第6天(角平分线的性质)暑期预习每日一练(人教版八年级上)(解析版)
- 格式:docx
- 大小:241.46 KB
- 文档页数:13
专题06 角的平分线的性质1、如图,把两根钢条AA′,BB′的中点连在一起,可以做成一个测量内槽宽的卡钳,卡钳的工作原理利用了三角形全等判定定理.【答案】SAS.2.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90∘),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【答案】解:由题意得:AC=BC,∠ACB=90∘,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90∘,∴∠ACD+∠BCE=90∘,∠ACD+∠DAC=90∘,∴∠BCE=∠DAC,在ΔADC和ΔCEB中,{∠ADC=∠CEB ∠DAC=∠BCEAC=BC,∴ΔADC≅ΔCEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.知识梳理知识点一:角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.例题精讲例1、已知:如图,AD是△ABC的角平分线,且,则△ABD与△ACD的面积之比为()A.3:2 B. C.2:3 D.【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵,则△ABD与△ACD的面积之比为例2、已知:如图,在ABC∆中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F.求证:AE=AF.:3:2AB AC=3:22:3:3:2AB AC=3:2【答案】 证明:∵AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F.∴DE =DF (角平分线上的点到角两边的距离相等)90AED AFD ∠=∠=︒(垂直定义)在Rt AED ∆和Rt AFD ∆中 DE DF AD AD =⎧⎨=⎩∴Rt AED ∆≌Rt AFD ∆(HL )∴AE AF =巩固练习1、如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为:( )A.11B.5.5C.7D.3.5【答案】解: 过D 点作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC∴DF =DH在Rt △EDF 和Rt △GDH 中DE =DG ,DF =DH∴Rt △EDF ≌Rt △GDH同理可证Rt △ADF 和Rt △ADH∴AED EDF ADG GDH S =S S S +-△△△△∴EDF ADG AED 2=S S S -△△△=50-39=11,∴△EDF 的面积为5.52、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC. 求证:BE =CF.【答案】证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线,∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL )∴BE =CF知识点二:角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB例题精讲例3、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .【答案】证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △∴ 12AC PM 12BD PN =又∵AC =BD∴PM =PN又∵PM ⊥OA ,PN ⊥OB∴OP 平分∠AOB巩固练习1、已知:如图,CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,∠1=∠2.求证:OB =OC.【答案】证明:∵CD ⊥AB ,BE ⊥AC ,∠1=∠2.∴OD =OE在Rt △ADO 与Rt △AEO 中,OD OEAO AO =⎧⎨=⎩∴Rt △ADO ≌Rt △AEO (HL )∴AD =AE在Rt △ADC 与Rt △AEB 中,DAC EABAD AEADC AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADC ≌Rt △AEB (ASA )∴CD =BE∴CD -OD =BE -OE ,即OC =OB.知识点三:角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.例题精讲1、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【答案】B;【解析】由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.知识点四:三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.知识点五:角的平分线的性质综合应用例4、如图,四边形ABDC 中,∠D=∠ABD=90゜,点O 为BD 的中点,且OA 平分∠BAC .(1)求证:OC 平分∠ACD ;(2)求证:OA ⊥OC ;(3)求证:AB+CD=AC .【答案】证明:(1)过点O 作OE ⊥AC 于E ,∵∠ABD=90゜,OA 平分∠BAC ,∴OB=OE ,∵点O 为BD 的中点,∴OB=OD ,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.巩固练习已知:如图,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.【答案】证明:过点D 作DM ⊥AB 于M ,DN ⊥AC 于N ,∵AD 是△ABC 的角平分线,∴DM =DN∵∠EDF +∠EAF =180°,即∠2+∠3+∠4+∠EAF =180°又∵∠1+∠2+∠3+∠EAF =180°∴∠1=∠4在Rt △DEM 与Rt △DFN 中14DM DNEMD FND ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △DEM ≌Rt △DFN (ASA )∴DE =DF1.如图,已知∠AOB =30∘,P 是∠AOB 平分线上一点,CP//OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_______.【解答】解:作PE ⊥OA 于E ,∵CP//OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15∘,∴∠ACP=∠OPC+∠POA=30∘,∴PE=1PC=2,2∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,2.如图,AD是ΔABC的角平分线,∠C=90∘,CD=3cm,点P在AB上,连接DP,则DP的最小值为________cm.【解答】解:作DP′⊥AB于P′,∵AD是ΔABC的角平分线,∠C=90∘,DP′⊥AB∴DP′=DC=3cm,则DP的最小值为3cm,3.如图,ΔABC中,∠C=90∘,AD平分∠CAB,交BC于点D,DE⊥AB于点E,若CD=√3,则DE的长为()A. 2B. 3C. √3D. 2√3【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90∘,∴CD=DE=√3,4.如图,ΔABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)【解答】解:如图所示:DC即为所求.5.如图,已知DE∥BC,BE是∠ABC的平分线,∠C=70∘,∠ABC=50∘.求∠DEB和∠BEC的度数.【解答】解:∵BE是∠ABC的平分线,∠ABC=50∘,∴∠1=∠2=25°∵DE∥BC,∴∠DEB=∠2=25∘,在△BEC中,∠C=70∘,∴∠BEC=180∘−∠C−∠2=180∘−70∘−25∘=85∘.6.如图,OC 是∠AOB 的角平分线,点P 、F 在OC 上,PD ⊥AO 于点D ,PE ⊥BO 于点E ,连接DF 、EF .求证:DF =EF .【解答】证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥BO ,∴PD =PE ,在Rt△OPD 和Rt△OPE 中,{OP =OP PD =PE ,∴Rt△OPD ≌Rt△OPE (HL ),∴OD =OE ,∵OC 是∠AOB 的平分线,∴∠DOF =∠EOF ,在△ODF 和△OEF 中,{OD =OE∠DOF =∠EOF OF =OF,△ODF ≌△OEF (SAS ),∴DF =EF .课后巩固1.请将本次课错题组卷,进行二次练习,培养错题管理习惯;2.学霸笔记复习,培养复习习惯。
