第七章随机振动的响应分析讲解
- 格式:ppt
- 大小:3.81 MB
- 文档页数:7
随机振动响应分析技术研究一、引言随机振动响应分析是结构工程领域中一个非常重要的课题。
结构物的振动响应具有随机性、复杂性和非线性等特点,因此,能够对结构物在随机激励下的振动响应进行研究和分析,对于提高结构物的可靠性、耐久性和安全性非常关键。
二、随机振动响应分析的方法随机振动响应分析技术主要包括两种方法:频域分析和时域分析。
1. 频域分析频域分析是指将随机振动信号分解成一系列特定频率的正弦波分量,然后对这些正弦波分量进行分析、计算和处理。
这种方法一般使用离散傅里叶变换(DFT)或快速傅里叶变换(FFT)进行处理,可以方便地进行频率分析和频率响应。
2. 时域分析时域分析是指基于时间序列的方法,通过对随机振动信号的时间序列进行分析,得到结构物的响应特性。
这种方法可以使用自相关函数、互相关函数、功率谱密度和相干函数等分析工具。
三、随机振动响应分析的应用随机振动响应分析技术在各个领域都有广泛的应用。
1. 土木工程在土木工程中,随机振动响应分析技术可以用来评估建筑物、桥梁、隧道等结构物在地震或风荷载下的响应情况,以及评估疲劳损伤的程度。
2. 航空航天工程在航空航天工程中,随机振动响应分析技术可以用来评估航天器在发射过程中的响应情况,以及评估机体结构在飞行过程中的疲劳损伤程度。
3. 机械工程在机械工程中,随机振动响应分析技术可以用来评估机械系统在振动环境下的可靠性和安全性,以及寻找和消除机械系统的振动问题。
四、随机振动响应分析技术的发展趋势随着科学技术和计算机技术的快速发展,随机振动响应分析技术也得到了极大发展和应用。
未来,随机振动响应分析技术的发展主要将呈现以下几个趋势:1. 多物理场耦合建模针对涉及多种物理场同时作用的振动问题,将机械、声学、热学、流体力学等多种物理场有机结合起来,建立更加全面且真实的多物理场耦合模型,以便更好地分析和解决复杂振动问题。
2. 精细化建模分析建立尽可能精细的结构物和振动环境的建模,以更加准确地反映实际情况,预测结构物的振动响应和疲劳损伤情况,从而提高结构物的可靠性和安全性。
随机震动对振动系统的响应分析振动系统是指任何物体受到外力作用,产生一定的运动时,都会发生振动。
振动系统广泛应用于工程领域,例如桥梁、高楼大厦、机车、飞机等,都是振动系统。
在振动系统中,随机震动是一种很常见的现象,它对振动系统的影响非常大。
因此,对随机震动对振动系统的响应进行分析研究非常重要。
本文旨在探讨随机震动对振动系统的响应分析。
振动系统的特点振动系统是由质量、弹性和阻力等构成的一种物理系统。
在运动学和动力学上,振动系统具有以下几个特点:1. 周期性:振动系统的运动状态是周期性的,它重复的运动状态叫做一个周期。
周期是时间的固定间隔,每个周期的时间是相等的。
2. 稳定性:振动系统通常是稳定的,即使系统中受到干扰力,经过一段时间后,系统的振动状态还会恢复到原来的状态。
3. 非线性:振动系统通常具有非线性特点,即系统的响应与外界干扰力的大小不成比例。
4. 周期性和幅值:振动系统的周期和幅值决定了系统的动态响应特性,周期比较短的振动系统通常响应也比较迅速。
随机震动介绍随机震动是指由多个随机振动的幅值,频率和相位组成的振动信号。
这种振动通常是由自然界中的地震、风、海浪等引起的。
与其他振动信号不同,随机振动具有以下特点:1. 运动方向和幅值都发生变化:随机震动的运动方向和振幅通常都会随时间而变化,这是和周期振动信号不一样的地方。
2. 频率范围较宽:随机震动的频率范围很宽,它是由多种频率的振动信号组成的,而这些振动信号的频率范围可能相互重叠。
3. 并非确定性信号:随机震动信号并非确定性信号,它是由多种随机振动信号组成的。
因此,它的各种特性这方面难以准确预测。
随机震动对振动系统的响应通常会产生一系列的异常情况,例如提高系统的振动幅值、降低系统稳定性、引起共振等。
