各轨道线路曲线要素表
- 格式:xls
- 大小:13.50 KB
- 文档页数:1
第三章轨道几何形位3.1 概述轨道几何形位是指轨道各部分的几何形状、相对位置和基本尺寸。
3.1.1 轨道几何形位的基本要素轨距:在轨道的直线部分,两股钢轨之间应保持一定的距离水平:两股钢轨的顶面应位于同一水平或保持一定的相对高差方向:轨道中线位置应与它的设计位置一致前后高低:两股钢轨轨顶所在平面(即轨面)在线路纵向应保持平顺轨底坡:为使钢轨顶面与锥形踏面的车轮相配合,两股钢轨均应向内倾斜铺设轨距加宽:在轨道的曲线部分,除应满足上述要求外,还应根据机车车辆顺利通过曲线的要求,将小半径曲线的轨距略以加宽外轨超高:为抵消机车车辆通过曲线时出现的离心力,应使外轨顶面略高于内轨顶面,形成适当的外轨超高缓和曲线:为使机车车辆平稳地自直线进入圆曲线(或由圆曲线进入直线),并为外轨逐渐升高、轨距逐渐加宽创造必要的条件,在直线与圆曲线之间,应设置一条曲率和超高渐变的缓和曲线3.1.2 控制轨道几何形位的重要性3.2 机车车辆走行部分构造简介转向架的主要功能是:将车体荷载均匀分配于轮对,保证机车车辆顺利通过曲线,并降低轮对振动对车体的影响。
3.2.1 转向架的构造和类型重要概念全轴距:同一机车车辆最前位和最后位车轴中心间水平距离固定轴距:同一转向架上始终保持平行的最前位和最后位车轴中心间水平距离车辆定距:车辆前后两转向架上车体支承间的距离3.2.2 轮对对轮对的要求是:应有足够的强度,以保证在容许的最高速度和最大载荷下安全运行;应在强度足够和保证一定使用寿命的前提下,自重最小,并具有一定弹性,以减小轮轨之间的相互作用力;应具备阻力小和耐磨性好的优点,以降低牵引动力损耗并提高使用寿命;应能适应车辆直线运行,同时又能顺利通过曲线,还应具备必要的抵抗脱轨的安全性。
踏面:车轮与钢轨的接触面;轮缘:突出的圆弧部分,是保持车辆沿钢轨运行,防止脱轨的重要部分;车轮内侧面:轮缘内侧面的竖直面;车轮外侧面:与车轮内侧面相对的竖直面;车轮宽度:车轮内外两侧面之间的距离;轮辋:车轮上踏面下最外的一圈;轮毂:轮与轴互相配合的部分;幅板:联接轮辋与轮毂的部分,幅板上有两个圆孔,便于轮对在切削加工时与机床固定并供搬运轮对之用。
典型轨道的六要素列表一、轨道形状典型轨道的形状多种多样,可以是圆形、椭圆形、抛物线形或双曲线形。
每种形状都有其独特的特点和用途。
圆形轨道是最简单的形状,适用于卫星运行以及地球上的人造卫星。
椭圆形轨道则更常见,适用于行星和卫星的运行。
抛物线形轨道则常用于太阳系探测器的探测任务,而双曲线形轨道则常用于彗星等天体的轨道。
二、轨道倾角轨道倾角是指轨道平面与参考平面的夹角。
典型轨道的倾角可以是0度、23.5度、90度等等。
倾角为0度的轨道称为赤道轨道,适用于地球上的通信卫星等任务。
倾角为23.5度的轨道则适用于地球上的气象卫星等任务。
倾角为90度的轨道称为极轨道,适用于地球上的地球观测卫星等任务。
三、轨道高度轨道高度是指轨道离地球表面的距离。
典型轨道的高度可以是低地球轨道(LEO)、中地球轨道(MEO)、高地球轨道(GEO)等等。
低地球轨道高度一般在1000千米到2000千米之间,适用于地球上的科学观测卫星等任务。
中地球轨道高度一般在2000千米到30000千米之间,适用于全球定位系统(GPS)等任务。
高地球轨道高度一般在36000千米到42000千米之间,适用于地球上的通信卫星等任务。
四、轨道周期轨道周期是指物体完成一次轨道运动所需的时间。
典型轨道的周期可以是几小时到几天不等。
低地球轨道的周期一般在90分钟到120分钟之间,中地球轨道的周期一般在6小时到12小时之间,高地球轨道的周期一般在24小时到48小时之间。
