一元一次不等式易错题1-(含答案)资料
- 格式:doc
- 大小:381.00 KB
- 文档页数:4
一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。
解一元一次不等式易错题专讲知识点概述:解一元一次不等式属于初中基础知识点,中考所占分值3分(计算题),解法与一元一次方程类似,只有最后一步系数化为1时,注意当系数为负时,不等号注意变号一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点: 1.解一元一次不等式;2.数形结合(不等式与数轴相结合)3.整体思想的应用易错点: 1.系数为负时,要变号2.去分母时,常数项、整式项不要漏乘【典例演练】1.【答案】a<1【解析】因为不等号的符号改变,所以x前系数为负,则a-1<0,a<1.思路点拨:本题考查不等式的变号问题,所有不等式求解的最后一步都会遇到,请时刻注意判断是否变号。
2.【答案】x>2方法二:因为分母为正数,结果为正数,所以分子只能为正,所以直接列x-2>0,解得x>2.思路点拨:法二可以提升解题速度,对于计算薄弱的学生可以避免计算出错,同类型问题非正数,非负数等,都可用此方法进行解答3.【答案】 x≥-2【解析】(x+2)-3×3x≤18x+2-9x≤18-8x≤16x≥-2思路点拨:本类型一元一次不等式易错点在于不等号右侧的6,在去分母的时候需要同乘3 4.若不等式2x<4的解都能使关于x的一次不等式(a-1)x<a+5成立,则a 的取值范围【答案】1<a≤7【解析】∵2x<4∴x<2……①∵2x<4的解都能使(a-1)x<a+5成立∴a+5≥2a-2-a≥-7a≤7∵a>1,∴1<a≤7思路点拨:1.一个不等式的解满足另一个不等式,注意哪个不等式的解的范围大2.不等式的系数有代数式时,注意通过题目先进行判断,不要盲目分类讨论3.已经得出的范围,在结果上不要忘了加上,如本题中a>1,结果不要漏了5.【答案】6<m≤7【解析】∵x-m<0∴x <m ∵7-2x ≤1 ∴x ≥3 ∵整数解共有4个,为3,4,5,6∴结合数轴考虑如图,右侧空心点应该大于6,小于等于7则6<m ≤7思路点拨:1.数形结合2.端点判断6. 当m 为何值时,关于x 的方程4152435-=-m m x 的解是非负数。
最新初中数学方程与不等式之一元一次方程易错题汇编含答案(3)一、选择题1.下列各式属于一元一次方程的是( )A .3x+1B .3x+1>2C .y =2x+1D .3x+1=2【答案】D【解析】【分析】直接利用一元一次方程的定义分析得出答案.【详解】A 、3x+1是代数式,故此选项错误;B 、3x+1>2,是不等式,故此选项错误;C 、y=2x+1,是一次函数,故此选项错误;D 、3x+1=2属于一元一次方程,故此选项正确.故选:D .【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得:()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.4.若x =-2是方程ax -b =1的解,则代数式4a +2b -3的值为( )A .1B .3-C .1-D .5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a 和b 的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D .【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.5.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x ﹣2,2x ﹣1,若这两个三角形全等,则x 为( )A .B .4C .3D .不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x -2=5且2x -1=7或3x -2=7且2x -1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质6.关于x的方程1514()2323mx x-=-有负整数解,则所有符合条件的整数m的和为()A.5 B.4 C.1 D.-1【答案】D【解析】【分析】先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.【详解】解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.7.某同学在解方程3x-1=□x+2时,把□处的数字看错了,解得x=-1,则该同学把□看成了()A.3 B.13C.6 D.-16【答案】C【解析】把x=﹣1代入方程3x﹣1=□x+2,得 3×(﹣1)﹣1=﹣1□+2,即﹣4=﹣1□+2,解得□=6.故选C.点睛:此题主要考查了一元一次方程的解,解题时先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.8.如果x=2是方程12x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣6【答案】C【解析】【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选:C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.9.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=1 x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人【答案】A【解析】【分析】 根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】设大和尚有x 人,则小和尚有(100﹣x )人,根据题意得:3x+1003x -=100, 解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A .【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.11.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( )A .202013045x ++= B .202014530x -+= C .202013045x -+= D .202014530x ++= 【答案】B【解析】【分析】根据题意列出符合题意的方程即可.