清华大学结构力学位移法
- 格式:pptx
- 大小:2.20 MB
- 文档页数:68
结构力学第8章位移法位移法是结构力学中一种常用的分析方法。
它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。
位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。
位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。
位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。
2.应用边界条件。
根据边界条件,确定结构的支座的位移和转角值。
支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。
3.构建位移方程组。
将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。
位移方程组是未知反力系数的线性方程组。
4.解位移方程组。
通过解位移方程组,求解未知反力系数。
可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。
5.求解反力和应力分布。
通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。
这些反力和应力分布可以进一步用于结构的设计和评估。
位移法的优点是适用范围广泛,适合复杂结构的分析。
它可以处理线性和非线性的结构,包括静力学和动力学的分析。
同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。
然而,位移法也存在一些限制。
首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。
其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。
此外,位移法在处理大变形和非线性结构时可能会遭遇困难。
综上所述,位移法是结构力学中一种重要的分析方法。
它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。
然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。
结构力学中的位移法
位移法是基于以下假设的:结构单元之间的约束全部通过边界条件来
体现,结构中的材料是线弹性材料,结构中的每个单元之间是相互独立和
互不干扰的。
位移法的基本思想是首先假设结构的位移场,然后利用位移场的表达
式和边界条件,推导出结构的应力、应变和位移等信息。
具体步骤如下:
1.确定结构的约束条件:根据结构的平衡条件,确定结构各部分之间
的约束关系。
一般包括边界条件和连接条件等。
2.建立位移场:通过将结构的变形分解为一系列位移函数的线性组合,建立位移场。
常用的位移函数包括常数、线性函数、二次函数等。
3.推导位移场的表达式:利用结构的几何关系和材料的力学性质,根
据平衡条件和应力-应变关系,推导出位移场的表达式。
4.边界条件和连接条件:利用结构的边界条件和连接条件,确定位移
场中的待定系数。
5.应力和应变的计算:利用位移场的表达式和应力-应变关系,计算
结构中各点的应力和应变。
6.变形和位移的计算:利用位移场的表达式,计算结构中各点的变形
和位移。
7.校核:通过校核位移场的可行性和合理性,验证所得结果的准确性。
位移法的优点是可以处理各种复杂的边界条件和载荷情况,适用于各
种不规则结构。
但是位移法也存在一些局限性,如要求解一些复杂结构时,可能需要大量的计算和繁琐的推导过程。
总之,位移法是结构力学中一种重要的解决结构问题的方法,通过确定结构的位移场来分析结构的力学性能,具有广泛的应用前景。
在实际工程中,位移法被广泛运用于结构设计和分析中,是一种非常有效的结构分析方法。
结构力学位移法的计算一、结构力学位移法的基本原理结构力学位移法基于结构静力学原理,通过分析结构的受力平衡、变形和刚度等特性,计算结构的位移。
其基本原理是建立结构的数学模型,利用力学等效原理将外力转化为内力,进而计算出结构的位移。
其求解过程通常通过数学公式和计算软件来实现。
二、结构力学位移法的计算步骤1.确定结构的边界条件和约束条件。
边界条件指结构在边界上受到的力或位移约束。
约束条件指固定点、支座的位置以及其他限制。