五、轨道速度轨道速度是指物体在轨道上的运行速度。
典型轨道的速度可以是几千米每小时到几万千米每小时不等。
低地球轨道的速度一般在7000千米每小时到8000千米每小时之间,中地球轨道的速度一般在10000千米每小时到15000千米每小时之间,高地球轨道的速度一般在30000千米每小时到40000千米每小时之间。
六、轨道稳定性轨道稳定性是指物体在轨道上运行时保持稳定的能力。
典型轨道的稳定性取决于轨道的形状、倾角和高度等因素。
第二节铁路线路的平面和纵断面(于本章最后讲)铁路线路在空间的位置是用它的中心线来表示的。
线路中心线是指距外轨半个轨距的铅垂线 AB 与两路肩边缘水平连线 CD 交点 O 的纵向连线。
如下图所示:线路横断面线路中心线在水平面上的投影,叫做铁路线路的平面,表明线路的直、曲变化状态;线路中心线展直后在铅垂面上的投影,叫铁路线路的纵断面,表明线路的坡度变化。
一、铁路线路的平面及平面图线路的平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。
(一)曲线铁路线路在转向处所设的曲线为圆曲线,其基本组成要素有:曲线半径 R ,曲线转角α ,曲线长 L ,切线长度 T ,如下图所示:圆曲线要素在线路设计时,一般是先设计出α和 R,在按下式计算出T及L:曲线半径愈大,行车速度愈高,但工程量愈大,工程费用愈高。
(二)缓和曲线为保证列车安全,使线路平顺地由直线过渡到圆曲线或由圆曲线过渡到直线,以避免离心力的突然产生和消除,常需要在直线与圆曲线之间设置一个曲率半径变化的曲线,这个曲线称为缓和曲线,如下图所示为设有缓和曲线的铁路曲线。
铁路曲线缓和曲线的特征为:从缓和曲线所衔接的直线一端起,它的曲率半径ρ 由无穷大逐渐减小到它所衔接的圆曲线半径 R 。
它可以使离心力逐渐增加或减小,不致造成列车强烈的横向摇摆,如图所示。
离心力变化示意图(三)夹直线两相邻曲线,转向相同,称为同向曲线;转向相反,称为反向曲线。
两条相邻曲线间应设置一定长度的直线,以保证列车运行的平稳,如下图所示。
车辆运行在同向曲线上,因相邻曲线半径不同,超高高度不同,车体内倾斜度不同;车辆运行在反向曲线上,因两曲线超高方向不同,车体时而向左倾斜,时而向右倾斜。
这两种情况都会造成车体摇晃震动。
夹直线愈短,摇晃振动愈大。
相邻曲线间的夹直线根据运营实践,为保证旅客舒适,夹直线长度应保持 2 ~ 3 辆客车长度,困难条件下,也不应短于 1 辆客车长度。
因此《铁路线路设计规范》规定各级铁路线路两相邻曲线间夹直线最小长度,如下表所示。
铁路曲线基本知识目录一、铁路曲线概述 (2)1. 铁路曲线的定义 (3)2. 铁路曲线的特点 (3)3. 铁路曲线的重要性 (4)二、铁路曲线的设计原理 (5)1. 平面曲线的基本知识 (7)2. 纵断面曲线的设计 (8)3. 横断面曲线的设计 (9)4. 曲线要素的计算 (10)三、铁路曲线的施工技术 (12)1. 曲线轨道的铺设方法 (13)2. 曲线轨道的施工要点 (14)3. 曲线轨道的维护与保养 (15)四、铁路曲线的养护与维修 (16)1. 曲线轨道的检查与检测 (18)2. 曲线轨道的维修周期与标准 (18)3. 曲线轨道的养护方法与措施 (19)五、铁路曲线的提速与改造 (20)1. 提速改造的必要性与可行性 (22)2. 提速改造的技术措施与方案 (23)3. 提速改造后的效益评估与分析 (24)六、铁路曲线相关理论与实践研究 (26)1. 国内外铁路曲线发展历程与现状 (27)2. 铁路曲线理论的研究进展与应用 (28)3. 铁路曲线实践中的问题与挑战 (29)七、铁路曲线安全与环境保护 (31)1. 铁路曲线安全影响因素及控制措施 (32)2. 铁路曲线对环境的影响及保护措施 (34)3. 铁路曲线安全与环境保护的实践案例 (36)一、铁路曲线概述铁路曲线是指铁路线路在一定范围内,由于地形、地质条件、设计要求等原因而形成的曲率不同的线形。