【详解】根据题意可得 202014530x -+=故答案为:B.【点睛】本题考查了一元一次方程的工程问题,掌握解一元一次方程的方法是解题的关键.12.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为().A.407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,由此得出ABn=5(n+1)×5+1,将2026代入求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,∴AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11,∴AB2的长为:5+5+6=3×5+1=16,……∴ABn=5(n+1)+15(n+1)+1=2026,解得:n=404,故选D.【点睛】本题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.13.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.14.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B :等式两边同时除以3-,等式依然成立;C :等式两边同时乘以a ,等式依然成立;D :当0m =时,x 不一定等于y ,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.15.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.16.已知方程3x –2y=5,把它变形为用含x 的代数式表示y ,正确的是( )A .y=352x - B .y=352x + C .y=352-+x D .y=352--x 【答案】A【解析】【分析】 根据等式的性质,把x 看做已知数求出y 即可. 【详解】解:方程3x –2y=5解得:y=352x - 故选:A.【点睛】 本题主要考查了等式的性质,解题的关键是将x 看做已知数求出y.17.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x 个人,则可列方程是( )A .()3229x x +=-B .()3229x x -=+C .9232x x -+= D .9232x x +-= 【答案】C【解析】【分析】 由3个人乘一辆车,则空2辆车;2个人乘一辆车,则有9个人要步行,根据总车辆数相等即可得出方程.【详解】解:设有x 个人,则可列方程:9232x x -+=. 故选:C .【点睛】 此题主要考查了由实际问题抽象出一元一次方程,正确找出等量关系是解题关键.18.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.19.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.20.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场【答案】C【解析】【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.。
【中考数学】一元一次不等式易错压轴解答题练习题(含答案)一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?3.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.4.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?5.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?6.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
数学一元一次不等式习题及答案《一元一次不等式》同步练习题(1)知识点:1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式2.解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.3.不等式解集及其数轴表示法⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如:同步练习:1.不等式14x-7(3x-8)<4x-4 3.已知关于x的不等式2x-a>- 3 的解集如图所示,则a的值是 ( )A. 0 B.1 C.-1 D.2 4.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5 %,则至多可打 ( )A.6折 B.7折 C.8折 D.9折5.某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人 ( )A.27 B. 28 C.29 D.30 填空题(每题4分,共16分)6.武汉市某一天的最低气温为-6℃,最高气温是5℃,如果设这天气温为t ℃,那么t应满足条件7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中。
小明获得优秀(90分或90分以上),则小明至少答对了道题。
新课标第一网8.一组学生在校门口拍一张合影,已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的同学至少有人。
9.小王家鱼塘有可出售的大鱼和小鱼共800kg,大鱼每千克售价10元,小鱼每千克售价6元,若将这800kg鱼全部出售,收入可以超过6800元,则其中售出的大鱼至少有多少kg?若设售出的大鱼为x kg,则可列式为三、解答题10.已知某种彩电的出厂价为每台1800元,各种管理费约为出厂价的12%,则商家的零售价为每台多少元,才能保证毛利润不低于15% ?11.为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,期中每台的价格。
一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
