2019最新部编人教版七年级数学上册期末考试题及答案
- 格式:doc
- 大小:125.50 KB
- 文档页数:14
七年级数学上册期末考试题及答案【必考题】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 已知则的大小关系是()A. B. C. D.2. 2019年5月26日第5届中国国际大数据产业博览会召开. 某市在五届数博会上的产业签约金额的折线统计图如图. 下列说法正确的是()A. 签约金额逐年增加B.与上年相比, 2019年的签约金额的增长量最多C. 签约金额的年增长速度最快的是2016年D. 2018年的签约金额比2017年降低了22.98%3.若多项式与多项式的差不含二次项, 则m等于()A. 2B. -2C. 4D. -44.将一副三角板和一张对边平行的纸条按如图摆放, 两个三角板的一直角边重合, 含30°角的直角三角板的斜边与纸条一边重合, 含45°角的三角板的一个顶点在纸条的另一边上, 则∠1的度数是()A. 15°B. 22.5°C. 30°D. 45°5.如图所示, 点P到直线l的距离是()线段PA的长度 B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度6.如图所示, 圆的周长为4个单位长度, 在圆的4等分点处标上数字0, 1, 2, 3, 先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合, 再让圆沿着数轴按顺时针方向滚动, 那么数轴上的数-2017将与圆周上的哪个数字重合()A. 0B. 1C. 2D. 37.《九章算术》是我国古代数学名著, 卷七“盈不足”中有题译文如下: 今有人合伙买羊, 每人出5钱, 会差45钱;每人出7钱, 会差3钱.问合伙人数、羊价各是多少?设合伙人数为人, 所列方程正确的是()A. B. C. D.8.(- )2的平方根是x, 64的立方根是y, 则x+y的值为()A. 3B. 7C. 3或7D. 1或79. 下列说法不一定成立的是()A. 若, 则B. 若, 则C. 若, 则D. 若, 则10.关于的不等式组的所有整数解的积为2, 则的取值范围为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2. 如果是一个完全平方式, 则__________.3. 若|a|=5, b=﹣2, 且ab>0, 则a+b=________.4. 已知2a﹣3b=7, 则8+6b﹣4a=________.5.如图, 已知C为线段AB的中点, D在线段CB上.若DA=6, DB=4, 则CD=_____.6. 八边形的内角和为________度.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)321123x x-+-=(2)31322322105x x x+-+-=-2. 已知关于, 的二元一次方程组的解满足, 求满足条件的的所有非负整数值.3. 如图, 在Rt△ABC中, ∠ACB=90°, ∠A=40°, △ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE, 交AC的延长线于点F, 求∠F的度数.4. 如图, 已知AB∥CD, CN是∠BCE的平分线.(1)若CM平分∠BCD, 求∠MCN的度数;(2)若CM在∠BCD的内部, 且CM⊥CN于C, 求证: CM平分∠BCD;(3)在(2)的条件下, 连结BM, BN, 且BM⊥BN, ∠MBN绕着B点旋转, ∠BMC+∠BNC是否发生变化?若不变, 求其值;若变化, 求其变化范围.5. 为使中华传统文化教育更具有实效性, 军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动, 围绕“在诗词、国画、对联、书法、戏曲五种传统文化中, 你最喜爱哪一种?(必选且只选一种)”的问题, 在全校范围内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的不完整的统计图, 请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生, 请你估计该中学最喜爱国画的学生有多少名?6. 在做解方程练习时, 学习卷中有一个方程“2y–= y+■”中的■没印清晰, 小聪问老师, 老师只是说: “■是一个有理数, 该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同. ”小聪很快补上了这个常数. 同学们, 你们能补上这个常数吗?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.C3.D4.A5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、如果两个角是等角的补角, 那么它们相等.2.-1或33.-74.-65.16.1080三、解答题(本大题共6小题, 共72分)1.(1);(2).2、满足条件的的所有非负整数值为: 0, 1, 23.(1) 65°;(2) 25°.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变, 理由略5.(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6.略。
