CRTSⅡ型板式无砟轨道结构设计
- 格式:doc
- 大小:2.46 MB
- 文档页数:38
第一章 CRTSⅡ型板式无砟轨道施工技术一、前言以CRTSⅡ型板式无碴轨道为代表的纵连板式无碴轨道,由于运用了特殊的无辅助轨测量定位技术,因而在施工过程中从底座混凝土浇筑、轨道板运铺及垫层砂浆灌注等均采用轮胎式成套施工机械及设备(以下简称“轮胎式成套机组”),进而可在铺轨到达之前完成轨道板铺设及轨道线性调整的绝大多数工作,在减少铺轨后期工作量的同时,也实现了无砟轨道施工的多点平行作业,为加快工程进度缩施工周期创造了条件。
这种轮胎式成套机组施工技术在长桥地段的优势尤为明显,也更适用今后铁路客运专线大规模采用长桥设计的需要。
以京津城际铁路长桥上CRTSⅡ型板式无碴轨道施工为例,纵连板式无碴轨道的施工包括:底座钢筋混凝土浇筑,轨道板的运输和铺设,轨道板精调,垫层CA 砂浆的搅拌与灌注,以及后期轨道板宽缝张拉及混凝土浇筑和轨道板剪力连接。
所使用的成套机组包括:混凝土运输罐车、混凝土汽车泵、平板汽车及汽吊、轮胎式铺板龙门吊、轮胎式轨道板双向运输车、CA砂浆移动搅拌车以及其他运输车辆。
二、概述㈠、工程概况京津城际轨道交通工程全长113.2km,采用CRTSⅡ型板式无砟轨道结构,引进德国博格板式无砟轨道系统,是我国第一条设计时速350km的无砟轨道铁路客运专线。
中铁二局承担了约5000块/16.8双线公里CRTSⅡ型轨道板铺设的施工任务,其中80%位于长桥地段,施工工期2007年5月至10月28日。
中铁二局在取得长桥上底座混凝土浇筑、轨道板桥面运铺、快速精调、高性能沥青水泥砂浆(以下简称“CA砂浆”)的重大技术突破后,于2007年6月4日开始底座混凝土施工、7月4日在全线率先开始CRTSⅡ型轨道板灌浆施工。
㈡、技术特点CRTSⅡ型板式无砟轨道,沿用了博格预应力轨道板结构、数控磨床打磨承轨槽、高精度定位、CA砂浆垫层等原有的技术和设计。
CRTSⅡ型板式无砟轨道系统层次构成自下而上依次为:桥梁上19cm厚钢筋混凝土底座或路基上30cm厚素混凝土底座、3cm厚CA砂浆垫层、20cm厚轨道板、扣件系统和无缝长钢轨,轨道板标准长度650cm 、宽255cm 。
CRTSⅡ型板式无砟轨道施工方案1.施工准备工作1.1轨道设计:根据需要确定轨道的布置、规格和数量,并进行轨道段的划分。
1.2材料准备:准备好CRTSⅡ型板式无砟轨道的相关材料,包括轨道板、预应力构件、安装工具等。
1.3施工人员:组织施工人员,包括轨道施工人员、设备操作人员等。
1.4设备准备:准备好施工所需的设备,包括安装机、起吊设备、测量仪器等。
2.施工步骤2.1地基准备:清理施工区域,确保地基平整、无杂物。
2.2安装轨道板:根据轨道设计要求,使用安装机将轨道板依次安装在地基上。
2.3固定轨道板:使用预应力构件进行轨道板的预应力固定。
预应力构件的选择和安装依据轨道设计要求进行。
2.4轨道板的上部结构施工:根据需要进行轨道板上部结构的施工,包括防护板、轨枕、轨扣、防滑材料等的安装。
2.5轨道调整和测试:使用测量仪器对轨道进行调整和测试,确保轨道的水平度和弯曲度符合要求。
2.6悍然施工:轨道施工完成后,进行固定和检查,确保施工质量。
3.安全措施3.1施工现场安全:在施工现场设置警示标志和围栏,做好交通组织,保证施工现场的安全。
3.2施工人员安全:施工人员需佩戴安全帽、防护鞋等个人防护装备,严禁穿插行走,确保施工人员的安全。
3.3设备操作安全:设备操作人员需熟悉设备操作规程,确保设备操作的安全。
3.4安全教育:对施工人员进行安全教育和培训,提高他们的安全意识和自我保护能力。
4.质量控制4.1施工图纸:按照设计图纸进行施工,确保施工过程及结果符合图纸要求。