中考一元一次方程易错题50题含答案解析一、单选题1.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x xC .233072x xD .323072x x2.若x =1是关于x 的方程ax +2x +1=0的解,则a 的值是 A .-3B .3C .-1D .-23.根据等式的性质,下列变形中正确的是( ) A .若33m n +=-,则m n = B .若x ya a=,则x y = C .若22a x a y =,则x y =D .若382k -=,则12k =-4.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .()0.7160%36x x +=-B .()0.7160%36x x +=+C .()07160%36x x +=-.D .()0.7160%36x x +=+5.若关于x 的方程3x+2m =2的解是正数,则m 的取值范围是( ) A .m >1B .m <1C .m ≥1D .m ≤16.某商人在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中,该商人( ) A .赚10元B .赔10元C .不赚不赔D .无法确定7.已知等式a =b ,则下列变形错误的是( ) A .|a |=|b |B .a +b =0C .a 2=b 2D .2a ﹣2b =08.小淇在某月的日历中圈出相邻的三个数,算出它们的和是15,那么这三个数的位置可能是( ) A .B .C .D .9.下列说法正确的是( ) A .如果ax ay =,那么x y = B .如果a b =,那么55a b -=- c c10.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( ) A .6名B .7名C .8名D .9名11.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ). A .320425x x +=- B .320425x x +=+ C .320425x x -=+D .320425x x -=-12.下列判断:①若0a b c ++=,则()22a c b +=.①若0a b c ++=,且0abc ≠,则122a cb +=-.①若0a bc ++=,则1x =一定是方程0ax b c ++=的解.①若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( )A .①①①B .①①①C .①①①D .①①①①13.要使方程ax b =的解为1x =,必须满足( ) A .a b =B .0a ≠C .0b ≠D .0a b =≠.14.方程x ﹣3=2x ﹣4的解为( ) A .1B .﹣1C .7D .﹣715.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .5223-D .23-16.解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以17.将方程x ﹣3(4﹣3x )=5去括号正确的是( ) A .x ﹣12﹣6x =5B .x ﹣12﹣2x =5C .x ﹣12+9x =5D .x ﹣3+6x =518.课本习题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )A .甲、丁B .乙、丙C .甲、乙D .甲、乙、丙19.用如图(1)所示的长方形和正方形纸板做成如图(2)所示的A 、B 两种无盖长方体纸盒(拼接部分忽略不计).现有长方形纸板180张,正方形纸板60张,刚好全部用完.求做成的A 、B 两种纸盒的数量.下列结论正确的个数是( )①设A 种纸盒共有x 个,则可列方程:60431802xx -+⨯=;①设B 种纸盒共有y 个,则可列方程:18032604yy -+=;①B 种纸盒共有24个;①做A 种纸盒共用去长方形纸板144个. A .1B .2C .3D .420.α∠与∠β的度数分别是219m -和77m -,且α∠与∠β都是γ∠的补角,那么α∠与∠β的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等二、填空题21.若1x =是关于x 的方程31ax bx +=的解,则39a b +=___________. 22.如果x ﹣1=3,则x 的值是 _____.23.我国古代数学名著《孙子算经》中记载;“今有木,不知长短,引绳度之,余绳五尺;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,那么可列方程为 _____. 24.当x =___时,13x -的值是2 25.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图,即车尾到倒车镜的距离与车长之比为0.618),若车头与倒车镜的水平距离为1.9m ,则该车车身总长约为________m (保留整数).26.已知2230m x -+=是关于x 的一元一次方程,则m =________________. 27.若关于x 的方程()||235m m x--=是一元一次方程,则m =______.28.已知:数轴上一个点到-2的距离为5,则这个点表示的数是 ___________________29.如果一个正多边形每一个内角都等于144︒,那么这个正多边形的边数是______. 30.双层游轮的票价是上层票每张12元,下层票每张8元,现在游轮上共有游客150人,而且下层票的总票款比上层票的总票款多700元.那么这艘轮船上下两层游客的人数分别是多少设这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,可列方程组为__________.31.若关于x 的多项式()2x m -与()35+x 的乘积中,一次项系数为1,则m =____________.32.一个角的比它的余角多24°30′,则这个角的补角是_________.33.如图是一个正方体的展开图,如果正方体相对的两个面上标注的数值均互为相反数,则x 的值是_________.34.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有___________名工人.35.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?设她们采摘用了x 小时,则可列一元一次方程为_______.36.