第一学期期末考试七年级数学试卷一、选择题(每小题3分,共36分)1.有理数3的相反数为A .-3B . 1-3C . 13D .3 2.如图是一个正方体中与撃銛字所在面相对的面上标的字是A .遇B .见C .未D .来3.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是A .直线最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短4.下列等式变形之前的是A .如果12s ab =,那么2s b a = B .如果x y =,则x y a a = C .如果33x y -=-,那么0x y -= D .如果mx my =,那么x y =5.若线段AB =12,线段BC =7,则A ,C 的距离是A .5B .19C .5或19D .无法确定6.已知∠A =25.12螧=25212′,∠C =1518′,那么它们的大小关系为A . ABC ∠∠∠>> B . A B C ∠∠∠<<C . B A C ∠∠∠>>D . C A B ∠∠∠>>7.某商店有两种不同进价的衣服都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,商店A .不赔不赚B .赚了9元C .赚了18元D .赔了18元8.若方程211x +=-的解是关于x 的方程()122x a --=的解,则a 的值为A .-1B .1C . 32-D . 12- 9.如图,点C ,D 为线段AB 上两点,AC +BD =a ,且AD +BC =75AB ,则CD 等于 A . 25a B . 23a C . 53a D . 57a A B C D10.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、厖,若最后三个数的和为768,则n 为A .9B .10C .11D .1211.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC ,其中互补的角共有AA .3对B .4对C .5对D .6对12.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针依次在射线上写出数字1,2,3,4,5,6,7謸2018斣ÚA .射线OA 上B .射线OB 上C .射线OD 上 D .射线OF 上C二、填空题(每小题3分,共18分)13.某市2018年元旦的最低气温为-1℃,最高气温为8℃,这一天的最高气温比最低气温高 ℃.14.若3m a b +与52a b -是同类项,则m = .15.已知α∠和β∠互为补角,且β∠比α∠小30β∠的大小是 .16.计算:67333′-48339′= .17.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折,某人两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款 元.18.如图,在636的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a +b 的值是三、填空题(共66分)19.(本题满分8分)计算(1)112-12-36⎛⎫⨯ ⎪⎝⎭;(2)()()()22324342192⎛⎫-÷--⨯-÷- ⎪⎝⎭20.(本题满分8分)先化简,再求值:(1)22222(3)2(2)a b ab a b ab a b -+---,其中2a =,1b =; (2)22212()32()2a b a a b -+-+,其中22(1)20a m b m +-+++=. 21.(本题满分8分)解方程(1)37322x x +=-(2)51312423x x x -+-=- 22.(本题满分8分)如图,点E 是线段AB 的中点,C 是EB 上一点,AC =12,(1)若EC :CB =1:4,求AB 的长;(2)若F 为CB 的中点,求EF 长.23.(本题满分8分)张先生准备购买一套小户型房,他去某楼盘了解情况得知,该户型的单价是120002m 元,面积如图所示(单位:m ,卧室的宽为am ,卫生间的宽为xm ).(1)用含有a 和x 的式子表示该户型的面积(2)售房部为张先生提供了以下两种优惠方案:方案一:整套房的单价是120002m 元,其中厨房只算13的面积;方案二:整套房按原销售总金额的9折出售.若张先生购买的户型a =3,且分别用两种方案购房的总金额相等,求x 的值.24.(本题满分10分)某市居民用电电费目前实行梯度价格表(1)若月用电150千瓦时,应交电费 元,若月用电250千瓦时,应交电费 元;(2)若居民王大爷家12月应交电费150元,请计算他们家12月的用电量;(3)若居民李大爷家11、12月份共用电480千瓦时(其中11月份用电量少于12月份),共交电费262.6元.请直接写出李大爷家这两个月的用电量.25.(本题满分10分)已知O 为直线AB 上的一点,射线OA 表示正北方向,∠COE =90逴F 平分∠AOE . (1)如图1,若∠BOE =70螩OF 的度数是 ;(2)若将∠COE 绕点O 旋转至图2的位置,试判断∠COF 和∠BOE 之间的数量关系,并证明你的证明;(3)若将∠COE 绕点O 旋转至图3的位置,直接写出2∠COF +∠BOE 的度数是26(本题满分6分)在同一直线上的三点A ,B ,C ,若满足点C 到另两个点A ,B 的距离之比是2,则称点C 是其余两点的亮点(或暗点).具体地,当点C 在线段AB 上时,若2CA CB =,则称点C 是[A ,B ]的亮点;若2CB CA=,则称点C 是[B ,A ]的亮点;当C 在线段AB 的延长线上时,若2CA CB =,称点C 是[A ,B ]的暗点.例如,如图1,数轴上点A ,B ,C ,D 分别表示数-1,2,1,0.则点C 是[A ,B ]的亮点,又是[A ,D ]的暗点;点D 是[B ,A ]的亮点,又是[B ,C ]的暗点B C D A(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.NM[M,N]的亮点表示的数是,[N,M]的亮点表示的数是;[M,N]的暗点表示的数是,[N,M]的暗点表示的数是;(2)如图3,数轴上点A所表示的数为-20,点B所表示的数为40.一只电子蚂蚁P从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.