4.2构件安装:按照规范要求进行预应力构件的选择和安装,确保轨道的稳定性和安全性。
4.3施工过程监控:加强对施工过程的监控,对轨道的每个阶段进行检查和验收。
4.4轨道测试:使用测量仪器对轨道进行测试,检测轨道的弯曲度和平整度,确保轨道的质量。
4.5隐蔽工程验收:在轨道施工完成后,进行隐蔽工程验收,确保施工质量符合要求。
综上所述,CRTSⅡ型板式无砟轨道施工方案包括施工准备工作、施工步骤、安全措施和质量控制等内容。
第一章 CRTSⅡ型板式无砟轨道施工技术一、前言以CRTSⅡ型板式无碴轨道为代表的纵连板式无碴轨道,由于运用了特殊的无辅助轨测量定位技术,因而在施工过程中从底座混凝土浇筑、轨道板运铺及垫层砂浆灌注等均采用轮胎式成套施工机械及设备(以下简称“轮胎式成套机组”),进而可在铺轨到达之前完成轨道板铺设及轨道线性调整的绝大多数工作,在减少铺轨后期工作量的同时,也实现了无砟轨道施工的多点平行作业,为加快工程进度缩施工周期创造了条件。
这种轮胎式成套机组施工技术在长桥地段的优势尤为明显,也更适用今后铁路客运专线大规模采用长桥设计的需要。
以京津城际铁路长桥上CRTSⅡ型板式无碴轨道施工为例,纵连板式无碴轨道的施工包括:底座钢筋混凝土浇筑,轨道板的运输和铺设,轨道板精调,垫层CA 砂浆的搅拌与灌注,以及后期轨道板宽缝张拉及混凝土浇筑和轨道板剪力连接。
所使用的成套机组包括:混凝土运输罐车、混凝土汽车泵、平板汽车及汽吊、轮胎式铺板龙门吊、轮胎式轨道板双向运输车、CA砂浆移动搅拌车以及其他运输车辆。
二、概述㈠、工程概况京津城际轨道交通工程全长113.2km,采用CRTSⅡ型板式无砟轨道结构,引进德国博格板式无砟轨道系统,是我国第一条设计时速350km的无砟轨道铁路客运专线。
中铁二局承担了约5000块/16.8双线公里CRTSⅡ型轨道板铺设的施工任务,其中80%位于长桥地段,施工工期2007年5月至10月28日。
中铁二局在取得长桥上底座混凝土浇筑、轨道板桥面运铺、快速精调、高性能沥青水泥砂浆(以下简称“CA砂浆”)的重大技术突破后,于2007年6月4日开始底座混凝土施工、7月4日在全线率先开始CRTSⅡ型轨道板灌浆施工。
㈡、技术特点CRTSⅡ型板式无砟轨道,沿用了博格预应力轨道板结构、数控磨床打磨承轨槽、高精度定位、CA砂浆垫层等原有的技术和设计。
CRTSⅡ型板式无砟轨道系统层次构成自下而上依次为:桥梁上19cm厚钢筋混凝土底座或路基上30cm 厚素混凝土底座、3cm 厚CA 砂浆垫层、20cm 厚轨道板、扣件系统和无缝长钢轨,轨道板标准长度650cm 、宽255cm 。
CRTSⅡ型板式无砟轨道结构设计
一、引言
二、设计要求
1.载荷要求:按照列车的最大轴重和最大车速确定荷载。
2.立式波浪度要求:保证列车在运行过程中的舒适性。
3.横向波浪度要求:限制铺轨材料在运行过程中的横向移位。
4.噪声和振动要求:减少列车通过时的噪声和振动。
三、结构设计
1.断面设计
2.荷载计算
根据列车最大轴重和最大车速,计算出实际的荷载。
根据经验公式和相关规范,确定设计荷载,并考虑到动态荷载。
3.预应力设计
采用预应力钢筋混凝土T梁作为铺轨材料,需要进行预应力设计。
根据荷载和几何参数计算出所需的预应力值,然后在梁上设置预应力钢筋。
4.弹性黏结垫设计
为了减小轨道与板式无砟轨道之间的冲击和振动,需要在二者之间设置弹性黏结垫。
根据荷载和规范要求计算出所需的弹性黏结垫参数,然后在板式无砟轨道的上部盖板上设置黏结垫。
5.抗滑设计
为了减小列车在运行中轮对与板式无砟轨道之间的滑移,通过调整横截面形状和材料性能,增加横向抗滑能力。
6.排水设计
在板式无砟轨道上设置适当的排水系统,防止雨水或这面水对轨道的影响。