已知方程ax+12=0的解是x=3,则不等式(a+2)x<-6的解集为________. 37.已知关于x 的方程23kx a +=1+6x bk-中,a 、b 、k 为常数,若无论k 为何值,方程的解总是x =1,则a +18b 的值为 ___.38.已知点M 、N 在线段AB 上,AM MB =13,AN NB=23,且MN =2,则AB =______.39.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.三、解答题40.在ABC 中, ①A 的度数是①B 的度数的3倍,①C 比①B 大15°,求①A ,①B ,①C 的度数. 41.(1)计算:(2)计算(3)解方程:3(25)29x x --+= (4)解方程:42.据调查表明,山的高度每增加1km ,则气温大约升高-6①.(1)我省著名风景区庐山的五老峰的高度约为1500m ,当山下气温20①时,求山顶的气温;(2)若某地的地面气温为18①,高空某处的气温为-24①,求此处的高度.43.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?44.汽车从甲地到乙地,用去油箱中汽油的14,由乙地到丙地用去剩下汽油的15,油箱中还剩下6升.(1)油箱中原有汽油多少升?(2)已知甲、乙两地相距22km,求乙、丙两地的距离.45.为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.表1:大连市居民自来水实施阶梯水价标准情况:表2:四个家庭2017年的年用水量和缴纳水费情况:请你根据表1、表2提供的数据回答下列问题:(1)写出表1中的a,m的值;(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?46.(1)计算:﹣1×[﹣32×(﹣23)2﹣2]÷(﹣23) (2)解方程:3157146x x ---= 47.计算题(1)计算:2232113()(2)()32-⨯---÷-(2)解方程:12111263x x x --+-=- 48.已知线段12AB =个单位长度.(1)如图1,点P 沿线段AB 自点A 出发向点B 以1个单位长度每秒的速度运动,同时点Q 沿线段BA 自点B 出发向点A 以2个单位长度每秒的速度运动,几秒钟后,P 、Q 两点相遇?(2)如图1,几秒后,P 、Q 两点相距3个单位长度?(3)如图2,3AO =个单位长度,1PO =个单位长度,当点P 在AB 的上方,且60∠=︒POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿线段BA 自B 点向A 点运动,假若P 、Q 两点能相遇,求点Q 的运动速度. 49.新规定:点C 为线段AB 上一点,当3CA CB =或3CB CA =时,我们就规定C 为线段AB 的“三倍距点”.如图,在数轴上,点A 所表示的数为3-,点B 所表示的数为5. (1)确定点C 所表示的数为___________;(2)若动点P 从点B 出发,沿射线BA 方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①求AP 的长度(用含t 的代数式表示);①当点A 为线段BP 的“三倍距点”时,求出t 的值.参考答案:1.D【分析】先设男生x 人,根据题意可得323072x x.【详解】设男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.【点睛】本题考查列一元一次方程,解题的关键是读懂题意,得出一元一次方程. 2.A【分析】把1x =代入方程得出关于a 的方程,解之可得答案. 【详解】将1x =代入ax +2x +1=0,得:210a ++=, 解得:3a =-, 故选:A .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键. 3.B【分析】根据等式的性质变形得到结果,作出判断即可得.【详解】解:A 、若33m n +=-,则m n ≠,选项说法错误,不符合题意; B 、若x ya a=,则x y =,选项说法正确,符合题意; C 、若22a x a y =,20a ≠,则x y =,选项说法错误,不符合题意; D 、若382k -=,则163k =-,选项说法错误,不符合题意;故选:B .【点睛】本题考查了等式的性质,解题的关键是掌握等式的性质. 4.B【分析】设这件夹克衫的成本价是x 元,根据题意列出一元一次方程即可求解. 【详解】解:设这件夹克衫的成本价是x 元,根据题意得,()0.7160%36x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键. 5.B【分析】先把x 的值用m 表示出来,再根据关于x 的方程3x+2m =2的解是正数列出不等式,求出m 的取值范围即可.【详解】解:方程3x+2m=2可化为x=223m-,①x>0,①223m->0,①m<1.故选:B.【点睛】此题考查了解一元一次不等式,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.6.B【分析】设进价为x元,根据售价=(1+利润率)×进价列出一元一次方程,进而求解.【详解】设赚了20%的衣服的进价是x元,则(1+20%)x=120,解得,x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1-20%)y=120,解得y=150,则实际赔了30元;①30>20,①在这次交易中,该商人是赔了30-20=10(元).故选B.【点睛】本题考查一元一次方程的应用,求出两件衣服的进价是解题的关键.7.B【分析】根据绝对值和等式的性质分别进行判定求解.【详解】解:A.根据绝对值的性质可知,若a=b,则|a|=|b|,原变形正确,故此选项不符合题意;B.根据等式性质,若a=b,则a﹣b=0,原变形错误,故此选项符合题意;C.根据等式性质,若a=b,则a2=b2,原变形正确,故此选项不符合题意;D.根据等式性质,若a=b,则2a﹣2b=0,原变形正确,故此选项不符合题意.故选:B.【点睛】本题主要考查了绝对值的性质,等式的性质,理解等式的性质是解答关键.8.C【分析】可设第一个数为x,根据日历的数的排列规律,将各数表示出来,利用方程的思想验证x是否为正整数,从而作出判断.【详解】解:设第一个数为x ,根据已知: A 、得x+x+7+x+8=15,则x=0,故本选项不可能.B 、得x+x+7+x+6=15,则x=23,不是整数,故本选项不可能. C 、得x+x+1+x+8=15,则x=2,是整数,故本选项可能. D 、得x+x+1+x+7=15,则x=73不是整数,故本选项不可能.