因此,分析随机震动对振动系统的影响非常重要。
为了分析随机震动对振动系统的影响,通常采用频谱分析方法。
频谱分析是指通过将随机振动信号的时域波形转换成频域或相干域表示,来分析振动信号的特性。
桥梁结构中的随机振动分析与响应随着城市化进程的加快和交通运输的发展,桥梁作为城市中重要的交通结构之一,扮演着至关重要的角色。
然而,桥梁在长期使用过程中面临着各种各样的挑战,其中之一就是随机振动引起的结构疲劳和损伤。
因此,对桥梁结构中的随机振动进行分析与响应研究具有重要意义。
随机振动是指未知源和未知相位的力或位移激励作用下,结构系统所产生的综合响应。
在桥梁工程中,随机振动主要源于交通荷载、风荷载、地震荷载等各种外界因素。
这些外界因素的不确定性和复杂性使得桥梁结构的振动分析更具挑战性。
为了对桥梁结构中的随机振动进行分析,需要使用特定的数学模型和工程方法。
其中,最常用的方法之一是模态分析。
模态分析基于结构的固有振动特性,通过求解结构的固有频率、振型和阻尼比等参数,来揭示结构在不同频率下的响应特性。
对于桥梁结构来说,模态分析能够帮助工程师确定结构的振动模态,并评估结构的动力特性。
通过模态分析,可以得到结构的主要振动模态和固有频率范围,从而为后续的随机振动分析提供基础数据。
随机振动分析不仅要考虑结构的固有振动特性,还要考虑外界荷载的特性。
其中,交通荷载是桥梁结构中最主要的外部激励源。
交通荷载的特点是频率范围广、载荷大小变化较大,并且具有一定的随机性。
因此,对桥梁结构的随机振动响应分析,需要将交通荷载特性考虑在内。
常用的方法是使用车辆荷载模型和荷载谱进行分析。
通过建立合适的车辆荷载模型,结合实际交通流量和车辆类型等参数,可以准确模拟桥梁结构在交通荷载作用下的随机振动响应。
除了交通荷载外,风荷载也是桥梁结构中不可忽视的外界激励源。
在某些地区,强风甚至风暴的影响可能对桥梁结构产生较大的振动作用。
风荷载的随机性和非定常性使得对桥梁结构的风振分析具有较高的难度。
为了应对这个挑战,工程师通常使用风洞试验、数值模拟和现场监测等方法,对桥梁结构在风荷载作用下的振动响应进行评估。
地震荷载是另一个重要的桥梁结构随机振动源。
地震的不可预测性和破坏性使得对桥梁结构的地震响应进行分析至关重要。
结构随机振动响应特性分析与控制方法研究随着城市化进程的加速和人们对建筑物安全性的要求不断提高,结构随机振动的研究和控制变得越来越重要。
本文将探讨结构随机振动的响应特性分析以及控制方法的研究。
第一部分:结构随机振动的响应特性分析结构随机振动是指由于外部激励或内部不均匀性引起的结构的随机振动。
为了深入了解结构随机振动的特性,需要进行响应分析。
响应分析是通过数学建模和计算方法,研究结构在随机激励下的振动响应。
在结构随机振动的响应特性分析中,常用的方法有频域分析和时域分析。
频域分析是通过将结构的振动响应信号转换为频谱,分析不同频率下的振动特性。
时域分析则是直接观察结构在时间上的振动响应,了解结构的动态行为。
此外,还有一种重要的方法是模态分析。
模态分析是通过计算结构的模态参数,如固有频率、阻尼比和模态形态等,来研究结构的振动特性。
模态分析可以帮助我们了解结构的主要振动模式和频率范围,为后续的振动控制提供依据。
第二部分:结构随机振动的控制方法研究结构随机振动的控制方法研究是为了减小结构的振动响应,提高结构的稳定性和安全性。
常用的结构振动控制方法包括被动控制、主动控制和半主动控制。
被动控制是指通过在结构上安装吸振器、阻尼器等被动装置,来吸收和分散结构的振动能量。
被动控制方法简单、成本较低,但需要根据结构的特性进行设计和安装。
主动控制是指通过在结构上安装传感器和执行器,实时监测和调整结构的振动响应。
主动控制方法可以根据实时的振动信号进行反馈控制,实现有效的振动抑制。