①求当t为何值时,P是[B,A]的暗点;②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点B2017-2018学年第一学期期末考试七年级数学试卷参考答案一、选择题13、9 14、2 a 15、75° 16、18754′ 17、316或288 18、6三、解答题19、(1) 0 (2)-120、(1)原式=-ab 2;当a =2,b =1时,原式=-2(2)原式=3a 2-3b ;∵22(1)20a m b m +-+++=,∴21a m +-=0,2b m ++=0∴3a 2-3b =3(1-m )-3(-m -2)=921、(1)x =5;(2)x =17- 22、解:(1)设CE =x ,则CB =4x ,∵AE =BE ,∴AE =5xAC =6x =12,∴x =2,AB =10x =20cm (2)EF =CE +CF =x +2x =3x =6cm23、解:(1)S =2x +30+2a(2)设两种方案的总金额分别为W 1,W 2方案一:W 1=120007(32+2x )方案二:W 2=120007(36+2x )70.9由题意,W 1=W 2,∴120007(32+2x )= 120007(36+2x )70.9,解得x =224、解:(1)75,132(2)设12月用电量为x 度,由题意,当用电量为400度时,电费222元;当用电量为180度时,电费90元;∴181≤x ≤40018070.5+(x -180)70.6=150,解得x =280,即用电280度(3)设12月用电y 度,则11月用电(480-y )度,由题意,y >240①当y >400时,11月用电在180度内,(480-y )70.5+18070.5+(400-180)70.6+(x -400)70.8=262.6,解得x =402,则11月用电78度,12月用电402度②当300<y≤400时,11月用电在180度内,12月用电在181-400度(480-y)80.5+18080.5+(y-180)80.6,y=406>400,舍去③当240<y≤300时,两个月用电量都在181-400度18080.5+(y-180)80.6+18080.5+(480-y-180)80.6=262.6,方程无解综上,11月用电78度,12月用电402度25、解:(1)35°(2)设∠BOE =螦OE =1808-螮OF=12∠AOE=12(1808-8),∠COF=908-12(1808-8)=12螩OF=12∠BOE(3)设∠AOE=2螮OF=螩OF=908+螧OE=1808-2â∴2∠COF+∠BOE=2(908+8)+ 1808-28=360°26、解:(1)2;0;10;-8(2)①当P为[B,A]暗点时,P在BA延长线上且PB=2P A=120,t=12082=60秒②P为[A,B]亮点时,P A=2PB,40-2t-(-20)=282t,t=10;P为[B,A]亮点时,2P A=PB,2[40-2t-(-20)]=2t,t=20;A为[B,P]亮点时,AB=2AP,60=2[-20-(40-2t)],t=45;A为[P,B]亮点时,2AB=AP,120=-20-(40-2t),t=90;综上,t=10或20或45或90。
人教版七年级上册数学期末考试题及答案【必考题】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .02.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8C .5D .4494) A .32B .32-C .32±D .81165.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( ) A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A.118°B.119°C.120°D.121°7.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+8.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.10.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.如图,点O是直线AD上一点,射线OC,OE分别平分∠AOB、∠BOD.若∠AOC=28°,则∠BOE=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.方程()()()()32521841x x x x +--+-=的解是_________.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.若关于x 、y 的二元一次方程组525744x y a x y a +=⎧⎨+=⎩的解满足不等式组259x y x y +<⎧⎨->-⎩求出整数a 的所有值.3.如图,在单位正方形网格中,建立了平面直角坐标系,xOy 试解答下列问题:(1)写出ABC三个顶点的坐标;(2)画出ABC向右平移6个单位,再向下平移2个单位后的图形111△;A B C (3)求ABC的面积.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l 异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、A5、A6、C7、C8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、62°3、15°4、3x=.5、24.6、1800°三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、整数a的所有值为-1,0,1,2,3.3、(1)A(-1,8),B(-4,3),C(0,6);(2)答案略;(3)112.4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1) 每套队服150元,每个足球100元;(2)甲:100a+14000(元),乙80a+15000(元);(3)当a=50时,两家花费一样;当a<50时,到甲处购买更合算;当a>50时,到乙处购买更合算。
人教版七年级数学上册期末考试及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a -) A a -B .a - C a D .a8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.正五边形的内角和等于______度.4.若()2320m n -++=,则m+2n 的值是________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x -12(3x -2)=2(5-x ) (2)24x +-1=236x -2.已知关于x ,y 的二元一次方程组3426x y m x y +=+⎧⎨-=⎩的解满足3x y +<,求满足条件的m 的所有非负整数值.3.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC 交BC 于点E ,点F 为线段CD 延长线上一点,∠BAF =∠EDF(1)求证:∠DAF =∠F ;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED 互余的角.4.如图,在△ABC 中,AB=AC,点D 、E 分别在AB 、AC 上,BD=CE ,BE 、CD 相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、C6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、105°3、5404、-15、40°6、2或-8三、解答题(本大题共6小题,共72分)1、(1)x=6(2 x=02、满足条件的m的所有非负整数值为:0,1,23、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)甲、丙两地相距2254千米.。