故选C. 【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证,难度一般,要掌握日历中数的排列规律. 9.C【分析】根据等式基本性质分析即可.【详解】A. 如果ax ay =,且a≠0,那么x y =,故不能选; B. 如果a b =,那么55a b -=-,故不能选; C. 根据性质1,如果11a b +=+,那么a b = D. 如果a b =,且0a b =≠,那么c ca b=,故不能选; 故选C【点睛】考核知识点:等式基本性质.理解性质是关键. 10.A【详解】设张老师和王老师带了x 名学生, 根据题意得(x+2)×0.8=0.9x+2×12,解得x=6,故选A . 11.A【分析】设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程即可.【详解】设这个班有学生x 人,由题意得,3x +20=4x−25. 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.A【分析】各项利用方程解的定义,以及绝对值的代数意义判断即可得到结果.【详解】解:①若0a b c ++=,则a c b +=-,①()22a c b +=,故①正确;①若0a b c ++=,则a c b +=-,且0abc ≠,则1222a cb b b +-==-,故①正确; ①若0a bc ++=,则1x =一定是方程0ax b c ++=的解,故①正确;①若0a b c ++=,且0abc ≠,当有2个负数时,0abc >;当有1个负数时<0abc ,故①不正确,故选:A .【点睛】本题考查了有理数的运算以及一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值,掌握以上知识是解题的关键.13.D【详解】试题分析:两边除以a 得:b x a=,要使方程ax b =的解为1x =,则必须满足0a b =≠.故选D .考点:一元一次方程的解.14.A【详解】移项,得x ﹣2x=﹣4+3,合并同类项,得﹣x=﹣1,系数化成1,得x=1.故选:A .15.A【分析】先解两个一元一次方程,再根据两个一元一次方程的解相同列出含m 的一元一次方程,解方程即可.【详解】解: 由243x m +=,342m x -=; 由1x m -=,解得+1x m =,因为两个方程的解相同, 所以34=12m m -+,解得: 6m =故选A.【点睛】本题主要考查一元一次方程的应用,解决本题的关键是要熟练掌握解含参数的一元一次方程的方法,并根据解相同列出方程.16.C【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项. 【详解】解:移项得,43(x-1)-13(x-1)=4+1, 合并同类项得,x-1=5,解得x=6.故选C .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.17.C【分析】方程去括号得到结果,即可作出判断.【详解】方程x ﹣3(4﹣3x )=5,去括号得:x ﹣12+9x =5,故选:C .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.B【分析】根据题意可设这种饮料的原价每瓶是x 元,则根据等量关系“九折购买的饮料数量比36元购买的一箱饮料的数量多2瓶”,或“一箱加2瓶的饮料九折后的价格是36元”;若设每箱有x 瓶,则根据“购买一箱加2瓶时,每瓶的价格和每瓶九折后的价格相等”分别列出方程即可【详解】设这种饮料的原价每瓶是x 元,则363620.9x x-=; 设这种饮料的原价每瓶是x 元,则()0.936236x ⋅+=;设每箱有x 瓶,则36360.92x x ⨯=+ 故选B【点睛】本题考查了分式方程的应用,一元一次方程的应用,根据题意找出等量关系是解题的关键.19.C【分析】若设A 种纸盒共有x 个,则有制作A 种纸盒所需长方形的个数为4x 个,正方形的个数为x 个,则B 中正方形的个数为(60-x )个,然后可判定①;若设B 种纸盒共有y 个,则有制作B 种纸盒所需正方形的个数为2y 个,长方形的个数为3y 个,则A 中长方形的个数为(180-3y )个,然后可判定①;进而求解即可判定①①.【详解】解:若设A 种纸盒共有x 个,则可列方程为60431802x x -+⨯=,解得:36x =,故①正确;若设B 种纸盒共有y 个,则可列方程:18032604y y -+=,解得:12y =,故①正确,①错误;①做A 种纸盒共用去长方形纸板为36×4=144(个),故①正确;综上所述:正确的个数有3个;故选C .【点睛】本题主要考查一元一次方程的应用,解题的关键是分析得到已知与未知之间的关系.20.D【分析】由α∠与∠β都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与∠β都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与∠β互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.21.3【分析】将方程的解代入方程后,对等式进行变形即可求解.【详解】解:将1x =代入方程可得:31a b +=,①393a b +=,故答案为:3.【点睛】本题考查了方程的解,解题关键是理解方程的解的含义,并能利用等式的性质对等式进行变形.22.4【分析】移项、合并同类项,据此求出方程的解即可.【详解】解:移项,可得:x =3+1,合并同类项,可得:x =4.故答案为:4.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.23.x +5=2(x ﹣1)【分析】根据绳子的长度不变,得出关于x 的一元一次方程,即为答案.【详解】解:依题意,得:x +5=2(x ﹣1).故答案为:x +5=2(x ﹣1).【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.24.7【分析】首先根据题意,可得:13x -=2,然后去分母、移项、合并同类项,求出方程的解是多少即可.【详解】解:根据题意,可得:13x -=2, 去分母,可得:x ﹣1=6,移项,可得:x =6+1,合并同类项,可得:x =7.故答案为:7.