量子力学第六章
- 格式:ppt
- 大小:1.79 MB
- 文档页数:46
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m Mr p-==∙μ (1) 总动量1p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121pMP m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’)总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m u R p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p mMr p p R -⨯++⨯=)2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛+=+=μμ2122222122112222122222m m p P u m pPm m um m p P u m pPm m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p Pm m m Pm m m μ2222pMP +=(4’)[从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、P 和L 的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m mMi p m p mMp ∇-∇-=-=(1)其中 1111z k y j x ir ∂∂+∂∂+∂∂=∇,而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111,同理,y YM m y ∂∂+∂∂=∂∂11zZM m z ∂∂+∂∂=∂∂11;(利用上题(17)(18)式。
第二部分应用第6章不含时微扰理论6.1非简并微扰理论6.1.1 一般公式表达假设对于某些势场(比如,一维无限深势阱),我们已经解出了(定态)薛定谔方程:(6.1)ψ,从而可以得到一套完备的正交本征函数,0n(6.2)E。
现在,我们对这个势进行微小扰动(比方说,在势阱底部加入一个小突起−及对应的能量本征值0n图6.1)。
我们期望可以找到新的本征函数和本征值:(6.3) 但是除非我们非常幸运,对于这个有些复杂的势场,一般我们是不可能精确求解薛定谔方程的。
微扰理论是一套系统的理论,它可以利用已得的无微扰时地精确解求出有微扰时的近似解。
图6.1:受到小微扰的无限深势阱。
首先,我们将哈密顿量写成两项之和:(6.4)其中'H 是微扰(上标0总是表示非微扰量)。
此时,我们将λ取为一个很小的数;稍后我们会将取它为1,H 将为真实的哈密顿量。
下面我们把n ψ和n E 展为λ的幂级数:(6.5)(6.6)其中,1n E 为第n 个本征值的一级修正,1n ψ为第n 个本征函数的一级修正;2n E 和2n ψ为二级修正,以此类推。
将6.5和6.6式代入6.3式,得到:或(将λ幂次相同的项合并)对于零级(0λ)项1有,这没有什么新的内容(它就是6.1式)。
对于一级(1λ)项有,(6.7)对于二级(2λ)项有,(6.8)以此类推。
(方程中并没有λ——它仅仅用来更清楚地按数量级分出各方程——所以现在把λ取为1。
)6.1.2 一级近似理论将0n ψ与6.7式进行内积运算(即乘以(0n ψ)*后积分),1级数展开的唯一性(见第2章,脚标25)保证了相同幂次的系数是相等的。
但是0H 为厄米算符,所以它和右边第一项相抵消。
又有001n n ψψ=,所以,2(6.9)这就是一级近似理论的一个最基本的结果;在实际中,它也是量子力学最重要的方程。
它说明能量的一级修正就是微扰在非微扰态中的期待值。
例子6.1 无微扰的无限深势阱波函数为(2.28式):图6.2:存在于整个势阱的常微扰。
第六章 力学量与本征态 §6 - 1 量子力学中的力学量 一 力学量用算符表达量子力学中的两个基本概念 ● 量子态 波函数 ● 力学量 (具有特定性质的)算符算符代表着对波函数的一种运算(但并不一定都与力学量相对应):()ddx ψ:对波函数取导数,ψ)(r U :对波函数乘以)(r U ,*ψ: 对波函数取复共轭,ψ: 对波函数开平方根考察位置算符r 和动量算符pˆ:r r →,(6. 1)∇-=→ i ˆpp . (6. 2)经典力学中的力学量还有:势能)(r V 纯位置坐标的函数(算符不变)力)()(r r F V ∇-=速度m /p v = 动量的函数(算符可由动量的对应关系得出)动能m p T 2/2= 动能2222ˆ ()222P T m m m x y z222222∂∂∂==-∇=-++∂∂∂ (6. 3)角动量∇⨯-=⨯=r p r Li ˆˆ (6. 4)在直角坐标系中的分量表达式)(i ˆˆˆyz z y p z py L y z x ∂∂-∂∂-=-= )(i ˆˆˆzx x z p x pz L z x y ∂∂-∂∂-=-=(6. 