7.UIC401要求
四、结论
CRTSⅡ型板式无砟轨道是一种新型的无砟轨道结构,具有较高的强度和稳定性,并能满足列车的轨道要求。
本文对CRTSⅡ型板式无砟轨道的设计进行了详细介绍,包括断面设计、荷载计算、预应力设计、弹性黏结垫设计、抗滑设计、排水设计和UIC401要求等。
CRTSⅡ型板式无砟轨道施工工法1 前言沪杭客运专线设计采用Ⅱ型板式无砟轨道,设计时速350km/h。
通过学习、研究德国博格公司原始技术资料,借签京津城际积累下来的经验教训,外出实地参观学习同时在建的京沪高铁,积极与设计、业主、监理、兄弟单位以及这方面的专家沟通、咨询,充分利用各方面的资源,立足现场实际,提早着手准备,探索、总结、现场观摩、培训学习,在仅一个多月的无砟轨道紧张施工中大胆实施、积极创新,形成了自己一套相对成熟、完善的CRTSⅡ型无砟轨道施工工法。
2 特点2.1 施工工艺成熟、可靠,质量保证。
2.2 工艺简单,操作方便,可形成流水作业。
2.3 施工效率高,尤其适合快速施工。
3 适用范围该工法适用于CRTSⅡ型板式无砟轨道结构的高速铁路、客运专线、城际轨道交通等工程的路基、桥上无砟轨道施工。
4 工艺原理CRTSⅡ型轨道板铺设工艺分两种工况:铺装路基上CRTSⅡ型板和铺装长桥上CRTSⅡ型板。
4.1 桥上无砟轨道结构设计桥上CRTSⅡ无砟轨道结构由两布一膜滑动层/高强挤塑板、混凝土底座板、水泥乳化沥青砂浆调整层和轨道板四部分组成。
自上而下分为:20cm 厚混凝土轨道板,2cm~4cm 沥青砂浆垫层,19cm 厚(直线段)混凝土底座板,“土工布+塑料膜+土工布”滑动层(简称两布一膜)。
梁缝处1.5m 范围内为消除梁端转角对底座板的内力,加装5cm 厚高强挤塑板。
Ⅱ型轨道板标准长度6.45m,板缝5cm,板间用张拉锁纵向连接。
轨道板铺设于桥面上经精调和灌浆后进行纵向张拉连接成为整体。
为了适应连续底座板连续结构,在桥梁两端路基上设置摩擦板及端刺(桥上设临时端刺),以限制底座板中的应力及温度变形,两端刺间底座板纵向跨梁缝连续,在桥梁固定支座上方通过梁体设置的预埋螺纹钢筋和抗剪齿槽与梁体固结,形成底座板纵向传力结构。
底座板两侧设置侧向挡块,限制底座板横、竖向位移和翘曲。
水泥乳化沥青砂浆是填充于底座板/支承层与轨道板之间的结构层,主要起充填、支撑、承力和传力作用,并可对轨道提供一定的弹韧性,是轨道结构中的重要结构层,水泥乳化沥青砂浆充填层标准厚度为2cm~4cm。
底座板与梁面之间设两布一膜滑动层(剪力齿槽部分除外),形成底座板与梁面可相对滑动的状态。
桥上CRTSⅡ型板式无砟轨道一般构造详见图4-1。
图4-1 桥上无砟轨道一般构造断面图4.2 路基上无砟轨道结构设计路基上CRTS Ⅱ型板式无砟轨道板的支承层,采用C15 素混凝土垫层或干硬性材料压筑成型(称之为水硬性支承层,HGT),设计宽度为3.25m ,厚度为0.3m 。
支承层施工与桥上底座板施工基本相同,主要区别有以下几点:(1)支承层无两布一膜滑动层、高强挤塑板以及钢筋。
(2)支承层直接浇注在路基基床表层上。
(3)路基上支承层施工无需设置临时端刺区、后浇注带等施工结构和工序。
(4)支承层需每隔2.5~5m 进行切缝处理,切缝深度至少10cm 。
路基上无砟轨道一般构造断面图4-2 所示。
图4-2 路基上无砟轨道一般构造断面图5 工艺流程及要点5.1 桥梁上轨道结构及工艺流程 5.1.1 轨道结构5.1.1.1 桥上CRTS Ⅱ型板式无碴轨道系统主要分 4个结构组成部分见图5-1。