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.25.5【分析】设该车车身总长为x m ,利用黄金分割点的定义得到汽车倒车镜到车尾的水平距离为0.618x ,则根据题意列方程x -0.618x =1.9,然后解方程即可.【详解】解:设该车车身总长为x m ,①汽车倒车镜设计为整个车身黄金分割点的位置,①汽车倒车镜到车尾的水平距离为0.618x ,①x -0.618x =1.9,解得x ≈5,即该车车身总长约为5米.故答案为:5.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.26.3【分析】根据一元一次方程的定义,可列方程,即可求m 的值.【详解】解:①2230m x -+=是关于x 的一元一次方程,①21m -=解得:3m =故答案为:3.【点睛】本题考查了一元一次方程的定义,,利用一元一次方程的定义解决问题是本题的关键.27.3-【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).据此可得出关于m 的方程,继而可求出m 的值.【详解】①关于x 的方程()||235m m x--=是一元一次方程,①30m -≠,21m -=,解得:3m =-,故答案为3-.【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不为0,特别容易忽视的一点就是系数不为0的条件.这是这类题目考查的重点.28.-7或3【详解】试题分析:两数差的绝对值表示两点之间的距离.设这个点表示的数为=5,解得:x=3或x=-7.考点:绝对值29.10【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180144n n -⋅=,解得10n =.故答案为:10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.30.812700150y x x y -=⎧⎨+=⎩【分析】设这艘游轮上层的游客人数为x 人,下层的游客人数为y 人,根据“游轮上共有游客150人,而且下层票的总票款是上层票的总票款多700元”列方程组求解可得.【详解】这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,由题意得812700150y x x y -=⎧⎨+=⎩. 故答案为812700150y x x y -=⎧⎨+=⎩. 【点睛】本题主要考查二元一次方程组的应用,理解题意找出题目中所蕴含的等量关系是列出方程组求解的关键.31.3【分析】先求出两个多项式的积,再根据一次项系数为1,得到关于m 的一次方程,求解即可.【详解】解:()()235x m x -+263105x mx x m =-+-()261035x m x m =--+①积的一次项系数为1,①1031m -=,解得:3m =.故答案为:3.【点睛】本题主要考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则,是解决本题的关键.32.122°45′【分析】和为90度的两个角互为余角,依此根据一个角比它的余角大24°30′可求这个角的度数,再根据和为180度的两个角互为补角,即可求解.【详解】解:设这个角为x ,则x -(90°-x )=24°30′,解得x =57°15′,这个角的补角的度数为180°-57°15′=122°45′.故答案为:122°45′.【点睛】此题考查余角与补角,主要记住互为余角的两个角的和为90°;两个角互为补和为180°.利用方程思想较为简单.33.1-【分析】利用正方体及其表面展开图的特点,列出方程()()2360x x -++=解答即可.【详解】解:由题意得:()()2360x x -++=解得:=1x -故答案为:1-.【点睛】本题考查了正方体相对两个面上的文字和一元一次方程的应用.注意正方体的空间图形,从相对面入手,分析及解答问题.34.12【分析】由题可知每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据大的一片是小的一片的3倍,列出方程解答即可.【详解】解:设农场有x 名工人,每名工人每天除草量为y ,依题意有2xy +0.5xy =3(0.5xy +2×2y ),2.5xy =1.5xy +12y ,xy =12y ,x =12.故农场有12名工人.故答案为:12.【点睛】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据题意找到关系即可解答.35.80.2570.25x x -=+.【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人樱桃一样多得出等式求出答案.【详解】解:设她们采摘用了x 小时,根据题意可得:8x-0.25=7x+0.25,故答案为:8x-0.25=7x+0.25【点睛】此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键. 36.3x >【分析】先将3x =代入方程120ax +=,求得a 的值;再将a 的值代入不等式,然后系数化1即可.【详解】先将3x =代入120ax +=,得3120a +=,解得4a =-;把4a =-代入不等式26a x +<-,得426x -+<-,解得:3x >;故答案为:3x >.【点睛】本题考查了解一元一次方程及解一元一次不等式,注意不等式两边除以负数,不等式要变号.37.3【分析】将1x =代入方程,然后令k 的系数为0,得到关于a b 、的二元一次方程组,求解即可.【详解】解:将1x =代入方程23kx a +=1+6x bk -得(4)270b k a ++-=由题意可得:40270b a +=⎧⎨-=⎩,解得724a b ⎧=⎪⎨⎪=-⎩ 则17171(4)382822a b +=+⨯-=-= 故答案为:3【点睛】此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.38.403【分析】设AM =x ,则MB =3x ,则AB =4x ,利用23AN MB =可得到85AN x =,则利用MN =35x 列方程35x =2,然后解方程求出x 即可得到AB 的长. 【详解】解:设AM =x ,则MB =3x ,①AB =AM +MB =4x , ①23AN NB =,AB =AN +NB ①AN =2855AB x =, ①MN =AN ﹣AM =8355x x -=x , ①35x =2,解得x =103, ①AB =4×103=403. 