铁路曲线是铁路运输的重要组成部分,对于保证列车行驶安全、提高运输效率和降低运输成本具有重要意义。
铁路曲线分为直线曲线、圆弧曲线和复合曲线三种类型。
直线曲线:是指线路上两点之间的距离保持不变的曲线,如直线段、大圆弧等。
直线曲线是铁路运输中最简单的曲线形式,但在实际运营中,直线曲线的长度较大,容易导致列车速度降低,从而影响运输效率。
圆弧曲线:是指线路上两点之间的距离随曲线半径的变化而变化的曲线,如小圆弧、大圆弧等。
圆弧曲线具有较小的长度和较大的曲率,可以有效提高列车的运行速度,降低运输成本。
道岔附带曲线主要要素表道岔附带曲线主要要素表摘要:道岔是铁路交通系统中的重要组成部分,用于实现列车从一条铁轨切换到另一条铁轨。
道岔附带曲线是道岔中一种特殊的曲线形态,其设计和建造需要考虑多个要素,包括曲线半径、过渡曲线长度等。
本文将对道岔附带曲线的主要要素进行全面评估,并探讨其在铁路交通系统中的重要性和应用。
1. 引言在铁路交通系统中,道岔起着非常重要的作用,它能够实现列车从一条铁轨切换到另一条铁轨,确保列车能够准确、平稳地行驶。
道岔附带曲线是一种特殊形态的曲线,在道岔中扮演着关键的角色。
它能够实现列车在道岔切换过程中的平滑过渡,避免因过渡不平顺而引发的列车脱轨等问题。
2. 道岔附带曲线的主要要素2.1 曲线半径道岔附带曲线的曲线半径是指曲线中心线的半径和曲线弯曲程度的指标。
曲线半径的选择需要考虑到列车的运行速度、列车类型和轨道弯曲的要求等。
较大的曲线半径能够提供更平缓的曲线过渡,减少列车在曲线运行过程中的侧向力,降低磨耗和动态荷载。
2.2 过渡曲线长度过渡曲线长度指在道岔切换区域中,从直线轨道到曲线轨道之间的过渡段长度。
过渡曲线能够实现列车在切换过程中的平稳过渡,减少前后车体之间的冲击和振动。
过渡曲线长度的选择需要考虑到列车速度、道岔布置和列车编组等因素,以保证切换过程的安全性和舒适性。
2.3 倾斜区间倾斜区间是指道岔切换过程中,为了保持列车车体的稳定而进行的侧向倾斜的区域。
倾斜区间能够减少切换过程中的冲击和列车的横向力,提高列车运行的平稳性。
倾斜区间的长度取决于切换速度、列车类型和道岔布置等因素。
3. 道岔附带曲线的重要性和应用道岔附带曲线作为道岔设计中的重要要素,对于铁路交通系统的安全性和运营效率有着重要影响。
合理的附带曲线设计能够提高列车在道岔切换过程中的平稳性和舒适性,减少列车动态荷载和对轨道的磨耗,延长轨道和轮轨的使用寿命。
在实际应用中,不同类型的道岔附带曲线具有不同的要求和特点。
高速铁路中的道岔附带曲线需要考虑更高的运行速度和列车稳定性,以及更长的过渡曲线长度和倾斜区间。
铁路曲线要素总结引言铁路曲线是指铁路线路中的曲线段,它们是为了适应地理环境和保证行车的安全而设置的。
在铁路规划和设计过程中,曲线作为重要的要素之一,需要合理设置和设计。
本文将总结铁路曲线的要素,包括曲线的类型、曲线的要素和曲线的设计原则。
一、曲线的类型铁路曲线根据曲线的半径和曲线的形状可以分为以下几种类型:1.短曲线:半径较小的曲线,用来连接两个相对位置较近的直线段。
2.中曲线:半径适中的曲线,用于连接中等距离的直线段。
3.长曲线:半径较大的曲线,用来连接两个相对位置较远的直线段。
除了根据半径来划分,曲线还可以根据形状来划分:1.平面曲线:曲线位于同一平面上,形状为圆弧。