人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。
人教版七年级上册数学期末考试试题一、单选题1.4的倒数是( )A .4-B .4C .14- D .142.单项式23x y -的系数是( )A .3-B .1C .2D .33.下列各式中结果为负数的是( )A .()3--B .3-C .()23-D .23-4.如图,这个几何体是由哪个图形绕虚线旋转一周形成的( )A .B .C .D .5.已知关于x 的方程290x a +-=的解是3x =,则a 的值为( )A .2B .3C .4D .56.下列计算正确的是( )A .277x x x +=B .532y y -=C .437x y xy +=D .22232x y x y x y -=7.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( ) A . B .C .D .8.若()123m m x --=是关于x 的一元一次方程,则m 的值是( )A .2-B .1C .2D .2±9.如图,点A 在点O 的北偏西60°方向,射线OB 与射线OA 所成的角是108°,则射线OB 的方向是( )A .北偏西42°B .北偏西48°C .北偏东42°D .北偏东48° 10.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x 天后,共同完成任务,则可列方程为( )A .11108x x +-=B .11108x x ++= C .11108x x --= D .11108x x -+= 11.将图①中的正方形剪开得到图①,图①中共有4个正方形;将图①中一个正方形剪开得到图①,图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形……如此下法,则第2022个图中共有正方形的个数为( )A .2022B .6062C .6063D .606412.如图,点O 为直线AB 上一点,COD ∠为直角,OE 平分AOC ∠,OF 平分COB ∠,OG 平分BOD ∠.下列结论:①45FOG =︒∠;①90AOE FOB ∠+∠=︒;①130EOG ∠=︒;①90AOC BOD ∠-∠=︒.正确的有( )A .4个B .3个C .2个D .1个二、填空题13.数轴上表示2-和3+两个点之间的距离是______.14.300000-用科学记数法表示为______.15.若一个角是25°38′,则它的余角为______.16.若x 的相反数是3,y 的绝对值是7,则x y +的值为______.17.如图,点B 、C 在线段AD 上,CD=5,BD=9,B 是AC 的中点,则AC 的长为______.18.已知x+2y ﹣5=0,则代数式2x+4y ﹣7的值是_____.19.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“民”字一面的相对面上的字是_______.三、解答题20.解方程:127x -﹣1=33+x .21.已知213a b x y -与23x y -是同类项.(1)请直接写出:a =______,b =______;(2)在(1)的条件下,求()()2222523425a b ab b a+--+的值.22.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分①BOF ,OE 平分①COB .(1)求①BOE的度数;(2)写出图中①BOE的补角,并说明理由.23.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.24.用尺规作图按下列语句画图:(1)画射线BC,连接AC,AB;(2)反向延长线段AB至点D,使得DA=AB.25.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?26.如图,OD平分①BOC,OE平分①AOC.若①BOC=70°,①AOC=50°.(1)求出①AOB及其补角的度数;(2)请求出①DOC和①AOE的度数,并判断①DOE与①AOB是否互补,并说明理由.参考答案1.D2.A3.D4.A5.B6.D7.C8.A9.D10.B11.D12.B13.5.【分析】数轴上两点之间的距离,即数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【详解】解:数轴上表示-2和+3的两个点之间的距离是3-(-2)=5.故答案是:5.【点睛】本题考查了数轴的定义.解答该题时,也可以利用借助数轴用几何方法求两点之间的距离.14.-3×105【分析】根据科学记数法的定义计算求值即可;-= -3×105,【详解】解:300000故答案为:-3×105【点睛】本题考查了科学记数法:把一个绝对值大于1的数表示成a×10n的形式(a大于或等于1且小于10,n是正整数);n的值为小数点向左移动的位数.15.64°22′【分析】根据余角的定义可知这个角的余角=90°-25°38′,然后将90°化为89°60′计算即可.【详解】解:它的余角=90°-25°38′=89°60′-25°38′=64°22′.故答案为:64°22′.【点睛】本题主要考查的是度分秒的换算、余角的定义,将90°转化为89°60′是解题的关键.16.4或10-或4-##10【分析】根据相反数的定义和绝对值的性质,先求出x、y的值,再代值求解.