故答案为403. 【点睛】本题主要考查了比例线段,根据比例的性质用代数式表示线段的长是解答本题的关键.39.3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 40.①A=99°,①B=33°,①C=48°【分析】设①B=x ,则①A=3x ,①C=x+15,再由三角形内角和定理求出x 的值即可.【详解】解:设①B=x ,则①A=3x ,①C=x+15,①①A+①B+①C=180°,①x+3x+x+15=180,解得:x=33,①①A=99°,①B=33°,①C=48°.【点睛】本题考查三角形的内角和定义,难度不大,关键是运用方程思想进行解题. 41.(1)19;(2)10;(3);(4)14.5x =.【详解】试题分析:(1)先算乘除,再算加减即可;(2)利用分配律计算简单方便;(3)先去括号,再移项合并同类项,最后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,最后系数化为1即可试题解析:(1)=18-6×(14-)×23 2分 =19 4分(2)= 2分=–1+8+3=10 4分(3)3(25)29x x --+=2分4分(4)3(23)4(2)12,x x --+=694812,x x ---= 2分 229,x =14.5x = 4分考点:1.有理数的混合运算;2.解一元一次方程.42.(1)11①;(2)7km【分析】(1)根据题意可直接进行列式求解;(2)设此处的高度为xkm ,然后根据题意列出方程求解即可.【详解】解:()1根据题意列得:150020(6)111000C ,答:山顶的温度为11C . ()2设此处的高度为xkm ,根据题意列得:18624x -=-解得:7x =.答:此处的高度为7km .【点睛】本题主要考查列算式计算与一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.43.(1)甲方案为:15a+60;乙方案为:16a ;(2)乙方案优惠;(3)甲方案优惠;【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a 名学生,甲方案为:(15a+60)元;乙方案为:16a 元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键. 44.(1)油箱中原有汽油10升;(2)乙、丙两地的距离为13.2千米.【分析】(1)若设油箱中原有汽油x 升,分别表示出每次的耗油量,根据题意即可列出方程解答即可;(2)利用耗油量的比与行驶路程的比相等列出方程解答即可.【详解】解:(1)设油箱中原有汽油x 升,由题意得111()6445x x x x ---⨯= 解得:x =10答:油箱中原有汽油10升.(2)设乙、丙两地的距离为a 千米,由题意得11122::(1)445a =-⨯ 解得:a =13.2答:乙、丙两地的距离为13.2千米.【点睛】本题主要考查一元一次方程的应用,根据题意列出方程是解题的关键. 45.(1)a =3.25,m =180;(2)她家2017年的年用水量是235立方米.【分析】(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m <200,从而求出a 及m 的值;(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据共缴纳水费827元列出方程,求解即可.【详解】(1)由题意,可得a =325100=3.25, 根据小斌家用水200立方米(在第二阶梯),缴纳水费673元,列出方程:3.25m +4.4(200﹣m )=673,解得m =180.(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元), ①673<827<849,①她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据题意,得3.25×180+4.4(x ﹣180)=827,解得x =235.答:她家2017年的年用水量是235立方米.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,理解阶梯水价收费标准,正确求出a 及m 的值.46.(1)-9;(2)x =﹣1.【分析】(1)根据实数的混合计算解答即可;(2)根据一元一次方程的解法解答即可.【详解】(1)原式=﹣1×[﹣9×49﹣2]×(﹣32) =﹣1×[﹣4﹣2]×(﹣32) =﹣1×(﹣6)×(﹣32) =﹣9;(2)3(3x ﹣1)﹣12=2(5x ﹣7)9x ﹣3﹣12=10x ﹣149x ﹣10x =﹣14+3+12﹣x =1x =﹣1.【点睛】本题主要考查有理数的混合运算及解一元一次方程,解题的关键是熟练掌握有理数的混合运算的顺序和运算法则.47.(1)31;(2)2x =【分析】(1)按照先算乘方、再算乘除、后算加减的顺序计算即可;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)()2232113232⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭ =-9×19-(-8)÷14=-1+32=31;(2)12111263x x x --+-=-, 3(x-1)-(2x-1)=6-2(1+x),3x-3-2x+1=6-2-2x ,3x-2x+2x=6-2+3-1,。
【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是 .(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a= ,b= .(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 ( ) A .m >8 B.m ≥8 C.m <8 D.m ≤8(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是( ).A .m≤3 B . m≥3 C .m=3 D .m <3(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是 .【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来;(2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为4.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打多少折?解:◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( )x <y B .x >yC .x ≤yD .x ≥y 解答题:(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。
