质量,a为物体的向心加速度。
四、惯性力与运动方向的关系在匀速圆周运动中,物体的运动方向不断改变,所以会产生一个向心力的作用。
这个向心力的方向始终指向圆心。
同时,惯性力的方向始终指向圆心外侧。
这是因为当物体绕圆周运动时,它的运动方向不断改变,因此会产生一个惯性力的作用,使它倾向于沿着半径方向飞出圆周轨道。
五、实际应用匀速圆周运动中的惯性力分析在许多实际应用中都有重要的应用价值。
例如,在机场的跑道上,当飞机准备起飞时,会以匀速做圆周运动。
这时候,惯性力的影响会使飞机倾向于沿着半径方向飞出跑道,这就需要通过引擎来提供足够的推力,以克服惯性力的影响。
还有在电动车辆的制动系统中,也巧妙地利用了匀速圆周运动中的惯性力。
当电动车辆需要进行刹车时,制动器会对车轮施加一个向心力,从而产生一个惯性力的作用,使车辆倾向于向前,从而达到更快停车的目标。
水平面内的圆周运动实例分析总结水平面内的圆周运动,顾名思义即为物体在水平面内所作的圆周运动。
在生活中这样的例子很多,其运动的分析在高中物理中也是比较重要的,对学生来说也存在着一定的难度。
其实做这方面的习题时,关键是找出是什么力来提供的向心力,将受力分析所得的实际力与理论公式中的向心力联立,就可以得到所需要求的物理量。
现将常见的水平面内的圆周运动归结如下:一、水平面内汽车转弯、物体随转盘转动:某个力提供向心力在上述两个问题中,物体都处于水平接触面上,竖直方向的支持力和重力两者互相抵消,而物体作圆周运动时都有着被向外甩出的趋势,所以向心力都是由静摩擦力提供,即f静=Fn=。
从公式还可以看出,r一定时,v越大,所需的Fn 就会越大,当所需的Fn>Fmax时,物体将不能再作圆周运动。
临界Fmax=≈F动=μmg,所以v临=μgr。
当v>v临,物体将被甩出。
二、火车转弯、漏斗内物体的圆周运动、圆锥摆类,向心力由几个力的合力提供虽然这几种情况描述的物体运动形式不同,但从受力分析上看非常相似,都是除受到竖直向下的重力之外,再受到一个倾斜的支持力或拉力。
因为物体在水平面上作圆周运动需要水平方向的向心力,所以支持力或拉力与重力的合成后的合力提供向心力,向心力大小可以通过三角形三边关系解得。
练习:1.一辆质量为2t的汽车正在水平路面上行驶,要经过一个水平转弯,已知弯道的转弯半径为20米,汽车轮子与路面的动摩擦因数为0.2,若汽车最大静摩擦力与动摩擦力相等,则汽车行驶的最大速度为()。
A.210m/sB.2m/sC.4m/sD.22m/s2.如图所示,有A、B两个完全相同的小球,在同一光滑漏斗中作匀速圆周运动,则下列说法中正确的是()。
A、两物体的线速度的大小相同B、两物体的角速度相同C、两物体的向心力的大小相同D、两物体的向心加速度大小相同3.一列火车正在行驶,发现前方有一转弯,已知在转弯处的内外轨的高度差为h,内外轨道间距为L,弯道半径为r,则火车要想通过此弯道时不受内外轨道的挤压,应以速度_____转弯。
匀速圆周运动是物理学中的一个重要概念,广泛应用于工程、生物、天文学等领域。
本文将对匀速圆周运动进行力学分析,并设计一份相应的教案。
一、力学分析1、定义匀速圆周运动是质点在平面直角坐标系中做匀速圆周运动,对于该质点的受力情况具有以下特点:(1)受力方向始终指向圆心,即所受合外力的和为向心力。
(2)向心力大小为质点运动速度的平方与圆的半径的比值,即F=mv²/r其中,m为质点质量,v为质点运动速度,r为圆的半径。
(3)因向心力的方向始终指向圆心,阻力的方向始终垂直于运动方向,即阻力不影响向心力的大小,但会使质点的速度减小。
2、运动轨迹匀速圆周运动的运动轨迹为圆,即质点沿着圆周做匀速运动。
该运动的特点是速度大小不变,但方向随时按照圆周方向改变。
3、动力学方程根据运动学方程,可以求得质点在圆周上的速度v与角速度ω之间的关系式:v=ωr其中,r为圆半径。
根据力学定律,可以得到向心力与质点的加速度a之间的关系式:F=maF=mω²ra=v²/ra=ω²r可以得出质点的运动方程:x=r·cos(ωt+φ)y=r·sin(ωt+φ)其中,φ为初始相位角。
4、能量守恒在匀速圆周运动过程中,由于所受外力始终指向圆心,无功功率为零,而由于动能为常数,有功功率也为零。
该运动符合能量守恒定律,即总机械能恒定。
5、应用匀速圆周运动在现代生产和日常生活中得到广泛应用。
例如,飞机的飞行、车辆的行驶、电子设备的工作等都牵涉到了匀速圆周运动。
二、教案设计1、教学目的通过学习,学生能够理解匀速圆周运动的概念、特点及相关定律,并能够应用所学知识解决实际问题。
2、教学重点(1)匀速圆周运动的概念。
(2)向心力的定义及性质。
(3)与匀速圆周运动相关的通用公式。
3、教学难点(1)匀速圆周运动的角速度、角频率和角位移等概念。
(2)匀速圆周运动与直线运动的比较与联系。
(3)向心力和周期的关系。
圆周运动问题受力分析
做匀速圆周运动的物体,所需向心力就是该物体受的合外力;而做变速圆周运动的物体,所需向心力则是该物体受的合外力在指向圆心方向的分力。
因此,解答圆周运动的基本思路是:先分析物体的受力情况,然后把物体受的各外力沿指向圆心(即沿半径)方向与沿切线
方向正交分解,最后用沿指向圆心的合外力等于向心力,即列方程求解做答。
例题:如下图所示,两绳系一质量为m=0.1kg的小球,上面绳长L=2m,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧;当角速度为
3rad/s时,上、下两绳拉力分别为多大?
解析:①当角速度很小时,AC和BC与轴的夹角都很小,BC并不张紧。
当逐渐增大,BC刚被拉直(这是一个临界状态),但BC绳中的张力仍然为零,设这时的角速度为,则有
将已知条件代入上式解得
②当角速度继续增大时减小,增大。
设角速度达到时,(这又是一个临界状态),则有
将已知条件代入上式解得
所以当满足时,AC、BC两绳始终张紧。
本题所给条件,此时两绳拉力、都存在。
将数据代入上面两式解得,
点评:解题时注意圆心的位置(半径的大小)。
如果时,,则AC与轴的夹角小于。
如果,,则BC与轴的夹角大于45°。
练习:如下图所示,要使小球沿半径为R、竖直放置的光滑圆形轨道的内部,从最低点A上升达到最高点B,需给小球的最小速度为多大?
参考答案:最小速度。