【详解】解:由题意,得:x=-3,y=±7;当x=-3,y=7时,x+y=-3+7=4;当x=-3,y=-7时,x+y=-3-7=-10.故答案为:4或10-.【点睛】此题主要考查绝对值的性质以及相反数的定义.有理数的加法运算,代数式的值,需注意的是互为相反数的两个数绝对值相等,不要漏解.17.8【分析】根据线段中点的定义和线段的和差即可得到结论.【详解】解:①CD=5,BD=9,①BC=BD-CD=4,①B是AC的中点,①AB=BC=4,①AC=AB+BC=8,故答案为:8.【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义是解题的关键.18.3.【分析】直接利用已知得出x+2y=5,再将原式变形进而得出答案.【详解】①x+2y﹣5=0,①x+2y=5,①2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.19.化【详解】选择“民”这一面作为底面将正方体还原可得:“弘”与“族”是相对面,“扬”与“文”是相对面,“民”与“化”是相对面,故答案为:化.【点睛】本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.20.原方程的解是x=﹣3.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x ﹣7x =21﹣3+21,合并,得﹣13x =39,系数化1,得x =﹣3,则原方程的解是x =﹣3.21.(1)1,−2(2)32【分析】(1)两个单项式为同类项,则字母相同,对应字母的指数也相同,据此可求得a 、b 的值;(2)先去括号再合并同类项,最后代入求值.(1)解:①213a b x y -与23x y -是同类项,①2a=2,1−b=3,①a=1,b=−2;故答案为:1,−2;(2)解:()()2222523425a b ab b a +--+=5a 2+6b 2-8ab-2b 2-5a 2=4b 2-8ab ,当a=1,b=−2时,原式=4×(−2) 2-8×1×(−2)=16-(-16)=32.【点睛】本题考查整式的化简求值,同类项,解题的关键是掌握同类项的定义,整式的加减运算法则.22.(1)30°;(2)①BOE 的补角有①AOE 和①DOE .【分析】(1)根据OC 平分①BOF ,OE 平分①COB .可得①BOE =①EOC =12①BOC ,①BOC =①COF ,进而得出,①EOF =3①BOE =90°,求出①BOE ;(2)根据平角和互补的意义,通过图形中可得①BOE+①AOE =180°,再根据等量代换得出①BOE+①DOE =180°,进而得出①BOE 的补角.【详解】解:(1)①OC 平分①BOF ,OE 平分①COB .①①BOE =①EOC =12①BOC ,①BOC =①COF , ①①COF =2①BOE ,①①EOF =3①BOE =90°,①①BOE =30°,(2)①①BOE+①AOE =180°①①BOE 的补角为①AOE ;①①EOC+①DOE =180°,①BOE =①EOC ,①①BOE+①DOE=180°,①①BOE的补角为①DOE;答:①BOE的补角有①AOE和①DOE;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.23.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)①点C为原点,BC=1,①B所对应的数为﹣1,①AB=2BC,①AB=2,①点A所对应的数为﹣3,①m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)①点B为原点,AC=6,AB=2BC,AB+BC=AC,①AB=4,BC=2,①点A所对应的数为﹣4,点C所对应的数为2,①m=﹣4+2+0=﹣2;(3)①原点O到点C的距离为8,①点C所对应的数为±8,①OC=AB,①AB=8,当点C对应的数为8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为4,点A所对应的数为﹣4,①m=4﹣4+8=8;当点C所对应的数为﹣8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为﹣12,点A所对应的数为﹣20,①m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.24.(1)见详解;(2)见详解.【分析】(1)根据尺规作图过程画射线BC,连接AC,AB即可;(2)根据尺规作图过程反向延长线段AB至点D,使得DA=AB即可.【详解】解:如图所示:(1)(1)射线BC,连接AC,AB即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.25.(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.26.(1)120°,60°;(2)①DOE与①AOB互补,理由见解析.【分析】(1)①AOB的度数等于已知两角的和,再根据补角的定义求解;(2)根据角平分线把角分成两个相等的角,求出度数后即可判断.【详解】解:(1)①AOB=①BOC+①AOC=70°+50°=120°,其补角为180°-①AOB=180°-120°=60°.(2)①DOC=①BOC=×70°=35°,①AOE=①AOC=×50°=25°.①DOE与①AOB互补.理由如下:①①DOC=35°,①AOE=25°,①①DOE=①DOC+①COE =①DOC+①AOE=60°.①①DOE+①AOB=60°+120°=180°,①①DOE与①AOB互补.11。