人教版八年级上册第1课时角的平分线的性质(348) 1.如图,已知∠1=∠2,BA<BC,P为BN上的一点,PF⊥BC于点F,PA=PC.求证:∠PCB+∠BAP=180∘2.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,. 求证:.请你补全已知和求证,并写出证明过程.3.如图,已知AD//BC,∠D=90∘.(1)如图①,若∠DAB的平分线与∠CBA的平分线交于点P,CD经过点P.试问:P是线段CD的中点吗?为什么?(2)如图②,如果P是DC的中点,BP平分∠ABC,∠CPB=35∘,求∠PAD的度数4.如图OP是∠AOB的平分线,点P到OA的距离为3,N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤35.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.6D.57.如图,在△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于点E,测得BC=9,BE=3,则△BDE的周长是.8.如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6cm,则点P到AB的距离为.9.如图,已知AB//CD,O是∠BAC与∠ACD的平分线的交点.OE⊥AC于点E,OE=2,则AB与CD之间的距离为.10.如图,已知点B,D分别在∠DAB的两边上,C为∠DAB的内部的一点,且AB=AD,DC=BC,CE⊥AD交AD的延长线于点E,CF⊥AB交AB的延长线于点F.试判断CE与CF是否相等,并说明理由.11.如图,利用尺规作∠AOB的平分线OC,其作法如下:①以O为圆心,任意长为半径画弧,分别交OA,OB于点D,E;DE的长为半径画弧,两弧在∠AOB的内部交于点②分别以D,E为圆心,以大于12C;③画射线OC,则OC就是∠AOB的平分线.这样作图的原理是一种三角形全等的判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS12.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD13.求证:直角三角形的两锐角互余14.如图,在△ABC中,∠C=90∘,∠CAB=50∘,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E,F;EF的长为半径画弧,两弧相交于点G;②分别以点E,F为圆心,大于12③作射线AG,交BC边于点D.则∠ADC的度数为()A.40∘B.55∘C.65∘D.75∘15.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB,AC于E,EF的长为半径画圆弧,两条圆弧交于点G,F两点,再分别以E,F为圆心,大于12作射线AG交CD于点H.若∠C=140∘,则∠AHC的大小是()A.20∘B.25∘C.30∘D.40∘参考答案1.【答案】:证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E . ∵∠1=∠2,PF ⊥BC 于点F ,∴PE =PF ,∠PEA =∠PFC =90∘.在Rt △PEA 与Rt △PFC 中,PA =PC ,PE =PF ,∴Rt △PEA ≌Rt △PFC(HL ),∴∠PAE =∠PCB .∵∠PAE +∠BAP =180∘,∴∠PCB +∠BAP =180∘.2.【答案】:解:PD ⊥OA ,PE ⊥OB ,垂足分别为D,E 求证:PD =PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90∘.在△PDO 和△PEO 中,{∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP.∴△PDO ≌△PEO(AAS ),∴PD =PE .3(1)【答案】解:P 是线段CD 的中点.理由如下: 如图,过点P 作PE ⊥AB 于点E .∵AD//BC ,∠D =90∘,∴∠C =180∘−∠D =90∘,即PC ⊥BC .∵∠DAB 的平分线与∠CBA 的平分线交于点P ,∴PD =PE ,PC =PE ,∴PC=PD,∴P是线段CD的中点.(2)【答案】解:如图,过点P作PE⊥AB于点E.∵AD//BC,∠D=90∘,∴∠C=180∘−∠D=90∘,即PC⊥BC.在△PBE与△PBC中,{∠PEB=∠C,∠PBE=∠PBC,PB=PB.∴△PBE≌△PBC(AAS),∴∠EPB=∠CPB=35∘,PE=PC.∵PC=PD,∴PD=PE.在Rt△PAD与Rt△PAE中,{PA=PA,PD=PE∴Rt△PAD≌Rt△PAE(HL),∴∠APD=∠APE.∵∠APD+∠APE=180∘−2×35∘=110∘,∴∠APD=55∘,∴∠PAD=90∘−∠APD=35∘.4.【答案】:C【解析】:作PM⊥OB于点M.∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3. 故选 C5.【答案】:B【解析】:因为BE平分∠ABC,∠ACB=90°,DE⊥AB于点D,所以DE=EC,AE+DE=AE+EC=AC=3cm.故选 B.6.【答案】:A【解析】:如图,过点D作DF⊥AC于点F.∵AD是△ABC中∠BAC的平分线,DE⊥AB,∴DE=DF=2.由图可知S△ABC=S△ABD+S△ACD,即12×4×2+12AC×2=7,解得AC=3.故选A.7.【答案】:12【解析】:解:∵∠C=90∘,∴AC⊥CD.∵AD平分∠BAC,DE⊥AB,∴DE=CD.∵BC=9,BE=3,∴△BDE的周长=BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.8.【答案】:6cm【解析】:如图,过点P作PN⊥BC于点N,PQ⊥AB,交AB的延长线于点Q.∵PB,PC分别是∠ABC与∠ACB的外角平分线,PM⊥AC,∴PN=PM,PQ=PN,∴PQ=PM.∵PM=6cm,∴PQ=6cm,即点P到AB的距离为6cm.9.【答案】:4【解析】:如图,过点O作MN,使MN⊥AB于M,交CD于N.∵AB//CD,∴MN⊥CD.∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2.∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.10.【答案】:解:CE=CF.理由:∵AD=AB,DC=BC,AC=AC,∴△ACD≌△ACB,∴∠DAC=∠BAC,∴AC为∠EAF的平分线.∵CE⊥AE,CF⊥AF,∴CE=CF(角平分线上的点到角两边的距离相等).11.【答案】:A12.【答案】:B【解析】:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,∴PC=PD,故A项正确.在Rt△OCP与Rt△ODP中,∵OP=OP,PC=PD,∴Rt△OCP≌Rt△ODP,∴∠CPO=∠DPO,OC=OD,故C,D两项正确.不能得出∠CPD=∠DOP,故B项错误.故选B13.【答案】:已知:在△ABC中,∠C=90∘.求证:∠A+∠B=90∘.证明:∵∠A+∠B+∠C=180∘,而∠C=90∘,∴∠A+∠B=90∘,即∠A与∠B互余.14.【答案】:C【解析】:根据作图方法可得AG是∠CAB的平分线,∵∠CAB=50∘,∠CAB=25∘,∴∠CAD=12∵∠C=90∘,∴∠CDA=90∘−25∘=65∘.故选C.15.【答案】:A【解析】:解:由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180∘,∠HAB=∠AHC.∵∠ACD=140∘,∴∠CAB=40∘.∵AH平分∠CAB,∴∠HAB=20∘,∴∠AHC=20∘.。
8年级数学人教版上册同步练习角的平分线的性质(含答案解析)专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21∠∠,AD是∠BAC的角平分线,DE⊥ABBAC B∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A﹨B﹨C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC﹨BC两边高线的交点处B.在AC﹨BC两边中线的交点处C.在∠A﹨∠B两内角平分线的交点处D.在AC﹨BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线,∴BAD CAD =∠∠.在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥.2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO ∴(ASA)BDO CEO △≌△.∴OB =OC .3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°,又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BEDAED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm . 4.C 解析:根据角平分线的性质,集贸市场应建在∠A ﹨∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P 就是所求作的点.。