5))(i ˆˆˆxy y x p y px L x y z ∂∂-∂∂-=-=角动量算符Lˆ的模方(L ˆ的平方) L LL ˆˆˆˆ22⋅==L 222ˆˆˆz y x L L L ++=. (6. 6)角动量在球面坐标系的表示]sin 1)sin (sin 1[ˆ22222ϕθθθθθ∂∂+∂∂∂∂-= L(6. 7)ϕ∂∂-= i ˆz L (6. 8)θθθθθ2222sin ˆ)sin (sin ˆzL L +∂∂∂∂-= (6. 9)利用了:ϕθcos sin r x =,ϕθsin sin r y =, θcos r z =;2222z y x r ++=,rz =θcos , x y=ϕtan .图21 - 1 球面坐标系二 量子力学中的哈密顿量1、 哈密顿算符 薛定谔方程的普遍形式在量子力学中,薛定谔方程的普遍形式是ψψH tˆi =∂∂(6. 10)式中H ˆ是体系的哈密顿算符( = 动能函数 +势能函数)V T H +=,(6. 11)对于一个粒子在势场V ( r )中运动的情况,有)(2ˆ22r V mH +∇-= ,(6. 12) 讨论:● 哈密顿算符决定了体系的量子态随时间的变化规律,在量子力学中占有特别重要的地位。
第六章⾃旋和⾓动量第六章⾃旋和⾓动量⾮相对论量⼦⼒学在解释许多实验现象上获得了成功。
⽤薛定谔⽅程算出的谱线频率,谱线强度也和实验结果相符。
但是,更进⼀步的实验事实发现,还有许多现象,如光谱线在磁场中的分裂,光谱线的精细给构等,⽤前⾯⼏章的理论⽆法解择,根本原因在于,以前的理论只涉及轨道⾓动量。
新的实验事实表明,电⼦还具有⾃旋⾓动量。
在⾮相对论量⼦⼒学中,⾃旋是作为⼀个新的附加的量⼦数引⼊的。
本章只是根据电⼦具有⾃旋的实验事实,在定薛谔⽅程中硬加⼊⾃旋。
本章的理论也只是局限在这样的框架内。
以后在相对论量⼦⼒学中,将证明,电⼦的⾃旋将⾃然地包含在相对论的波动⽅程—狄拉克⽅程中。
电⼦轨道⾓动量在狄拉克⽅程中不再守恒,只有轨道⾓动量与⾃旋⾓动量之和,总⾓动量才是守恒量。
本章将先从实验上引⼊⾃旋,分析⾃旋⾓动童的性质,建⽴包含⾃旋在内的⾮相对论量⼦⼒学⽅程—泡利⽅程。
然后讨论⾓动量的藕合,并进⼀步讨论光错线在场中的分裂和精细结构,此外还会对电⼦在磁场中的⼀些其他的有趣的重要现象作些探讨。
§6. 1电⼦⾃旋施特恩(Stern)⼀盖拉赫(Gerlach)实验是发现电⼦具有⾃旋的最早的实验之⼀,如图6.1.1,由K 源射出的处于s 态的氢原⼦束经过狭缝和不均匀磁场,照射到底⽚PP 上,结果发现射线束⽅向发⽣偏转,分裂成两条分⽴的线.这说明氢原⼦具有磁矩,在⾮均匀磁场的作⽤下受到⼒的作⽤⽽发⽣偏转.由于这是处于s 态的氢原⼦,轨道⾓动量为零,s 态氢原⼦的磁矩不可能由轨道⾓动量产⽣,这是⼀种新的磁矩.另外,由于实验上只发现只有两条谱线,因⽽这种磁矩在磁场中只有两种取向,是空间量⼦化的,⽽且只取两个值。
假定原⼦具有的磁矩为M ,则它在沿z ⽅向的外磁场中的势能为U= -M =M cos θ (6.1.1)θ为外磁场与原⼦磁矩之间的夹⾓。
按(6.1.1)式,原⼦在z ⽅向所受的⼒是F z =-Z U ??=M zcos θ (6.1.2) 实验证明,这时分裂出来的两条谱线分别对应于cos θ=+1和-1两个值。
第六章 群论与量子力学§6.1 哈密顿算符群和相关定理设()r Hˆ为哈密顿算符,g 为同一坐标中的坐标变换,P g 为与之对应的函数变换算符,()()r g f r f P g1-=,()r f 为任意函数,有:()()()()()()()()r f P r g H P r g f r g H P r f r H P P r f r Hg g g g g 11ˆˆˆˆˆ--=== 故()()1ˆˆ-=g g P r g H P r H(由()r f为任意函数) 若坐标经过变换g 作用后,哈密顿算符的形式不变,即:r g r=',()()()r H r H r g H ˆ'ˆˆ==,则: ()()1ˆˆ-=g g P r H P r H 或()()r H P P r H g g ˆˆ=即当哈密顿算符()r H ˆ在函数变换算符g P 的作用下不变时,则()r Hˆ与P g 对易:[]0,=g P H【定义6.1】哈密顿算符的群 所有保持一个系统的哈密顿算符Hˆ不变的变换g 作成的集合构成一个群,称为该哈密顿算符()r Hˆ的群,或薛定谔方程的群:()(){}r H r g H g G H ˆˆ== 存在逆元:H G g ∈∀,有()()r H r g Hˆˆ= 令r g r =',则'1r g r-=,代入得:()'ˆ1r gg H -,即:()()'ˆ'ˆ1r H r g H =-,故H G g ∈-1封闭性:HG g g ∈∀',,有:)()'()'()()()'(ˆ11'1''1'r H r g H r g H P r H P P r g H P r gg H g g g g =====----结合律和单位元显然存在。
【定义6.2】 哈密顿算符群或薛定谔方程群 由哈密顿算符的群对应的函数变换算符作成的集合构成群,称为哈密顿算符群或薛定谔方程群,记为:}|{H g G G g P P H ∈=。