西C人教版2019学七年级上期末年统一考试数学试卷(一)一、选择题(本大题有10个小题,每小题3分,共30分)1.下列图形中不能通过其中一个四边形平移得到的是图形( )2.已知关于x的方程2x+a-9=0的解是x=2,则a的值为( )A. 5B. 4C. 3 D. 23. 如图,已知点C是线段AB的中点,且AC=3,则AB的长为()A.23B. 3C.6 D. 124.如图是由若干个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是 ( )A.3 B.4C.5 D.65.如图,如果射线OA表示在阳光下你的身影的方向,那么你的身影的方向是( )A.北偏东60° B.南偏西60° C.北偏东30° D.南偏西30°6.如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°7.如图,由AB∥CD,可以得到( )A.∠1=∠2 B.∠2=∠3 C.∠2=∠4 D.∠A=∠C8.若∠A与∠B的两边分别平行,∠A=60°,则∠B=( )A.30° B.60° C.30°或150° D.60°或120°9.把一张长方形报纸的一角斜折过去,使A点落在E点处,BC为折痕,A. B. C. D.第7题图左视图俯视图(第9题图)(第10题图)FAEBD 是∠EBM 的平分线,则∠CBD =( )A.85°B.90°C.75°D.80°10.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF 平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°; ③∠COB -∠AOD=90°;④∠COE+∠BOF=180°.其中正确 结论的个数有( )A .4个B .3个C .2个D .0个二.填空题(本大题有8个小题,每小题3分,共24分)11. 如图,从A 到B 有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,它的依据是12.已知∠1820α'=︒,则∠α的补角为13. 一个正数x 的平方根是23a -与5a -,则x =14.如图,若EF∥BC,DE∥AB,∠FED=40°,则∠B= ° 15.如图,若AB∥CD,EF⊥CD,∠1=54°,则∠2= °16.如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2= °17.为庆祝马年春节,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.甲校有学生准备参加演出18. 已知直线AB ∥CD ,如图,E 为直线AB 、CD 外的一点,连接AE ,EC 。
人教版2019学年七年级期末数学试卷(一)一、选择题(共10小题,每小题3分,共30分)1.在下列各数中:0、﹣3、2、﹣、4.5、9、﹣1中,属于负数有()个.A.1 B.2 C.3 D.42.如图,数轴上点M表示的数可能是()A.2.5 B.﹣2.5 C.1.5 D.﹣1.53.在数轴上离开原点距离是3个单位长度的点,所表示的数是()A.3 B.﹣3 C.+3或﹣3 D.64.﹣1的倒数为()A.B.C.﹣D.﹣5.下列各组数中,结果相等的为()A.﹣32与(﹣3)2B.32与﹣(﹣3)2C.﹣33与(﹣3)3D.(﹣3)3与﹣(﹣3)36.下列说法:①正数的绝对值是它本身;②两个数,绝对值大的反而小;③任何一个数的绝对值都不会是小于零的数;④不相等的两个数绝对值不相等,其中正确的是()A.①②③④B.①②③ C.①③④ D.①③7.已知点A和点B在同一数轴上,点A表示数﹣2,又已知点B和点A相距5个单位长度,则点B表示的数是()A.3 B.﹣7 C.3或﹣7 D.3或78.利用分配律可以得到﹣2×6+3×6=(﹣2+3)×6=6,如果用a表示任意的一个数,那么用分配律可以得到﹣2a+3a等于什么()A.1 B.a C.﹣a D.5a9.联系(﹣2)2、22、(﹣2)3、23,这类具体数的乘方,当a<0时,下列各式正确的个数有()个.①a2>0;②a2=(﹣a)2;③a3>0;④a3=﹣a3.A.1 B.2 C.3 D.410.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是()A.43 B.44 C.45 D.46二、填空题(本大题共6个小题,每小题3分,共18分)11.向东走5米记作+5米,向西走3米记作.12.的相反数是.13.若|x﹣3|=0,则x=.14.用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1千米气温的变化量为﹣6℃.攀登3千米后,气温℃(填“上升”或“下降”多少).15.如果a<0,b>0,a+b>0,那么四个数a、﹣a、b、﹣b之间的大小关系是(请用“<”连接).16.电子青蛙落在数轴上的某一点P0,第一步从P0向左跳1个单位到P1,第二步由P1向右跳2个单位到P2,第三步由P2向左跳3 个单位到P3,第四步由P3向右跳4个单位到P4,…,按以上规律跳了2014步时,电子青蛙落在数轴上的点是19.5,则电子青蛙的初始位置P0点所表示的数是.三、解答题(共8题,共72分)17.在数轴上画出表示数﹣2、|﹣3|、0.5及其相反数的点.18.计算:(1)﹣2×3﹣(﹣4)(2)(﹣2)2×5﹣(﹣2)3÷4.19.某公园准备修建一块长方形草坪,长为40米,宽为25米,并在草坪上修建如图所示宽度相等的十字路.已知十字路宽x=2米,那么草坪(阴影部分)的面积是多少?20.某出租车司机小李某天下午营运全是在东西走向的雄楚大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下所示:+15、﹣2、+3、﹣1、+10、﹣3、﹣2、+12、+4、﹣7、+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为0.09升/千米,这天下午小李共耗油多少升?21.已知a、b互为相反数,且a≠0,c、d互为倒数,m的绝对值等于2,求m2﹣+﹣3cd的值.22.已知(a﹣2)2+|b+1|=0,求(﹣a﹣b)2015﹣a8×(﹣)9.23.数轴上有六个点,每相邻的两个点间的距离都是1个单位长度,有理数a、b、c、d所对应的点是这些点中的4个,位置如图所示.(1)计算:c﹣a=;d﹣a=;b+c﹣a﹣d=;2a﹣2d=;(2)若4c=a+b,求a+b﹣c+d的值.24.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.人教版2019学年七年级期末数学试卷(二)一、选择题(每小题3分,共30分)1.向东走3千米记作+3千米,那么﹣5千米表示()A.向北走5千米 B.向南走5千米 C.向西走5千米 D.向东走5千米2.“比a的大1的数”用代数式表示是()A.B.C.D.3.下列各组数中,互为相反数的是()A.和 B.﹣(+3)和+|﹣3| C.﹣(﹣3)和+(+3)D.