人教版八年级数学上册12.3角的平分线的性质同步练习一.选择题(共11小题)1.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α2.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm3.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.64.如图,AE为∠BAC的平分线,EB⊥AB,EF⊥AC,则下列结论不正确的是()A.EF=EB B.AF=AB C.AE=CE D.∠AEF=∠AEB 5.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定6.如图,PC⊥OC于C,PD⊥OD于D,若PC=PD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定7.如图所示,点D在∠AOB的内部,DE⊥OA,DF⊥OB,垂足分别为E,F,DE=DF,则∠AOD与∠BOD的大小关系是()A.∠AOD>∠BOD B.∠AOD=∠BOD C.∠AOD<∠BOD D.无法确定8.下列关于三角形角平分线的说法错误的是()A.两角平分线交点在三角形内B.两角平分线交点在第三个角的平分线上C.两角平分线交点到三边距离相等D.两角平分线交点到三顶点距离相等9.给出下列结论,正确的有()①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.A.1个B.2个C.3个D.4个10.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个11.如图所示,PD=PE,PD⊥OA,PE⊥OB,垂足分别为D,E,则下列结论中错误的是()A.∠DOP=∠EOP B.OD=OE C.∠DPO=∠EPO D.PD=OD二.填空题(共8小题)12.如图,∠B=∠D=90°,根据角平分线性质,填空:(1)若∠1=∠2,则=;(2)若∠3=∠4,则=.13.点M在∠AOB的平分线上,点M到OA的距离为6,则点M到OB的距离为.14.射线OC平分∠AOB,点P在OC上,且PM⊥OA于点M,PN⊥OB予点N,且PM=2cm,则PN=cm.15.如图所示,在△ABC中,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB 的距离为.17.如图,在△ABC中,∠C=90°,AD是∠CAB的平分线,DE⊥AB于点E,且DE=3cm,BD=5cm,则BC=cm.18.(1)如图,已知∠1=∠2,DE⊥AB,DF⊥AC,垂足分别为E、F,则DE DF.(2)已知DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则∠1∠2.19.如图,△ABC中,∠C=90°,AB=13,AC=5,BC=12,点O为∠CAB和∠CBA的平分线的交点,则OP=.三.解答题(共9小题)20.如图,在直线MN上找一点P,使点P到直线AB和直线CD的距离相等.21.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.22.如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.23.如图,E是∠APB内的一点,CE⊥P A于点C,ED⊥PB于点D,CE=ED,点F在P A 上,∠APB=60°,∠PEF=15°.求∠CFE的度数.24.∠B=∠C=90°,EB=EC,DE平分∠ADC,求证:AE是∠DAB平分线.25.△ABC中,∠C=90°,AD为角平分线,BC=64,BD:DC=9:7,求D到AB的距离.26.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE 的长.27.如图,若S△ABD:S△ACD=AB:AC,求证:AD平分∠BAC.28.已知:如图所示,AQ,BM,CN是△ABC的三条角平分线.试说明AQ,BM,CN交于一点.参考答案一.选择题(共11小题)1.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α【解答】解:A、画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B、用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C、用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D、正确.故选:D.2.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选:D.3.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.4.如图,AE为∠BAC的平分线,EB⊥AB,EF⊥AC,则下列结论不正确的是()A.EF=EB B.AF=AB C.AE=CE D.∠AEF=∠AEB 【解答】解:∵AE为∠BAC的平分线,EB⊥AB,EF⊥AC,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AF=AB,∠AEF=∠AEB,∴结论不正确的是AE=CE.故选:C.5.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选:C.6.如图,PC⊥OC于C,PD⊥OD于D,若PC=PD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定【解答】解:∵PC⊥OC,PD⊥OD,PC=PD,∴P在∠COD的角平分线上,即∠1=∠2,故选:B.7.如图所示,点D在∠AOB的内部,DE⊥OA,DF⊥OB,垂足分别为E,F,DE=DF,则∠AOD与∠BOD的大小关系是()A.∠AOD>∠BOD B.∠AOD=∠BOD C.∠AOD<∠BOD D.无法确定【解答】解:∵DE⊥OA,DF⊥OB,DE=DF,∴点D在∠AOB的平分线上,∴∠AOD=∠BOD.故选:B.8.下列关于三角形角平分线的说法错误的是()A.两角平分线交点在三角形内B.两角平分线交点在第三个角的平分线上C.两角平分线交点到三边距离相等D.两角平分线交点到三顶点距离相等【解答】解:A、两角平分线交点在三角形内,正确;B、两角平分线交点在第三个角的平分线上,正确;C、根据角平分线的性质,两角平分线交点到三边距离相等,正确;D、根据角平分线的性质,两角平分线交点到三边距离相等,不是到三顶点距离相等,故本选项错误.故选:D.9.给出下列结论,正确的有()①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.A.1个B.2个C.3个D.4个【解答】解:①根据角平分线性质的逆定理,在角的内部到角两边距离相等的点,在这个角的平分线上,故本选项错误;②角平分线是射线,三角形的角平分线是线段,故本选项错误;③任何一个命题都有逆命题,正确;④假命题的逆命题不一定是假命题,如:假命题“相等的两个角是对顶角”的逆命题“对顶角相等”是真命题,故本选项错误.故选:A.10.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选:B.11.如图所示,PD=PE,PD⊥OA,PE⊥OB,垂足分别为D,E,则下列结论中错误的是()A.∠DOP=∠EOP B.OD=OE C.∠DPO=∠EPO D.PD=OD【解答】解:A、根据HL可求得Rt△POE≌Rt△POD,∴∠DOP=∠EOP,故正确;B、OD=OE,正确;C、DPO=∠EPO,正确;D、错误.故选:D.二.填空题(共8小题)12.如图,∠B=∠D=90°,根据角平分线性质,填空:(1)若∠1=∠2,则BC=DC;(2)若∠3=∠4,则AB=AD.【解答】解:(1)若∠1=∠2,则BC=DC;(2)若∠3=∠4,则AB=AD.故答案为:BC,DC;AB,AD.13.点M在∠AOB的平分线上,点M到OA的距离为6,则点M到OB的距离为6.【解答】解:∵点M在∠AOB的平分线上,点M到OA的距离为6,∴点M到OB的距离=6.故答案为:6.14.射线OC平分∠AOB,点P在OC上,且PM⊥OA于点M,PN⊥OB予点N,且PM=2cm,则PN=2cm.【解答】解:∵OC平分∠AOB,点P在OC上,且PM⊥OA于M,PN⊥OB于N,PM =2cm,∴PN=PM=2cm.故答案为:2.15.如图所示,在△ABC中,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有①②.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE与Rt△ADF中,,∴Rt△ADE≌Rt△ADF,∴∠ADF=∠ADE,AE=AF,∴DA平分∠EDF;故①②正确,∵无法判定AD⊥BC且平分BC,∴AD上的点到B,C两点的距离相等错误,∵图中只有1对全等三角形,故③④错误.