2.过渡曲线:用来平滑地连接两个直线段之间的曲线,形状为缓和曲线。
3.过渡过曲线:用来连接两个不同半径的曲线,形状为复合曲线。
二、曲线的要素在铁路曲线的设计过程中,需要考虑以下几个要素:1.半径:曲线的半径决定了曲线的形状和曲线的占地面积。
根据列车的速度和行车安全的要求,选择合适的曲线半径非常重要。
2.超高:超高是指曲线内的轨道凸出部分相对于曲线外的轨道的高度差。
超高的大小影响列车通过曲线时的舒适性和行车的平稳性。
3.过渡曲线长度:过渡曲线的长度决定了列车在转弯时的减速和加速过程。
合理的过渡曲线长度可以减小列车的震动和噪音,提高行车的舒适性。
4.轨距:轨距是指铁轨之间的距离,它决定了列车在曲线上的行车稳定性和安全性。
5.轨道超高:轨道超高是指曲线内的轨道比曲线外的轨道略高的高度差。
合理的轨道超高可以提高列车通过曲线的平稳性和安全性。
三、曲线的设计原则在铁路曲线的设计过程中,需要遵循以下原则:1.安全原则:曲线的设计应满足列车行车安全的要求,例如保证列车行驶时不会因过大的超高或过渡曲线不合理而产生危险。
2.舒适性原则:曲线的设计应考虑列车乘客的舒适感,避免过大的超高和过渡曲线长度过短导致的不适。
3.经济性原则:曲线的设计应尽量减少占地面积和工程造价,同时满足行车安全和舒适性的要求。
一、曲线的分类:目前我段主要曲线类型有:1、由两端缓和曲线和圆曲线组成的曲线,如正线曲线。
容许行车速度高。
2、由圆曲线构成的曲线。
如道岔导曲线、附带曲线。
二、圆曲线正矢的计算1、曲线头尾正好位于起终点桩上F C=L2/8RL=20M时,F C=50000/RF ZY=F YZ= F C/22、曲线头尾不在起终点桩上ZY前点:Fμ=(FC/2) *(δ/10)2ZY后点:Fη=FC-{(FC/2) *(τ/10)2}FC:圆曲线正矢δ:ZY点到后点的距离τ:ZY点到前点的距离三、缓和曲线上整点正矢的计算(起始点正好是测点)(1)缓和曲线头尾的计算:F0=F1/6(缓和曲线起点) F终= F C-F0(缓和曲线终点)(2)缓和曲线中间点正矢的计算:F1=F S= F C/N (N=L0/B:缓和曲线分段数)F2=2 F1 F3=3F1 F I=IF1(I为中间任意点)四、半点(5米桩)正矢的计算:a)ZH点后半点正矢的计算:F后=25/48*F1因为ZH点正矢f0=f1/6,很小一般为1~2MM,其前半点很小(小于1MM)因此不作计算。
b)HY(YH)点前半点计划正矢的计算F前=1/2{[L03+(L0-15)3]/6R L0+[5L0+25]/2R}-(L0-5)3/6R L0c)HY(YH)点后半点计划正矢的计算F后=1/2{[ (L0-5)3 -L03]/6R L0+[5L0+175]/2R}d)中间点(5米桩)正矢的计算F中=(F前+F后)/2五、测点不在曲线始终点时缓和曲线计划正矢的计算a)缓和曲线始点(ZH点)处相邻测点的计划正矢Fμ=αυF S (直缓点外点) αυ=1/6(δ/B)3Fη=αηF S (直缓点内点) αη=1/6[(1+δ/B)3-(δ/B)3](2) 缓圆点处相邻测点的计划正矢Fφ=F C-αυF S (缓圆点外点,缓和曲线之外)Fθ= F C-αηF S (缓圆点内点,缓和曲线之内)(αυ、αη查纵距率表《曲线设备与曲线整正》附表二)(3)缓和曲线中间点各点计划正矢的计算F I=(F C/L0)L I(I为中间任意点)说明:B:半弦长δ:缓和曲线内点到ZH、HY(YH)距离L0:缓和曲线长 F C:圆曲线正矢第二讲:曲线拨道一、绳正法基本原理1、基本假定:(1)假定拨道前后两端切线方向不变,或起始点位置不变,即曲线终点拨量为零。