﹣4和﹣(+4)4.已知下列方程:①xy﹣1=2;②0.3x=4;③x=1;④x2﹣4x=3;⑤2x+3y=6,是一元一次方程的有()个.A.2个B.3个C.4个D.5个5.若x=2是方程2a﹣3x=6的解,则a的值是()A.B.﹣4 C.D.66.单项式2a m b1﹣2n与a3b9的和是单项式,则(m+n)2015=()A.1 B.﹣1 C.0 D.0或17.﹣等于()A.2.2 B.﹣3.2 C.﹣2.2 D.3.28.一件商品a元,先涨价20%,然后再降价20%,此时这件商品的售价为()A.a元B.1.08a C.0.96a D.0.8a9.若|a|=19,|b|=97,且|a+b|≠a+b,那么a﹣b的值是()A.﹣78或116 B.78或116 C.﹣78或﹣116 D.78或﹣11610.下列关于有理数加减法表示正确的是()A.a>0 b<0,并且|a|>|b|,则a+b=|a|+|b|B.a<0 b>0,并且|a|>|b|,则a+b=|a|﹣|b|C.a<0 b>0,并且|a|<|b|,则a﹣b=|b|+|a|D.a<0 b<0,并且|a|>|b|,则a﹣b=|b|﹣|a|二、填空题(每小题3分,共18分)11.(1)7.2﹣(﹣4.8)=(2)(﹣7)×6×()×=(3)()÷5=.12.﹣235000000用科学记数法表示为.13.三个连续偶数的和是﹣60,那么其中最大的一个是.14.|x+1|﹣6的最小值是,此时x2015=.15.一项工程,m个人要x天完成,若增加b个人,则需要天完成.16.如图所示每个图形是由若干个花盆组成的三角形的图案,每条边(包括顶点)有n(n >1)盆花,每个图案共有s盆花,则s与n之间的关系式为.三、解答题(72分)17.计算(1)(﹣72)+(+63)(2)﹣12×4+(﹣2)3÷(﹣2)2﹣(﹣1)101.18.解方程(1)4﹣3(2﹣x)=5x(2)x﹣=1﹣.19.已知(x+y﹣1)2与|x+2|互为相反数,a、b互为倒数,试求x y+a b的值.20.先化简再求值:3a2﹣2(2a2﹣a)+2(a2﹣3a+1),其中a=﹣.21.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.22.如图中大、小正方形的边长分别为a和b,请用含a、b的代数式表示图中阴影部分的面积并化简.23.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家5月份用水多少吨?(3)若黄老师家7月用水a吨,问应交水费多少元?(用a的代数式表示)24.(请阅读下面的文字解题)如图1,在数轴上A点表示的数为a,B点表示的数为b,则线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用这个知识解答下面的问题.已知数轴上A、B两点对应数分别为﹣2和4,P为数轴上一点,对应的数为x.(1)如图2,P为线段AB的三等分点,求P点对应的数.(2)如图3,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x 的值;若不存在,请说明理由.(3)如图4,若P点表示的数为﹣0.5,点A、点B和P点同时向左运动,它们的速度分别是1、2、1个长度单位/分,则第几分钟时,P为AB的中点?并求出此时P点所对应的数.人教版2019学年七年级期末数学试卷(三)一、选择题:(每题3分,共30分) 1. 9的算术平方根是A . 3B .3±C .3D .±3 2.下列各数中,722,8 ,3π,3.14159,327-无理数的个数是( ) A.1 B.2 C.3 D.43.甲班学生48人,乙班学生44人,要使两班人数相等,设从甲班调x 人到乙班,•则得方程( )A .2(48-x )=44-xB .48-x=44+xC .48-x=2(44-x )D .48+x=44-x 4.如图,直线AB 、CD 相交于点O ,且∠AOC :∠AOD=1:3,则∠BOD 的度数是( ) A.45° B.50° C.55° D.60°5. 如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,那么下列结论正确的是( ) A.∠AOC 与∠COE 互为补角 B.∠BOD 与∠COE 互为余角 C.∠COE 与∠BOE 互为补角 D.∠AOC 与∠BOD 是对顶角6.如图,直角三角板的直角顶点放在两条平行线a 、b 上,155∠=,则2∠的度数为( )A.35°B.45°C.55°D.25°7.足球比赛的积分规则为:胜一场得3分,平一场得1分,负一场得0分,某队进行了14场比赛,其中负5场,共得19分,则这个队胜了( ) A.3场 B. 4场 C. 5场 D. 6场 8. 下面结论正确的是( )A.749±=B. 749=±C. 16的平方根是4,即416=D.81641= 9.用一根长为28米的铁丝围成一个长方形,使该长方形的长比宽多4米,此时长方形的面积为( ) 平方米.A.40B.45C.50D.5410. 有下列命题:①有限小数是无理数;②算术平方根等于它本身的数只有0;③经过一点有且只有一条直线与已知直线平行;④实数与数轴上的点一一对应。
人教版七年级数学上册期末试卷七年级数学满分:120分 时间:90分钟题号 一 二 三 四 五 总分 得分一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内。
1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是A .B .C .D .2.如右图,沿图中虚线旋转一周,能围成的几何体是下面几何体中的A .B .C .D .3.下列说法错误的是A .长方体、正方体都是棱柱B .六棱柱有六条棱、六个侧面C .三棱柱的侧面是三角形D .球体的三种视图均为同样的图形4.a 与b 的平方的和表示为A .(a + b )2B .a 2 + b 2C .a 2 + bD .a + b 25.下列说法正确的是A .2a是单项式B .− 23a 3b 3c 是五次单项式C .ab 2﹣2a + 3是四次三项式D .2πr 的系数是2π,次数是1次6.下列计算正确的是A .2x + 3y = 5xyB .2a 2 + 2a 3 = 2a 5C .4a 2﹣3a 2=1D .﹣2ba 2 + a 2b =﹣a 2b7.把一副三角板按如图所示那样拼在一起,那么∠ABC 的度数是A .150°B .135°C .120°D .105°8.将21.54°用度、分、秒表示为A .21°54′B .21°50′24″C .21°32′40″D .21°32′24″9.若单项式﹣12x 2a ﹣1y 4与2xy 4是同类项,则式子(1﹣a )2015 =A .0B .1C .﹣1D .1 或﹣110.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛。