故答案为:①②.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB 的距离为3.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3.17.如图,在△ABC中,∠C=90°,AD是∠CAB的平分线,DE⊥AB于点E,且DE=3cm,BD=5cm,则BC=8cm.【解答】解:∵∠C=90°,AD是∠CAB的平分线,DE⊥AB,∴CD=DE,∵DE=3cm,BD=5cm,∴BC=CD+BD=3+5=8cm.故答案为:8.18.(1)如图,已知∠1=∠2,DE⊥AB,DF⊥AC,垂足分别为E、F,则DE=DF.(2)已知DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则∠1=∠2.【解答】解:(1)∵已知∠1=∠2∴AD为∠BAC的平分线又∵DE⊥AB,DF⊥AC,∴由角平分线性质得DE=DF.(2)∵已知DE⊥AB,DF⊥AC,∴DE,DF为点D到角两边的距离.又∵DE=DF,∴由角平分线性质知AD为角平分线.19.如图,△ABC中,∠C=90°,AB=13,AC=5,BC=12,点O为∠CAB和∠CBA的平分线的交点,则OP=2.【解答】解:作OE⊥BC,OF⊥AC,∴∠C=∠CFO=∠OEC=90°,∴四边形CFOE是矩形;∵∠CAB,∠CBA的平分线相交于点O,OE⊥BC,OF⊥AC,OP⊥AB,∴OE=OP=OF,∴四边形CFOE是正方形,设OE=OP=OF=x,则AP=AF=5﹣x,BP=BE=12﹣x,∴5﹣x+12﹣x=13,解得x=2,∴OP=OE=2.故答案为2.三.解答题(共9小题)20.如图,在直线MN上找一点P,使点P到直线AB和直线CD的距离相等.【解答】解:点P如图所示.21.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.22.如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.【解答】证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF,在Rt△CDE和Rt△CDF中,,∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.23.如图,E是∠APB内的一点,CE⊥P A于点C,ED⊥PB于点D,CE=ED,点F在P A 上,∠APB=60°,∠PEF=15°.求∠CFE的度数.【解答】解:∵CE⊥P A,ED⊥PB,CE=ED,∴∠APE=∠APB=×60°=30°,在△PEF中,∠CFE=∠APE+∠PEF=30°+15°=45°.24.∠B=∠C=90°,EB=EC,DE平分∠ADC,求证:AE是∠DAB平分线.【解答】证明:如图,过点E作EF⊥AD于F,∵DE平分∠ADC,∠C=90°,∴EC=EF,∵EB=EC,∴EF=BE,又∵∠B=90°,∴AE是∠DAB平分线.25.△ABC中,∠C=90°,AD为角平分线,BC=64,BD:DC=9:7,求D到AB的距离.【解答】解:∵BD:DC=9:7,BC=64,∴CD==28,∵AD为角平分线,∠C=90°,DE⊥AB,∴DE=DC=28.答:D到AB的距离为28.26.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE 的长.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S△ABC=AB•DE+BC•DF=90,即×18•DE+×12•DE=90,解得DE=6.27.如图,若S△ABD:S△ACD=AB:AC,求证:AD平分∠BAC.【解答】证明:如图,过D作DM⊥AB于M,DN⊥AC于N,则S△ABD=AB•DM,S△ACD=AC•DN,∵S△ABD:S△ACD=AB:AC,∴DM=DN,∴AD平分∠BAC.28.已知:如图所示,AQ,BM,CN是△ABC的三条角平分线.试说明AQ,BM,CN交于一点.【解答】证明:设BM,CN交于点P,过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为:D,E,F,∵BM平分∠ABC,CN平分∠ACB,∴PD=PE,PE=PF,∴PD=PF,∴AP平分∠BAC,即AQ,BM,CN交于一点P.。
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
专题三角平分线的性质与判定一、单选题1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=15,且BD:CD=3:2,则点D到AB的距离为()2345.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,AB+BC+CA=18,过O作OD⊥BC于点D,且OD=3,则△ABC的面积是.6.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE7得8910.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN∥BC分别交AB,AC于M,N 两点,AB=6,ΔAMN的周长是15.则AC的长为.三、解答题11.如图1,△ABC的两条外角平分线AO,BO相交于点O,∠ACB=50°.(1)直接写出∠AOB的大小;(2)如图2,连接OC交AB于K.①求∠BCK的大小;②如图3,作AF⊥OC于F,若∠BAC=105°,求证:AB=2CF.12.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,若∠ABC=60°,FD=10,求DC的长.13.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.14.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.15.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,设∠ABC=α.(1)α=50°时,求∠DFC的度数;(2)证明:BE∥DF.16.在△ABC中,AO、BO分别平分∠BAC、∠ABC.(1)如图1,若∠C=32°,则∠AOB=________;(2)如图2,连结OC,求证:OC平分∠ACB;(3)如图3,若∠ABC=2∠ACB,AB=4,AC=7,求OB的长.17.如图,在△ABC中,D在BC边的延长线上,∠ACD的平分线CE交BA的延长线于点E,已知∠B=30°,∠E=40°,求证:AE=CE.18.如图,在四边形ABCD中,AB∥CD,∠C=90°,点E为BC的中点,DE平分∠CDA.(1)求证:AD=AB+CD;(2)若S△CDE=3,S△ABE=4,则四边形ABCD的面积为______.(直接写出结果)19.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O与AB,AC分别相交于点M,N,且MN∥BC.(2)已知AB=7,AC=6,求△AMN的周长.参考答案题号12答案B B1.B【分析】本题考查的是角平分线的性质,作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出CD的长即可.∵∴∵∴2∴3【详解】试题分析:本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.点睛:对于这种在三角形中求角度问题的时候,如果题目中没有给出图形,我们首先一定要根据题意画出图形,然后根据图形求出角的度数.特别要注意分类讨论的思想,在画图时一定要注意锐角三角形和钝角三角形两种情况.在画垂线的时候要注意高线在三角形内部和三角形外部两种情况.4.3:2【分析】过点D作DE⊥AB于点E,由角平分线的性质得到DE=CD,再根据三角形面积公式解答即可.【详解】解:过点D作DE⊥AB于点E,∵AD是Rt△ABC的角平分线,CD⊥AC,DE⊥AB∴DE=CDS△ABD S△ACD =12AB⋅DE12AC⋅CD=ABAC=128=32故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.5.27【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=3和OF=OD=3,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=3,同理OF=OD=3,∵AB+BC+CA=18.∴△ABC的面积=12×AB×3+12×AC×3+12×BC×3=27.故答案为:27.【点睛】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.4【分析】根据角平分线的性质以及平行线的性质即可得出PM =PE =2,PE =PN =2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ,∴AP ⊥BP ,PN ⊥BC ,∴PM =PE =2,PE =PN =2,∴MN =2+2=4.