方程与不等式之一元一次方程易错题汇编附答案解析一、选择题1.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为( ) A .27元 B .27.8元C .28元D .28.4元【答案】C 【解析】 【分析】设该商品的标价是x 元,根据按标价的九折出售,仍可获利20%列方程求解即可. 【详解】解:设该商品的标价是x 元, 由题意得:0.9x -21=21×20%, 解得:x =28,即该商品的标价为28元, 故选:C . 【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.2.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++= B .6090(30)480x x ++= C .160()904802x x ++= D .16090()4802x x ++=【答案】D 【解析】 【分析】 【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D . 【点睛】本题考查由实际问题抽象出一元一次方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A 【解析】 【分析】由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可. 【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A. 【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣2(2x ﹣4)=﹣(x ﹣7) D .以上答案均不对【答案】C 【解析】 【分析】两边同时乘以6即可得解. 【详解】解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--.故选C. 【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.5.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.甲、乙两人环湖竞走,环湖一周为 400 米,乙的速度是80 米/分,甲的速度是乙的 114倍,且竞走开始时甲在乙前 100 米处,多少分钟后两人第一次相遇?设经过 x 分钟两人第一次相遇,所列方程为( ) A .80 x+ 100=54 ⨯ 80 x B .80 x + 300=54⨯ 80 x C .80 x - 100=54⨯ 80 x D .80 x - 300=54⨯ 80 x 【答案】B 【解析】 【分析】根据相遇时乙的路程+300=甲的路程列出方程即可. 【详解】 解:甲的速度为:54⨯ 80米/分,相遇时甲比乙多行了400-100=300米,根据题意可得: 80 x + 300=54⨯ 80 x , 故选:B 【点睛】本题考查了一元一次方程的应用,能找出题中的等量关系是解题的关键.7.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a = B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B 【解析】 【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项. 【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的, 故选:B. 【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.8.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=1 x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,解得a=4,则这个数是(2a+3)2=121.故选:C.【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.11.甲、乙两人都从A出发经B地去C地,乙比甲晚出发1分钟,两人同时到达B地,甲在B地停留1分钟,乙在B地停留2分钟,他们行走的路程y(米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有()①甲到B地前的速度为100/minm②乙从B地出发后的速度为600/minm③A、C两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C地300mA.1个B.2个C.3个D.4个【答案】C【解析】【分析】①②③直接利用图中信息即可解决问题,求出到B地后的函数关系式,利用方程组求交点坐标即可判定④的正确性.【详解】解:由图象可知:甲到B地前的速度为400÷4=100米/分钟,故①正确,乙从B地出发后的速度为600÷2=300米/分钟,故②错误,由图象可知,A、C两地间的路程为1000米,故③正确,设甲到B地后的函数关系为y=kx+b,则有5400 91000k bk b+=⎧⎨+=⎩,解得150350kb=⎧⎨=-⎩,∴y=150x-350,设乙到B地后的函数关系为y=mx+n,则有6400 81000m nm n+=⎧⎨+=⎩,解得3001400mn=⎧⎨=-⎩,∴y=300x-1400,由1503503001400 y xy x=-⎧⎨=-⎩解得7700xy=⎧⎨=⎩,∴甲乙再次相遇时距离A地700米,∵1000-700=300,∴甲乙再次相遇时距离C地300米,故④正确,故选:C.【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.12.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。