自上至下的结构为:60kg/m 钢轨,弹性扣件,20cm 厚砼轨道板,3cm 厚沥青砂浆调整层,19cm 厚(直线段)砼连续底座板,“两布一膜”滑动层,纵向连接锚固钢筋预设断裂位置轨道扣件灌浆孔图5-1 标准轨道板结侧向挡块等部分组成,台后路基上设置摩擦板、端刺及过渡板,梁缝处设置硬泡沫塑料板。
无碴轨道设计使用寿命不小于60年。
5.1.1.2 标准轨道板外形尺寸为6450mm×2550mm×200mm,为先张预应力混凝土结构,体积约3.452m3,重约8.63 t(不计扣件,扣件重约0.6 t)。
每块轨道板混凝土用量约3.4 m3,钢筋用量约373kg。
特殊板和补偿板依据具体设计确定。
板间纵向连接,横向设预应力钢筋,纵向每65 cm设预裂凹槽,槽深4cm。
轨道板在精调安装后统一进行纵向张拉连接并成为整体;两端刺间底座板纵向跨梁缝连续,在桥梁固定支座上方通过梁体设置的剪力齿槽和预埋螺纹钢筋(含套筒)与梁体相连,使底座板与桥梁有着纵向传力连接。
底座板两侧设置侧向挡块,挡块通过齿槽和予埋螺纹钢筋(含套筒)相连,保证底座板横竖向稳定及轨道与梁间的横向传力。
5.1.1.3 沥青砂浆垫层主要为粘接轨道板及底座板而设,标准厚度为3cm,使轨道板与底座板共同作用;底座板下设“两布一膜”滑动层,其中在梁缝两端各1.5m 范围设置一层5 cm厚的硬泡沫塑料板(弹簧板),以减小轨道系统由梁端转角带来的附加力,梁固定端的硬泡沫塑料板设置范围内不设置滑动层,泡沫板与桥面通过胶合剂粘贴,梁活动端的硬泡沫塑料板下铺设底层土工布及滑动薄膜,顶层土工布仅延伸至板(弹簧板)下10cm,硬泡沫板顶部采用塑料薄膜覆盖;为配合底座板的设置,在桥梁两端路基上设置摩擦板及端刺,以限制底座板中的应力及温度变形,确保无碴轨道的稳定。
5.1.1.4 桥梁间隔缝(含梁与桥台接缝)、端刺与路基过渡段、不同线下结构过渡段以及不同轨道结构过渡区域见图5-2,图5-3,Ⅱ型轨道板与底座板间设置剪力筋通过钻孔植筋的方式连接。
图5-2 桥梁上直线段轨道结构示意图图5-3 桥梁上曲线段轨道结构示意图5.1.2 施工工艺流程施工工艺流程见图5-4。
图5-4 桥上无砟轨道施工工艺5.2 施工准备5.2.1 桥面验收为了保证无砟轨道各部结构的技术条件,施工前应对桥面施工质量进行验收和技术评估。
验收内容主要包括桥梁平面位置、桥面高程、桥面平整度、相邻梁端高差及梁端平整度、防水层质量、桥面预埋件(包括梁端剪力筋、侧向挡块预埋筋)、剪力齿槽几何尺寸的规范性、桥面清洁度、桥面排水坡等。
5.2.1.1 桥面高程梁端1.5m 以外部分的桥面高程允许误差±7mm ,梁端1.5m 范围内不允许出现正误差。
使用精测网进行复核检查。
对不能满足要求的应进行打磨和采用聚合物砂浆填充处理。
5.2.1.2 桥面平整度桥面平整度要求3mm/4m 。
使用4m 靠尺测量(每次重叠1m),每桥面分四条线(每底座板中心左右各0.5m 处)测量检查。
对不能满足3mm/4m 要求,但在8mm/4m 范围内的,可用1m 尺复测检查,应满足2mm/1m 要求。
对仍不能满足要求的,对梁面进行整修处理。
桥面平整度检查见图5-5、5-6。
5.2.1.3 相邻梁端高差相邻梁端高差不大于10mm 。
采用0.5m 水平尺进行检查(在底座板范围内对观感较差处进行量测)。
对大于10mm 处应进行专门处理,或一侧梁端采取落梁措施或较低一端用特殊砂浆修补。
相邻梁端高差检查见图2.1.3-1。
5.2.1.4 梁端梁面平整度梁端1.5m 范围的平整度要求为2mm/1m 。
不能满足要求时,打磨处理,直至符合要求。
5.2.1.5 防水层防水层不允许存在破损及空鼓现象。
防水层空鼓检查可采用拖拽铁链的方法进行。
检查时沿桥面纵、横向拖拽铁链,以拖拽时桥面发出的空鼓声音初步确定空鼓范围,用记号笔画出范围。
破损及空鼓的防水层部位必须整修。