故答案为:4.7.2【分析】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,根据三角形的面积公式计算即可.【详解】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得,PE=PD=PF , S △APC +S △APB +S △BPC =S △ACB ,∴12AC·PE+12AB·PD+12BC·PF=12AC·BC ,即12×12·PD+12×13•PD+12×5•PD=12×5×12,解得,PD=2,故答案为:2.【点睛】本题考查的是三角形的面积计算,掌握三角形的面积公式是解题的关键.8.60【分析】根据五边形的内角和求出∠BCD和∠CDE的和,再根据角平分线及三角形内角和求出∠CPD.【详解】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,(∠BCD+∠CDE)=120°,∴∠PDC+∠PCD=12∴∠CPD=180°﹣120°=60°.故答案是:60.【点睛】本题解题的关键是知道多边形内角和定理以及角平分线的性质.9.5【分析】本题考查角平分线的性质定理,过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,利用角平分线的性质可得PF=PG=PE,然后根据三角形的面积求出PF=PE=PG=2,再利用△OMP的面积+△ONP的面积−△PMN的面积=4,进行计算即可解答.根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,∵MP平分∠AMN,NP平分∠MNB,∴PF=PG=PE,∵MN=1,△PMN的面积是1,∴ 12MN ⋅PF =1,∴PF =2,∴PG =PE =2,∵△OMN 的面积是4,∴△OMP 的面积+△ONP 的面积−△PMN 的面积=4,∴ 12OM ⋅PG +12ON ⋅PE−1=4,∴OM +ON =5.故答案为:5.10.9【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可得△MOB 和△NOC 是等腰三角形,从而可得MO =MB ,NO =NC ,然后利用等量代换可得ΔAMN 的周长=AB +AC ,从而进行计算即可解答.【详解】解:∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠OBC ,∠ACO =∠OCB ,∵MN ∥BC ,∴∠MON =∠OBC ,∠NOC =∠OCB ,∴∠ABO =∠MON ,∠ACO =∠NOC ,∴MO =MB ,NO =NC ,∵△AMN 的周长是15,∴AM +MN +AN =15,∴AM +MO +ON +AN =15∴AM +MB +NC +AN =15,∴AB +AC =15,∵AB =6,∴AC =15−6=9,故答案为:9.11.(1)65°;(2)①25°;②证明见解析.【分析】(1)根据三角形内角和定理求得∠CBA +∠CAB =130°,则∠EBA +∠BAD =230°,再由角平分线的定义求出∠OBA +∠OAB =115°,根据四边形内角和求出∠AOB 即可;(2)①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,根据角平分线的性质求解即可;②先求出KB=KC,过点A作AH∥BC交CO于点H,再求出KA=KH,则AB=CH,分别求出AH=AC,HF=CF,即可得出结论.【详解】(1)解:∵AO平分∠BAD,∴∠DAO=∠OAB,∵BO平分∠EOA,∴∠EBO=∠OBA,∵∠ACB=50°,∴∠CBA+∠CAB=130°,∴∠EBA+∠BAD=360°−130°=230°,∴∠OBA+∠OAB=115°,∴∠AOB=360°−50°−115°−130°=65°;(2)解:如图2,①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,∵AO、BO分别平分∠DAB、∠EBA,∴OM=OP,OP=ON,∴OM=ON,∴CO平分∠ACB,∵∠ACB=50°,∴∠BCK=∠ACK=25°;②证明:∵∠BAC=105°,∠ACB=50°,∴∠ABC=25°,∵∠KCB=25°,∴∠KBC=∠KCE,∴KB=KC,如图3,过点A作AH∥BC交CO于点H,∴∠AHK=∠KCB,∠HAK=∠KBC,∴∠AHK=∠HAK,∴KA=KH,∴AB=CH,∵∠AHK=∠ACH,∴AH=AC,∵AF⊥CO,∴HF=CF,∴CH=2CF,∴AB=CH=2CF.12∴∵∴∴∵∴∴故DC=5.【点睛】此题主要考查了角平分线的定义,四边形内角和定理,含30°角的直角三角形的性质等知识,解题关键是熟练掌握各性质与定理.13.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.14.(1)见解析(2)△ADC和△ABC是倍角三角形,见解析【分析】(1)利用等边对等角及三角形的内角和求出∠B=∠C=72°,得到2∠A=∠C即可;(2)根据SAS证明△ABD≌△AED,得到∠ADE=∠ADB,BD=DE,证明CE=DE,得出∠C=∠BDE=2∠ADC,可得出∠ABC=2∠C.则结论得证.【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴2∠A=∠C,即△ABC是倍角三角形;(2)解:△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴∴又∴∴∴∴∵15(2)∠EBC=∠DFC即可得出结论.【详解】(1)解:在四边形ABCD中,∠A=∠C=90°,∠ABC=α,α=50°,∴∠ADC=360°−∠A−∠C−∠ABC=130°,∵DF平分∠CDA,∠ADC=65°,∴∠FDC=12∴∠DFC =90°−65°=25°;(2)证明:在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,∴∠ADC =360°−∠A−∠C−∠ABC =180°−α,∵DF 平分∠CDA ,∴∠FDC =12∠ADC =12(180°−α),∴∠DFC =90°−12(180°−α)=12α,∵BE 平分∠ABC ,∴∠EBC =12α,∴∠EBC =∠DFC ,∴BE ∥DF .16.(1)106°;(2)见解析;(3)3;【分析】(1)本题考查与角平分线有关的三角形内角和关系,根据∠C =32°得到∠CAB +∠CBA ,再结合角平分线求出∠CAO +∠CBO ,即可得到答案;(2)本题考查角平分线判定与性质,过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,根据角平分线性质得到OD =OF =OE ,结合角平分线的判定即可证明;(3)本题主要考查三角形全等的性质与判定,解题的关键是根据截长补短作出辅助线,在AC 上截取一点D ,使AD =AB ,连OD ,证明△ABO≌△ADO ,即可得到答案;【详解】(1)解:∵∠C =32°,∴∠CAB +∠CBA =180°−32°=148°,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴∠CAO +∠CBO =148°2=74°,∴∠AOB =180°−74°=106°;(2)证明:过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴OD =OF ,OD =OE ,∴OC 平分∠ACB ;(3)解:在AC 上截取一点D ,使AD =AB ,连OD ,设∠ACO =∠BCO =α,∵∠ABC =2∠ACB ,∴∠ABC =4α,∵BO 平分∠ABC ,∴∠ABO =∠CBO =2α,∵AO 平分∠BAC ,∴∠BAO =∠DAO ,在△ABO 与△ADO 中,AO =AO ∠BAO =∠DAO AB =AD,∴△ABO≌△ADO(SAS),∴∠ABO =∠ADO =2α,OB =OD,AB =AD =4,又∵∠ACO =α,∴∠ACO =∠DCO =α,∴OD =OC =AC−AD =7−4=3,∴OB =3.17.证明见解析【分析】本题主要考查了角平分线的定义,三角形外角的性质以及等腰三角形的判定和三角形内角和定理的应用,根据外角的性质求出∠ECD=702,由角平分线的定义得∠ACE=∠ECD=70°,根据三角形内角和定理求出∠CAE=70°,可得∠ACE=∠CAE,从而可得结论.【详解】证明:∠B=30°,∠E=40°,∴∠ECD=∠B+∠E=70°,∵CE平分∠ACD,∴∠ACE=∠ECD=70°,在△ABE中,∠ACE+∠E+∠CAE=180°,∴∠CAE=180°−∠ACE−∠E=180°−70°−40°=70°,∴∠ACE=∠CAE,∴AE=CE.18.(1)见解析(2)14【分析】本题考查角平分线的性质,全等三角形的判定与性质.(1)过点E作EF⊥AD于F,根据角平分线的性质得出CE=EF,再证明△ABE≌△AFE,△CED≌△FED,根据全等三角形的性质得出AB=AF,DC=DF,进而得出结论;(2)由△ABE≌△AFE,△CED≌△FED,推出S△CED=S△FED,S△ABE=S△AFE,据此求解即可.【详解】(1)证明:如图,过点E作EF⊥AD于F,∵∠C=90°,AB∥CD,∴∠B=90°,∵DE平分∠CDA,∴CE=EF,∴Rt△CED≌Rt△FED(HL),∴DC=DF,∵E是BC的中点,∴BE=CE,∴BE=EF,∵AE=AE,∴Rt△ABE≌Rt△AFE(HL),∴AD=AF+FD=AB+CD;(2)解:∵△CED≌△FED,△ABE≌△AFE,∴S△CED=S△FED,S△ABE=S△AFE,∵S∴19(2)((∴∴∴(∴∵∴∴∠BOM=∠ABO,∴BM=OM,同理可得:CN=ON,∴MN=OM+ON=BM+CN,∵AB=7,AC=6,∴△AMN的周长是AM+MN+AN=AM+BM+CN+AN=AB+AC=13.。