边界条件和约束条件对结构的位移计算具有重要影响。
2.建立结构的数学模型。
数学模型是结构力学位移法的核心,可以通过数学方程或矩阵形式来表示。
常用的模型有刚度矩阵法和有限元法。
刚度矩阵法适用于简单结构,而有限元法适用于复杂结构。
3.计算结构的刚度矩阵。
刚度矩阵描述了结构的刚度特性,可以通过结构的几何和材料性质来计算。
刚度矩阵的计算通常包括杆件的刚度以及节点刚度的组装。
4.应用边界条件和约束条件。
根据结构的边界条件和约束条件,将其转化为数学方程或矩阵形式,然后应用到结构的刚度矩阵上。
一般通过修正刚度矩阵或施加位移限制来实现。
5.求解结构的位移。
通过求解修正后的刚度矩阵和边界条件所构成的方程组,可以得到结构的位移。
通常使用数值方法,如高斯消元法、LU 分解法或迭代法。
6.分析与验证结果。
计算得到的结构位移可用于分析结构的变形、挠度、应力等参数。
还可以与设计要求进行对比和验证,以评估结构的可靠性和稳定性。
三、结构力学位移法的应用1.建筑结构设计。
在建筑结构设计中,利用结构力学位移法可以分析和优化建筑物的静力学特性,确保其稳定性和可靠性。
2.桥梁工程。
结构力学位移法可用于桥梁的设计和分析,帮助工程师评估桥梁的变形、位移和受力状况。
3.航天器设计。
在航天器设计中,结构力学位移法可用于分析航天器的振动、变形和稳定性,确保其在太空中的安全运行。
4.机械工程。
结构力学位移法也可以应用于机械结构的设计和分析,例如汽车、飞机和机器人等。
结构力学位移法结构力学是研究结构物的力学性能和变形规律的科学,位移法是结构力学中常用的一种分析方法。
它通过计算结构物各个节点的位移,进而求解出结构物的应力、应变等力学参数。
下面将详细介绍位移法的原理和应用。
一、位移法的原理位移法是一种基于力的平衡方程和位移的相关性质来计算结构物响应的方法。
它的基本原理是通过建立结构物的整体刚度方程,解这个方程得到各节点的位移,再根据位移计算出相应节点上的应力和应变。
在应用位移法时,首先需要确定结构物的受力状态,即施加在结构物上的外力和边界条件。
然后,根据结构物的几何约束条件和材料特性,建立结构物的整体刚度方程。
这个方程是一个描述结构物节点位移与受力关系的方程,通常表示为[K]{D}={F},其中[K]是结构物的刚度矩阵,{D}是节点位移矩阵,{F}是节点受力矩阵。
解刚度方程可以得到节点位移矩阵{D},再通过位移与应力或应变的关系,计算出各个节点上的应力和应变。
常用的位移与应力或应变的关系包括伯努利梁理论、平面假设等。
最后,根据应力或应变条件,判断结构物的安全性和稳定性。
二、位移法的应用位移法广泛应用于各种结构物的力学分析和设计中,特别是对于复杂结构和非线性问题的分析更具优势。
1.梁和框架的分析对于梁和框架结构,可以根据位移法计算出节点上的位移、弯矩、剪力和轴力等力学参数。
通过对结构物的力学性能的准确分析,可以进行合理的结构设计和优化。
2.刚架和刚构的计算在刚架和刚构的计算中,位移法可以用来求解节点刚度,从而得到结构物的受力分布和变形情况。
这对于评估结构物的稳定性和刚度有重要意义。
3.非线性问题的分析位移法还可以应用于非线性结构的分析,如软土地基的承载力计算、非线性材料的应力分析等。
在这些情况下,结构物的刚度和应力等参数会随着受力状态的变化而发生变化,需要通过迭代的方法来求解。
4.动力分析位移法也可以用于结构物的动力分析。
动力分析主要研究结构物在动态载荷下的响应和振动特性。
清华⼤学《结构⼒学习题集》第三章静定结构的位移计算⼀、判断题:1、虚位移原理等价于变形谐调条件,可⽤于求体系的位移。
2、按虚⼒原理所建⽴的虚功⽅程等价于⼏何⽅程。
3、在⾮荷载因素(⽀座移动、温度变化、材料收缩等)作⽤下,静定结构不产⽣内⼒,但会有位移且位移只与杆件相对刚度有关。
4、求图⽰梁铰C 左侧截⾯的转⾓时,其虚拟状态应取:5、功的互等、位移互等、反⼒互等和位移反⼒互等的四个定理仅适⽤于线性变形体系。
6、已知M p 、M k 图,⽤图乘法求位移的结果为:()/()ωω1122y y EI +。
7、图a 、b 两种状态中,粱的转⾓?与竖向位移δ间的关系为:δ=? 。
8、图⽰桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
9、图⽰桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
⼆、计算题:10、求图⽰结构铰A 两侧截⾯的相对转⾓?A ,EI = 常数。