然而,主动控制方法的实施较为复杂,需要高度的技术支持和成本投入。
半主动控制是被动控制和主动控制的结合,通过在结构上安装可调节的装置,实现对结构振动的控制。
半主动控制方法综合了被动控制和主动控制的优点,具有较高的控制效果和较低的成本。
结构随机振动的控制方法研究还涉及到多学科的交叉,如结构动力学、控制理论、材料科学等。
通过不断的研究和探索,我们可以提高结构的抗震性能,保障人们的生命财产安全。
随机振动分析及其应用在物理学和工程学领域中,振动运动被广泛应用于各种机械系统中,这些系统包括建筑物、飞机、船舶、汽车和工业机械等等。
振动分析是通过对振动系统进行分析和研究,揭示振动行为的动力学行为和振动特性。
这是传统工程学和机械学中一个重要的研究领域,随着科技的不断进步,应用场景也越来越广泛。
随机振动分析是对复杂振动系统进行分析和研究的一种方法。
随机振动分析涉及到的振动信号通常是由许多不同的信号组成的,这些信号通常是从随机系统和随机场中收集得到的,因此随机振动分析是将随机信号进行分析的过程。
随机振动的特点和应用随机振动信号常常包含各种各样的频率分量,这使得对其进行详细分析和建模非常困难。
此外,随机振动信号还具有随机性,可能会随着时间的推移而发生变化。
随机振动分析在许多实际应用场景中都起着至关重要的作用。
例如,在车辆和机械设备中,随机振动可以导致覆盖物件的破裂和损坏,从而影响整个系统的安全性和可靠性。
在结构动力学领域中,随机振动分析可以揭示建筑物的长期行为和生命周期问题。
此外,随机振动分析还可以用于预测物体的寿命和损坏机理。
随机振动分析方法随机振动分析一般包括两种分析方法:时域分析和频域分析。
时域分析时域分析是将信号在时间域内进行分析的方法。
通过时域分析,我们可以研究振动系统在不同时间段内的行为,并获得振动信号的统计特性。
时域分析方法包括了自相关函数、互相关函数等。
频域分析频域分析是将信号在频率域内进行分析的方法。
频域分析通常适用于振动系统具有稳态行为的情况下。
通过分析系统中不同频率的分量,我们可以揭示振动的谐波和非谐波特性,并且可以预测系统随着时间的发展可能会出现什么问题。
常用的频域分析方法包括功率谱密度函数、自谱函数等。
随机振动分析的应用1. 随机震动分析随机震动分析广泛应用于地震和气动力学研究,以及建筑物、桥梁和船舶等结构的工程设计中。
在地震研究中,随机震动分析可以用于评估不同地震条件下建筑物的安全性。
第一步:
1,建立一个模态分析步(简)
2,建立一个随机振动分析步;设置好相关参数,扫频的范围为1到2000HZ;分析采用模态阻尼,从1到20阶模态都是0.02。
第二步:
1,在LOAD模块中进行操作,建立一个PSD曲线。
本操作是在在基座上加载一个恒为10G2/HZ的功率谱曲线。
2,建立一个BASE MOTION,选择加载的方向,本案例加载两个方向,X方向和Y方向,所以整个操作过程需要重复一次(BC-2为U1方向,BC-3为U2方向)把这个PSD 曲线和加载关联起来。
然后就可以提交计算检查结果了。
注意的是,随机振动的载荷输入单位是G2/HZ,所以输出的加速度单位也是一样的,同理,位移,速度也是类似的,仅仅是一个统计意义的数值,单位是统计意义的单位。
因为随机载荷是统计意义的,所以ABAQUS默认并不输出MISES应力,但是可以自己在OUTPUT中输出MISES应力和应力的均方根数值,这个功能是早期的版本没有的。
随机振动系统的随机响应分析及其优化设计随机振动系统是指系统的外部激励是以随机波形出现的振动系统。
例如,一座大桥被风力或行车引起的震动,飞机在空气中运动时引起的振动等。
在实际工程结构中,许多振动系统都存在着随机激励,因此需要对系统进行随机响应分析。
随机振动系统的响应值是一个随机变量,因此它不能用一个确定的数值来描述。
为了对这种情况进行分析,我们需要用到概率论和统计学的知识。