第06天角的平分线的性质典例在线如图,△ABC中,∠ABC=70°,∠BAC的外角平分线与∠ACB的外角的平分线交于点O,则∠ABO=_____.【参考答案】35°【解题必备】1.性质定理:角平分线上的点到该角两边的距离相等.2.判定定理:到角的两边距离相等的点在该角的角平分线上.试题推荐1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是A.6 B.5 C.4 D.32.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7 cm,AC=3 cm,则BD等于A.1 cm B.2 cmC.3 cm D.4 cm3.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是A.P为∠A、∠B两角平分线的交点B.P为AC、AB两边上的高的交点C.P为∠A的角平分线与AB的垂直平分线的交点D.P为AC、AB两边的垂直平分线的交点4.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=4,则△BCE的面积等于A.32 B.16 C.8 D.45.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28 cm2,AB=20 cm,AC=8 cm,则DE的长是A.4 cm B.3 cm C.2 cm D.1 cm6.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是A.1 B.2 C.3 D.47.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=55°,则∠ABC=_______.8.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是_______.参考答案1.D【解析】过点D作DF⊥AC,交AC于F,根据角平分线上的点到角两边的距离相等可得:DF=DE=2,△ABD的面积为12AB×DE=12×4×2=4,则△ACD的面积为:S=7–4=3,所以AC=2S÷DF=2×3÷2=3.2.D【解析】根据角平分线上的点到角的两边的距离相等可得CE=DE,∵AE=AE,CE=DE,利用“HL”可得Rt△ACE≌Rt△ADE,∴AC=AD,∴BD=AB–AD=AB–AC=7–3=4 cm.故选D.3.C【解析】要使P到∠A的两边距离相等,则点P在∠A的角平分线上;要使PA=PB,则点P在AB的中垂线上,故选C.善于思考,勤于总结!。
第六讲角平分线的性质一. 角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.二.角平分线的性质及判定1.角平分线的性质:角的平分线上的点到角的两边的距离相等.推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB几何表达:(角的平分线上的点到角的两边的距离相等)∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.2角平分线的判定:到角的两边的距离相等的点在角的平分线上.推导:已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在R t△PAO和R t△PBO中,∴R t△PAO≌R t△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)1. 重点:角平分线的性质及判定2. 难点:角平分线的性质及判定的应用,特别是辅助线的添加。
例1.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm则BC 的长为_____cm.解析:本题考查角平分线的性质,过D作AB的垂线DE得CD=DE=5,可求BD=10,则BC=15。
答案:15例2. 如图所示,DB⊥AB,DC⊥AC,BD=DC,∠BAC=80°,则∠BAD=__________,∠CDA =__________.解析:本题考查了角平分线的判定,利用内角和定理可求。
2021年暑假数学每日练《第六天:角的平分线的性质》——人教版八年级上册预习(带答案解析)Math CL一、选择题(本大题共12小题,共36.0分)1.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A. 2B. 3C. 4D. 62.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A. PC=PDB. ∠CPO=∠DOPC. ∠CPO=∠DPOD. OC=OD3.如图,△ABC的外角平分线BD,CE相交于点P.若点P到AC的距离为3,则点P到AB的距离为()A. 1B. 2C. 3D. 44.如图,点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点.其中正确的是().A. ①②③④B. ①②③C. ④D. ②③5.如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE的最小值()A. 等于3B. 大于3C. 小于3D. 无法确定6.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=14cm,BC=16cm,则DE的长度为()A. 1cmB. 2cmC. 3cmD. 4cm7.已知△ABC中,AB=10,BC=15,CA=20,点O是△ABC内角平分线的交点,则△ABO、△BCO、△CAO的面积比是()A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:58.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A. 40°B. 45°C. 50°D. 60°9.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为()A. 3B. 10C. 12D. 1510.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A. 角平分线B. 高线C. 中线D. 边的中垂线11.如图,已知点P到BE、BD、AC的距离恰好相等,则点P的位置:①在∠B的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠B,∠DAC,∠ECA三个角的平分线的交点.上述结论中,正确结论的个数有()A. 1个B. 2个C. 3个D. 4个12.如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5cm,AC=12,则△APC的面积是()A. 30cm2B. 40cm2C. 50cm2D. 60cm2二、填空题(本大题共4小题,共12.0分)13.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是______.14.如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为______.15.到角的两边距离相等的点,在__________________,所以,如果点P到∠AOB两边的距离相等,那么射线OP是______________________.16.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,BD平分∠ABC交AC边于点D,若CD=3.则AD的长为______.答案和解析1.【答案】D【解析】 解: ∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC ,∴DF =DE =6,故选D . 2.【答案】B【解析】解: ∵OP 为∠AOB 的平分线,PC ⊥OA ,PD ⊥OB ,∴PC =PD ,∠PCO =∠PDO =90∘.在Rt △PCO 与Rt △PDO 中,{OP =OP,PC =PD,∴Rt △PCO ≌Rt △PDO ,∴OC =OD ,∠CPO =∠DPO .∴A 、C 、D 结论正确,故选B .3.【答案】C【解析】【分析】本题考查了角平分线性质的应用,能灵活运用性质进行推理是解此题的关键,过P 作PQ ⊥AC 于Q ,PW ⊥BC 于W ,PR ⊥AB 于R ,根据角平分线性质得出PQ =PR ,即可得出答案.