5.2.1.6 桥面预埋件预埋件平面、高程位置要准确。
对不能满足无砟轨道施工要求的,视情况按相关规范要求进行处理。
图5-6 相邻梁端高差检查图5-5 桥面平整度检查5.2.1.7 剪力齿槽几何状态根据实际情况,按设计尺寸修凿并清理干净,齿槽内应修理方正并凿出新面,确保底座板混凝土与其结合良好。
5.2.1.8 桥面清洁度和排水坡桥面不能有油渍污染,否则应在底座板施工前清洗干净。
桥面排水坡构造应符合设计要求。
对排水坡存在误差的桥面,应保证设计的汇水、排水能力,不允许存在反向排水坡,特别是两线中间部位。
对可能造成排水系统紊乱的桥面应打磨整修处理。
5.2.1.9 伸缩缝状态的检查确认主要检查伸缩缝安装是否到位且牢靠,并对缝内积存物进行彻底清理。
5.2.2 施工面设计布置无砟轨道施工前应根据施工管段的具体情况进行施工平面设计。
平面设计方案依据总工期计划、桥面验收移交进展情况、施工管段划分及资源配置等因素确定。
主要内容包括确定底座板施工单元段划分、临时端刺设置、常规区和后浇带位置以及各灌注段先后施工顺序。
5.2.2.1 底座板施工单元段划分底座板施工单元划分应统一筹划,认真设计,每个单元施工段(可以独立开展精调施工的段落)长度以4~5km为宜。
桥面底座板施工段划分见图5-7、图5-8。
图5-7 底座板施工段划分BL1后浇带BL2后浇带图5-8 施工单元划分5.2.2.2 临时端刺布设左右线临时端刺起点位置应相应错开两孔梁以上,避免桥墩承受由于底座板温差引起的较大水平力,临时端刺区的选择尽量避开连续梁,以免进行特殊设计。
5.2.2.3 后浇带(BL1)布设简支梁上的后浇带(BL1)一般设在梁跨中间,后浇带缝与轨道板缝不能重合,连续梁上的底座板两固定连接区间必须设置1个后浇带,后浇带与任一固定连接处的距离不大于75m。
5.2.2.4 混凝土底座板灌注段的划分简支梁上常规区底座板每次灌注长度最少为1孔,一般为3~4孔较为适宜。
临时端刺区底座板混凝土浇筑应分段完成。
分段时,按LP1~LP5规定长度分段(LP1、LP2为220m,LP3为100m,LP4、LP5为130m)。
连续梁范围底座板的最小浇注长度=连续梁前的两个浇注段+连续梁长度+连续梁后两个浇注段(整个浇筑段混凝土施工应在24小时内完成)。
5.2.3 技术准备5.2.3.1 技术培训施工前根据施工区段划分和施工组织安排,按专业和施工工序对技术人员和作业人员进行技术培训,使参建人员熟练掌握操作工艺和技巧,掌握技术标准,确保施工正常进行。
5.2.3.2 施工测量Ⅱ型板式无砟轨道铺设前依据精测网在线位旁布设标网,桥梁上的设标网(GVP)设于防撞墙上的固定支座正上方。
其精度要求为二等水准,三级导线。
一个工作面必须保证有8个以上的测量人员,平面组5人,水平组3人,至少配置1台TCA1800全站仪和1台徕卡DND3电子水准仪。
5.2.3.3 试验准备工作试验工作主要有原材料的报验、现场混凝土的试验、水泥沥青砂浆的试验、配料站的试验等工作。
每个作业面的试验人员至少需要配置混凝土试验员2人,水泥沥青砂浆试验员4人,配料站1人。
5.2.3.4 观测及评估工作无砟轨道施工前,必须严格按照观测方案和频率对桥墩和路基进行观测,对桥梁进行徐变观测,及时向评估单位提供详尽的观测数据资料,由建设单位组织相关单位进行评估,符合要求后,确定无砟轨道的铺设时间。
5.2.3.5 制定和编制无砟轨道施工计划无砟轨道是一个技术密集、工序繁杂的系统工程,施工前应根据本单位施工管区长度、施工能力、资源配置和施工工期要求,进行无砟轨道施工段划分和施工平面设计,合理安排施工工序和资源配置,确定施工流向和先后顺序,做到均衡有序,按步施工,确保在规定的时间内完成无砟轨道的铺设施工。