随机激励的分布很复杂,常常假设为高斯分布。
高斯分布的随机变量的概率密度函数可以用以下公式表示:$$ f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$其中 $\mu$ 是均值,$\sigma$ 是标准差。
在振动系统中,均值常常取为0,因为我们主要关心振动的强度而不是振动的方向。
标准差则是描述振幅大小的指标,常用于刻画振动系统的强度。
在进行随机响应分析之前,需要对系统进行建模。
一般需要用到有限元法等数学方法对系统进行数学描述。
建模的目的是为了将系统的振动行为转化为数学方程,方便我们进行分析。
在建立数学模型之后,可以根据随机激励的特点,通过数学方法求得随机响应的概率密度函数、方差、均值等数学参数。
这些参数反映了系统响应的大小、变化范围、稳定性等重要的特性。
通过分析这些参数,我们可以得到系统响应的概率分布情况,找到系统的主要响应模式,为系统的设计和优化提供依据。
针对特定的工程结构和设计要求,我们可以通过优化设计来降低系统的随机响应。
优化设计是指在满足特定要求的前提下,选择合适的参数和方案,使系统效能达到最佳。
根据不同的优化目标和约束条件,我们需要采用不同的优化方法和算法。
常用的优化方法包括单目标优化、多目标优化、遗传算法等。
单目标优化是指在满足一定的约束条件下,同时优化一个目标函数,例如最小化系统的响应值。
多目标优化则是优化多个目标函数,例如既要最小化系统的响应值,又要使系统的重量尽量轻。
随机结构激励模型及随机振动反应分析结构在服役期间,必将受到各种荷载的作用。
对于建筑结构,在服役期间不可避免的会受到风力的作用,而且甚至会受到地震的作用;海洋上的结构,如海上风力发电高塔,海洋平台等,会受到海洋波浪的作用;行驶在路面上的车辆,由于路面的不平顺使得车辆受到动力作用;飞机在飞行中由于大气的自由流动也会受到扰动。
这些作用在结构上的荷载,不仅随着时间发生变化,而且具有明显的随机性。
而对于随机动力荷载下结构响应的问题,确定性的动力分析无法考虑随机性,随机振动理论应运而生。
随机振动的物理数学基础早在30年代已基本奠定。
1827年Brown对悬浮在水中微小花粉粒子杂乱运动的观察,为最早的系统对随机激励响应的实验研究。
19世纪后期Maxwell和Boltzmann用统计方法描述系统可能状态和达到的概率,但没有考虑统计随时间的演化。
1919年Rayleigh用“随机振动”一词描述一等价于平面随机行走的声学问题。
用随机方法研究动力学行为始于1905年,Ein stein从理论上解释了Brown运动,1915年Smoluchowski扩展了Einstein的结果并进行实验研究。
1908年Langevin导出含有随机项的微分方程,成为随机微分方程的第一个例子,Fokker于1915年、Plank于1917年、Колмогоров于1931年、伊藤于1946年都对随机微分方程的研究作出贡献。
1933年Андронов等应用随机微分方程讨论随机扰动下一般动力系统的运动。
1920年Taylor引入相关函数概念,Wiener于1930年和Хинчин于1934年分别建立了谱的理论,这些数学工具首先应用于通讯和控制系统而不是结构和机械的强度分析,因为工程技术尚无此要求。
随机振动的研究始于50年代中期。
由于喷气和火箭技术的发展在航空和航天工程中提出一系列问题,如大气湍流引起的飞机颤振,喷气噪音导致的飞行器表面结构声疲劳,传动系统中滚动件不光滑而啮合不完善的损伤积累,火箭推进中运载工具有效负载可靠性等,都促使研究者运用已有数学工具,并借鉴这些工具在通讯等学科中的应用以解决面临的工程问题。
机械工程中的随机振动分析随机振动分析在机械工程领域中具有重要的应用价值。
随机振动是指在时间和频率上变化不规则、不可预测的振动信号。
相比于确定性振动,随机振动更具挑战性,因为它不遵循某种确定的规律。