【解答】解:过P 作PQ ⊥AC 于Q ,PW ⊥BC 于W ,PR ⊥AB 于R ,∵△ABC的外角平分线BD,CE相交于点P,∴PQ=PW,PW=PR,∴PR=PQ,∵点P到AC的距离为3,∴PQ=PR=3,则点P到AB的距离为3,故选:C.4.【答案】A【解析】【分析】本题考查的知识点是角平分线的性质,掌握好到角的两边距离相等的点在角的平分线上是解题的关键,本题将各说法根据角平分线的性质定理进行判断即可.【解答】解:∵点P到AE,AD的距离相等,∴点P在∠BAC的平分线上,①正确;∵点P到AE,BC的距离相等,∴点P在∠CBE的平分线上,②正确;∵点P到AD,BC的距离相等,∴点P在∠BCD的平分线上,③正确;∴点P在∠BAC,∠CBE,∠BCD的平分线的交点上,④正确,故选A.5.【答案】A【解析】解:过P点作PH⊥OB于H,如图,∵OP平分∠AOB,PD⊥OA,PH⊥OB于H,∴OH=OD=3,∵点E是射线OB上的一个动点,∴点E与H点重合时,PE有最小值,最小值为3.故选:A.过P点作PH⊥OB于H,如图,利用角平分线的性质得到OH=OD=3,然后根据垂线段最短可得到PE的最小值.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.6.【答案】B【解析】解:作DF⊥BC于F,如图,∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=S△ABD+S△BCD,∴12×DE×AB+12×DF×BC=30,即12×DE×14+12×DE×16=30,∴DE=2(cm).故选:B.作DF⊥BC于F,如图,利用角平分线的性质得DE=DF,然后根据三角形面积公式得到12×DE×14+12×DE×16=30,从而可计算出DE的长.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.7.【答案】C【解析】解:过点O,作OD⊥AB于D,作OE⊥AC于E,作OF⊥BC于F,∵点O是△ABC内角平分线的交点,∴OD=OE=OF,∴S△ABO=12AB⋅OD,S△CAO=12AC⋅OE,S△BCO=12BC⋅OF,∵AB=10,BC=15,CA=20,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=10:15:20=2:3:4.故选:C.首先过点O,作OD⊥AB于D,作OE⊥AC于E,作OF⊥BC于F,由点O是△ABC内角平分线的交点,根据角平分线的性质,即可得OD=OE=OF,继而可得S△ABO:S△BCO:S△CAO=AB:BC:CA,则可求得答案.此题考查了角平分线的性质.此题难度不大,解题的关键是由点O是△ABC内角平分线的交点,得到S△ABO:S△BCO:S△CAO=AB:BC:CA.8.【答案】C【解析】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD−∠BPC=(x−40)°,∴∠BAC=∠ACD−∠ABC=2x°−(x°−40°)−(x°−40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA=PAPM=PF,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选:C.根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案此题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.9.【答案】D【解析】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.×3×10=15.∴△ABD的面积为12故选:D.要求△ABD的面积,现有AB=10可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.10.【答案】A【解析】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.此题主要考查角平分线的性质的逆定理:到角的两边的距离相等的点在角的平分线上.11.【答案】D【解析】解:由角平分线性质的逆定理,可得①②③④都正确.故选D.利用平分线性质的逆定理分析.由已知点P到BE,BD,AC的距离恰好相等进行思考,首先到到两边距离相等,得出结论,然后另外两边再得结论,如此这样,答案可得.此题主要考查角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上.做题时,可分别处理,逐个验证.12.【答案】A【解析】解:过P作PD⊥AC于D,∵点P是∠BAC的平分线上一点,PB⊥AB于B,∴PD=PB=5cm,∴S△APC=12AC⋅PD=12×12×5=30cm2,故选A.根据角平分线的性质和三角形的面积公式即可得到结论.本题考查了角平分线的性质,熟练掌握角平分线的性质是解题的关键.13.【答案】12【解析】解:作DE⊥AB于E,如图,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=DC=3,∴S△ABD=1×8×3=12.2故答案为12.作DE⊥AB于E,如图,根据角平分线的性质得DE=DC=3,然后根据三角形的面积公式计算S△ABD.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.14.【答案】3【解析】解:根据垂线段最短可知:当PM⊥OC时,PM最小,当PM⊥OC时,又∵OP平分∠AOC,PD⊥OA,PD=3,∴PM=PD=3,故答案为:3.根据垂线段最短可知当PM⊥OC时,PM最小,再根据角的平分线的性质,即可得出答案.本题考查了垂线段最短、角平分线的性质,熟练掌握这些知识是解题的关键.15.【答案】这个角的平分线上;∠AOB的平分线【解析】【分析】本题主要考查的是角平分线的判定,解决此题的关键是要熟练掌握角的内部到角的两边的距离相等的点在角的平分线上,由此解答即可.【解答】解:角的内部到角的两边的距离相等的点在这个角的平分线上.如果∠AOB内一点P到∠AOB两边的距离相等,那么射线OP是∠AOB的平分线.故答案为这个角的平分线上;∠AOB的平分线.16.【答案】3√2【解析】解:如图,过D作DG⊥AB于G,∵BD平分∠ABC,∠ACB=90°,∴CD=DG=3,∵∠A=45°,∠AGD=90°,∴AG=DG=3,∴AD=3√2,故答案为:3√2.根据角平分线上的点到角的两边的距离相等可得DE=CD=3,再证明△ADG是等腰直角三角形可得结论.本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并作辅助线是解题的关键.第11页,共11页。
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。
《12.3 角的平分线的性质》一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)根据角平分线性质推出即可;(2)根据角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】首先根据△ABD的面积计算出DE的长,再根据角平分线上的点到角两边的距离相等可得DE=DF,然后计算出DF的长,再利用三角形的面积公式计算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,根据角平分线性质得出DM=DN ,根据三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再根据BC=BD+DE代入数据进行计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】根据三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的角平分线相交于一点作辅助线并判断出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S=AB•DE+BC•DF=90,△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。
八年级数学上册角平分线的性质精选练习题八年级上册数学的角平分线的性质知识点即将学完,教师们腰围同学们准备精选练习题,下面是店铺为大家带来的关于八年级数学上册角平分线的性质精选的练习题,希望会给大家带来帮助。