如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为 A .2 + 6nB .8 + 6nC .4 + 4nD .8n二、填空题:本大题共6小题,每小题4分,共24分。
人教版初一上册数学期末考试试题及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3/4C. √9D. 02. 下列哪个数是负数?A. -3B. 3C. 0D. 1/23. 两个互为相反数的数,它们的和是:A. 0B. 1C. -1D. 24. 已知a=5,b=3,则a²-b²的值是:A. 16B. 25C. 4D. 15. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 三角形6. 若|x|=3,则x的值是:A. 3B. -3C. 0D. 无法确定7. 下列哪个式子的结果是负数?A. 2+3B. -2+3C. 2-3D. -2-38. 已知a=4,b=3,则a²+b²的值是:A. 25B. 16C. 9D. 49. 下列哪个数是正数?A. -5B. -3/4C. 0D. -1/210. 若a²=64,则a的值是:A. 8B. -8C. 4D. -4二、填空题(每题4分,共40分)1. 5²=______2. |-2|=______3. 2×(-3)=______4. 3/4+1/2=______5. (-2)³=______6. √36=______7. 0.3333...(3无限循环)=______8. 1/2+1/3=______9. 4²-3²=______10. 5×(-7)=______三、解答题(每题10分,共60分)1. 解方程:2x-5=32. 计算:(-3)×(-2)+4×(-1)3. 判断:平行四边形ABCD中,AB//CD,AD//BC,求证ABCD是矩形。
4. 解方程:3x+2=115. 计算:√(49+64)6. 某数的平方根是12,求这个数。
人教版七年级上册数学期末考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.6的相反数为( )A .-6B .6C .16-D .169.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x y x y --=⎧⎨-=⎩2.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、B5、C6、C7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、40°3、<4、2m≤-5、2或﹣8.6、②.三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、-4≤a<-3.3、(1)略;(2) 略.4、36平方米5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
2019最新部编人教版七年级数学上册期末考试题及答案
A. B. C. D.
一、选择题:(本大题共10小题,每小题3分,共30分.)
1.如果+20%表示增加20%,那么-6%表示
( )
A .增加14%
B .增加6%
C .减少6%
D .减少
26%
2.1
3-的倒数是
( )
A .3
B . 13
C .-3
D . 13
- 3、如右图是某一立方体的侧面展开图 ,则该立方体是
( )
4、青藏高原是世界上海拔最高的高原,它的面积约为2 500
000平方千米.将 2 500 000用科学记数法表示为 ( )
A.7
0.2510
⨯B.7
2.510
⨯C.6
2.510
⨯D.5
2510
⨯
5、已知代数式3y2-2y+6的值是8,那么3
2
y2-y+1的值是
( )
A .1
B .2
C .3
D .4
6、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5
个数中负数共有 ( )
A.1 个 B. 2个 C. 3个 D. 4
个
7.在解方程
51
1 3
--
=x
x时,去分母后正确的是()
A.5x=15-3(x-1) B.x=1-(3 x-1)
C.5x=1-3(x-1) D.5 x=3-3(x-1)
8.如果x
y3
=,)1
(2-
=y
z,那么x-y+z等于
()
A.4x-1 B.4x-2 C.5x-1 D.5x -2
9.如图1,把一个长为m、宽为n的长方形(m n>)沿虚
线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )
A .2
m n - B .m n - C .2m D .2n
图1 图2
第9题
10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )
第10题
A .这是一个棱锥
B .这个几何体有4个面
C .这个几何体有5个顶点
D .这个几何体有8条棱
n
n m n
二、填空题:(本大题共10小题,每小题3分,共30分)
11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.
12.三视图都是同一平面图形的几何体有 、 .(写两种即可)
13.多项式132223-+--x xy y x x 是_______次_______项式
14.多项式223368x kxy y xy --+-不含xy 项,则k = ;
15.若x=4是关于x的方程5x-3m=2的解,则m= .
16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 .
(用含m ,n 的式子表示)
17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .
18.钟表在3点30分时,它的时针和分针所成的角是 .。