因此,对于机械工程师而言,研究随机振动并预测其影响对于设计和维护结构件、设备和机械系统非常重要。
要进行随机振动分析,首先需要了解随机振动信号的特征。
随机振动信号是由许多频率和振幅不同的振动成分组成的。
这些成分通常受到外界因素的影响,例如气候、机械振动或电磁辐射等。
通过将随机振动信号转化为频域表示,我们可以获得总的振动能量随频率的分布,这有助于进一步分析和理解系统的振动特性。
在机械工程中,随机振动分析主要应用于以下几个方面:1. 结构动力学:结构的安全可靠性是机械工程设计的关键要素。
随机振动分析可以帮助工程师预测结构在不同工况下的振动行为,包括自然振动频率、模态和共振等。
通过模态分析,可以确定结构的固有频率和振型,从而避免共振现象对结构的破坏。
2. 振动控制:随机振动分析也广泛应用于机械系统的振动控制。
在很多实际应用中,机械系统的振动需要控制在一定范围内,以确保系统的正常运行和寿命。
通过分析系统的振动特性,工程师可以设计控制系统,采取相应的控制策略,抑制或消除振动。
3. 可靠性评估:在机械工程中,很多结构和设备需要在严苛的工况下工作,例如航空航天、能源等领域。
随机振动分析可以帮助评估系统的可靠性,预测系统在随机振动环境下的寿命和性能损失。
这对于选择合适的材料和设计参数以及制定维护计划都具有重要意义。
4. 噪声控制:随机振动信号通常与噪声相关,例如噪声源产生的振动、流体介质中的振动等。
在机械工程中,对于噪声的控制是非常重要的,因为噪声不仅会对人的健康和舒适产生负面影响,还会对机械设备和结构产生损坏和故障。
随机振动分析可以帮助工程师确定噪声源、噪声的传播途径和传播路径,并制定相应的控制策略。
综上所述,随机振动分析在机械工程中具有广泛的应用,涉及结构动力学、振动控制、可靠性评估和噪声控制等方面。
结构设计知识:结构设计中的随机振动分析随机振动分析是结构设计中的一项重要技术,它能够帮助工程师在设计过程中更准确地了解结构在复杂环境下的动态响应情况,从而制定更有效的维护和保养计划,提高结构的安全性和可靠性。
在本文中,我们将探讨随机振动分析的基本概念、方法和应用,希望能为有志于从事结构设计工作的读者提供一些有用的参考信息。
一、随机振动分析的基本概念随机振动是指结构在随机或不规则的外力作用下产生的振动,其特点是频率和振动方向随时变化,并且与外界环境的状态有关。
随机振动分析通过建立更真实、更全面的结构模型,考虑到外部环境的随机性因素,以及结构本身的随机性因素,实现了对结构振动响应的最优化仿真模拟。
随机振动分析还可以用于评估结构的寿命和可靠性,以及确定结构在不同环境下的最适使用条件。
二、随机振动分析的方法随机振动分析的方法通常分为四个步骤:建立分析模型、定义外界随机振动负荷、计算结构响应、对结果进行评估。
1.建立分析模型在建立结构分析模型时,需要考虑材料和结构的本质特性,确定机构的几何形状和尺寸,并确定结构响应的潜在机制。
通常,随机振动分析采用板壳、有限元等方法建立结构模型。
2.定义外界随机振动负荷外界随机振动负荷通常指地震、风力、水流、机械振动等对结构施加的随机振动荷载。
在真实的环境下,随机振动负荷的频率变化范围和负荷强度不断变化,因此在随机振动分析中需要定义随机振动负荷的统计特性和概率分布。
3.计算结构响应通过分析结构的响应,可以对其在外界随机振动下的抗震能力进行评估,包括动态应力、变形和位移等。
通常,随机振动分析采用动力学方法或振动分析方法进行计算。
在计算过程中,需要考虑各种不确定性因素,如材料性能、结构几何形状、环境随机变量等,以及一些特殊因素,如结构损伤、非线性特性等。
4.对结果进行评估最后,需要对计算结果进行评估,确定结构的强度和刚度、动态特性等参数,并评估结构在不同环境下的稳定性和可靠性。