11、求图⽰静定梁D 端的竖向位移 ?DV 。
EI = 常数,a = 2m 。
12、求图⽰结构E 点的竖向位移。
EI = 常数。
13、图⽰结构,EI=常数,M =?90kN m , P = 30kN 。
求D 点的竖向位移。
14、求图⽰刚架B 端的竖向位移。
15、求图⽰刚架结点C 的转⾓和⽔平位移,EI = 常数。
16、求图⽰刚架中D点的竖向位移。
EI =常数。
17、求图⽰刚架横梁中D点的竖向位移。
EI =常数。
18、求图⽰刚架中D 点的竖向位移。
E I = 常数。
19、求图⽰结构A、B两截⾯的相对转⾓,EI =常数。
20、求图⽰结构A 、B 两点的相对⽔平位移,E I = 常数。
21、求图⽰结构B 点的竖向位移,EI = 常数。
22、图⽰结构充满⽔后,求A 、B 两点的相对⽔平位移。
E I = 常数,垂直纸⾯取1 m 宽,⽔⽐重近似值取10 kN / m 3。
23、求图⽰刚架C 点的⽔平位移 ?CH ,各杆EI = 常数。
结构力学第七章位移法1.引言结构力学是研究结构受力、变形和稳定性的力学分支。
在结构力学中,位移法是一种重要的分析方法,用于求解结构的变形和应力分布。
2.位移法的基本原理位移法是基于以下两个基本原理:(1)弹性体的受力状态可通过满足平衡条件来确定;(2)位移场的连续性条件,即位移场在结构内部要处处连续,边界上要满足给定的边界条件。
3.位移法的基本步骤位移法的基本步骤如下:(1)建立结构的受力模型,包括结构的材料性质、几何形状和边界条件等;(2)选取适当的位移函数形式,以确定位移场;(3)利用平衡方程和满足位移场连续性条件的边界条件,求解未知的位移和受力分布;(4)利用位移和受力分布计算结构的变形和应力分布。
4.位移法的应用位移法广泛应用于各种结构的力学分析,特别是对于复杂的非线性和不规则结构,位移法是一种常用的分析方法。
以下是一些常见的应用:(1)梁的挠曲分析:位移法可以用来求解梁的挠曲问题,通过选取合适的位移函数形式,可以得到梁的弯曲形状和弯矩分布。
(2)柱的稳定性分析:位移法可以用来求解柱的稳定性问题,通过选取合适的位移函数形式,可以得到柱的稳定性临界载荷和稳定形状。
(3)桁架结构的分析:位移法可以用来求解桁架结构的强度和刚度,通过选取合适的位移函数形式,可以得到桁架结构的内力和变形。
(4)地基基础的分析:位移法可以用来求解地基基础的变形和应力分布,通过选取合适的位移函数形式,可以得到地基基础的沉降和周边土体的应力分布。
5.位移法的优缺点位移法作为一种结构力学的分析方法,具有以下优点:(1)位移法适用于各种结构的力学分析,可以求解复杂的非线性和不规则结构问题;(2)位移法具有较强的适用性和灵活性,可以根据实际情况选取不同的位移函数形式;(3)位移法的计算步骤相对简单,易于实现。
然而,位移法也存在一些缺点:(1)位移法需要选取适当的位移函数形式,这对分析结果的准确性有较大影响;(2)位移法的计算过程较为繁琐,需要手动推导和求解方程组,耗费时间和精力。
结构力学位移法详解结构力学是一门研究物体受力和变形关系的科学,它对于工程结构的设计和分析具有重要的意义。
结构力学包括静力学和动力学两个方面,其中位移法是解决结构静力学问题的一种重要方法。
位移法是一种基于结构位移的方法,通过建立结构的位移方程来求解结构中的受力和变形情况。
相比于应力法,位移法在简化问题过程中能够更好地处理约束条件和边界条件,使得解题更加简化和精确。
在位移法中,首先需要确定结构的边界条件,即结构的约束条件和边界条件。
然后根据结构的受力平衡和力的平衡条件,建立结构的位移方程。
位移方程是一个描述结构变形情况的方程,通过解这个方程可以得到结构的位移分布。
位移方程的建立通常需要以结构单元为基础,将整个结构分解为不同的单元进行分析。
每个单元之间通过节点连接,将力和位移传递给下一个单元。
而每个单元的位移方程则可以通过应力-应变关系、平衡方程和简化条件得到。
在求解位移方程时,常常使用有限差分法、有限元法或弹性力学公式等数值方法来近似求解。
这些数值方法将结构离散化,并通过数值计算得到结构的位移分布。
在得到结构的位移分布后,可以进一步计算结构的应力和应变分布,以及其它受力和变形相关的参数。
这样,就可以对结构的安全性和机械性能进行评估和优化。
总结起来,位移法是通过建立结构的位移方程来求解结构静力学问题的一种方法。
通过分析结构的位移分布,可以得到结构的应力和应变情况,进而评估结构的安全性和机械性能。
在实际工程问题中,位移法经常用于分析和设计各类结构,具有重要的实际应用价值。