随机振动信号处理与分析现代工程中经常使用随机振动来研究物体的振动状态,随机振动是指不按照某种规则发生的振动,它具有随机性和不可预测性,因此需要对其进行信号处理和分析来理解物体的振动特性,并给出合理的控制和改进措施。
一、随机振动信号的产生在自然界中,很多振动是随机的,例如海浪、气流等等,它们都是受到无数因素的影响,无法预测其振动状态。
而在工程结构中,材料的缺陷、工作环境、负荷变化等都可能导致结构的随机振动。
一般情况下,随机振动信号是由一个完整的振动信号和一系列突发事件、噪声等杂散信号相混合而成,这些杂散信号可能会掩盖信号的主要振动特征,因此需要对其进行处理和分析。
二、随机振动信号处理方法随机振动信号处理是一项非常重要的工作,其目的是从原始信号中提取出有用的信息,帮助我们理解物体的振动特性。
以下为常用的随机振动信号处理方法:1、希尔伯特-黄变换(HHT)希尔伯特-黄变换是一种比较新的信号处理方法,它是通过对原始信号进行分解,分解出的每个分量代表的是不同频率振动的贡献,再将这些分量重构,得到原始信号的包络线。
2、功率谱密度分析功率谱密度分析是一种将时域信号转化为频域信号的方法,它可以帮助我们了解信号中的频率分布情况。
通过对随机振动信号进行功率谱密度分析,可以得到相应的频谱图,从而判断信号中哪些频率成分对物体的振动特性产生更大的影响。
3、小波分析小波分析是一种比较流行的信号处理方法,它是通过将信号分解成多个小波分量,从而了解信号中不同尺度的变化。
对于随机振动信号,小波分析可以将其分解成多个频率范围不同的分量,分别了解不同频率下物体的振动特性。
三、随机振动信号的分析方法在处理完随机振动信号后,需要对其进行进一步的分析。
以下为几种常用的分析方法:1、均方根值(RMS)均方根值是一个常用的随机振动信号分析方法,它可以用来衡量信号的振动大小。
在实际应用中,常常会将均方根值与参考值相比较,从而判断物体的振动状态。
随机振动分析随机振动是只能从统计的角度描述的振动。
在任何给定的时间内,瞬态幅值都是未知的,它们用其统计特性(如平均值、标准方差和超过某个值的可能性)来表示。
随机振动的示例包括地震运动、海浪的高度和频率、飞机和高层建筑上的风压波动以及因火箭和喷气式发动机噪声引起的声音激励。
这些随机的激励通常用功率频谱密度 (PSD) 函数来描述。
NX Nastran 在频率响应分析之后的后处理步骤中执行随机响应分析。
频率响应分析用于生成传递函数(即输出输入比)。
将输入 PSD 乘以传递函数可得到响应PSD。
输入 PSD 可采用自动谱密度或交叉谱密度的形式。
随机响应输出由如下值组成:响应 PSD、ATOC(自相关函数)、每单位时间中具有正斜率的零交叉的数量以及响应的 RMS(均方根)值和 CRMS(累积均方根)。
可使用参数 RMSSF 对 RMS 和 CRMS 进行按比例调整。
默认情况下,频率响应输出会在随机震动分析中被抑制。
要获取频率响应输出,请指定 SYSTEM(524)=1。
NX随机响应计算用来定义随机过程的函数功率谱密度 (PSD) 函数功率谱密度 (PSD) 函数又称作自动谱密度函数,软件使用该工具来定义和计算随机过程(激励或响应)。
PSD 函数是实数函数,它用均方值的单面光谱密度来描述随机激励 (1),其定义如下所示:方程 1其中 ( )* 是复共轭的转置矩阵多个激励之间的关联使用创建关联命令,可以将多个随机激励关联在一起。
关于更多信息,请参见PSD 相关。
PSD 相关随机事件是基于统计上的分析,这种分析允许您应用一次或多次功率谱密度(PSD) 函数激励。
PSD 激励可以表示对您并不知道其准确大小的力的取样。
默认情况下,PSD 函数是独立的(不相关)。
但是,新建相关性对话框允许您使用相位角或时间延迟将两个 PSD 激励相关。
注释您仅可以在相同类型激励之间定义相关性。
例如,可在某分布式载荷和另一分布式载荷之间定义相关性,在节点力和节点力之间或在强迫运动和强迫运动之间定义相关性。