八年级数学上册角平分线的性质精选练习题目一、选择题1. 用尺规作已知角的平分线的理论依据是( )A.SASB.AASC.SSSD.ASA2. ∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是( )A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD3. Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是( )A.5cmB.4cmC.3cmD.2cm4. △ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长为( )A. 4㎝B. 6㎝C. 10㎝D. 不能确定5.OP平分,,,垂足分别为A,B.下列结论中不一定成立的是( )A. B. 平分 C. D. 垂直平分6.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC =7,DE=2,AB=4,则AC长是( )A. 4B. 3C. 6D. 57.AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )A、11B、5.5C、7D、3.58.已知:△ABC中,∠C=90o,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别等于( )(A)2cm、2cm、2cm. (B)3cm、3cm、3cm.(C)4cm、4cm、4cm. (D)2cm、3cm、5cm.二、填空题9.P是∠AOB的角平分线上的一点,PC⊥OA于点C,PD⊥OB于点D,写出中一对相等的线段(只需写出一对即可) .10.在△ABC中,∠A=90°,BD平分∠AB C,AD=2 cm,则点D到BC的距离为________cm.11 .OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为.12.在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是13.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为14.已知△ABC中,AD是角平分线,AB=5,AC=3,且S△ADC=6,则S△ABD=.15.AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,则EF与AD的关系是16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.17.AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为18. △ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO =三、解答题19.已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD,求证:∠B=∠C.20. 画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.21.AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22. 已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、BA、AE三者之间有何关系?并加以证明.23. △ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,EF⊥AB于F,EG⊥AG交AC的延长线于G.求证:BF=CG.八年级数学上册角平分线的性质精选练习题答案一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9. PC=PD(答案不唯一) 10. 2 11. 3 12. 15 13. 4 14. 1015. AD垂直平分EF 16. 5 17. 4 18. 4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.20. 解:PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN,∴PE=PF.21.(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB= ∠CAB=33°(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,∴△ACN≌△MCN.22 . 解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE. 23. 证明:连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,∴Rt△BFE≌Rt△CGE (HL),∴BF=CG。
人教版八年级数学上册角的平分线的性质同步练习题(含答案)12.3 角的平分线的性质第1课时角的平分线的性质要点感知1 角的平分线的性质:角的平分线上的点到角的两边的距离_____.预习练习1-1 如图,OP平分∠AOB,PC⊥OA,垂足为C,PD⊥OB,垂足为D,则PC与PD的大小关系是( )A.PC>PDB.PC=PDC.PC<PDD.不能确定要点感知2 命题证明的一般步骤为:(1)明确命题中的已知和求证;(2)根据题意画出图形,并用数学符号表示已知和求证;(3)写出证明过程.预习练习2-1 命题“全等三角形对应角的角平分线长度相等”的已知是____,求证是____.知识点1 角平分线的作法1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等2.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,但不写作法.知识点2 角平分线的性质3.如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为cm.4.如图所示,E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别为C ,D.求证:OC=OD.5.如图,BD 平分∠ABC ,DE 垂直于AB 于E 点,△ABC 的面积等于90,AB=18,BC=12,求DE 的长.知识点3 命题证明6.命题“全等三角形对应边上的高线相等”的已知是____,结论是____.7.证明:全等三角形对应边上的中线相等.8.如图,AD ∥B C,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P,作PE ⊥AB 于点E.若PE =2,则两平行线AD 与BC 间的距离为____.9.如图,在△ABC ,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于21EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D ,则∠CDA 的度数为____. 10.已知,如图所示,△ABC 的角平分线AD 将BC 边分成2∶1两部分,若AC=3 cm ,则AB=____.11.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,垂足分别为D ,E,求证:OB =OC.12.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB,垂足为E,且AB=10 cm,求△DEB 的周长.13.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.挑战自我14.如图,∠AOB=90°,OM 平分∠AOB ,直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.参考答案课前预习要点感知1 相等 预习练习1-1 B预习练习2-1 全等三角形对应角的角平分线 对应角的角平分线长度相等 当堂训练 1.A 2.图略. 3.4 4.证明:∵E 是∠AOB 的平分线上一点,CE ⊥OA,ED ⊥OB ,∴EC=ED.在Rt △OCE 和Rt △ODE 中,OE=OE,EC=ED,∴Rt △OCE ≌Rt △ODE(HL).∴OC=OD.5.∵BD 平分∠ABC ,DE 垂直于AB 于E 点,∴点D 到BC 的距离等于DE 的长度.∵AB=18,BC=12,∴S △ABC =S △ABD +S △BCD =21×18·DE+21×12·DE=21DE(18+12)=15·DE.∵△ABC 的面积等于90,∴15·DE=90.∴DE=66.全等三角形对应边的高线 对应边的高线相等7.已知:△ABC ≌△A ′B ′C ′,AD ,A ′D ′分别是BC ,B ′C ′边上的中线.求证:AD=A ′D ′.证明:∵△ABC ≌△A ′B ′C ′,∴AB=A ′B ′,∠B=∠B ′,BC=B ′C ′.又∵AD ,A ′D ′分别是BC ,B ′C ′边上的中线,∴BD=21BC,B ′D ′=21B ′C ′.∴BD=B ′D ′.∴△ABD ≌△A ′B ′D ′(SAS).∴AD=A ′D ′.课后作业 8.4 9.65° 10.6 cm 11.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,∴OE =OD,∠BEO =∠CDO =90°.在△BEO 与△CDO 中,∠BEO =∠CDO,OE =OD,∠EOB =∠DOC,∴△BEO ≌△CDO(ASA).∴OB =OC.12.∵AD 平分∠BAC 交BC 于D,DE ⊥AB,∠C=90°,∴CD=DE.∴Rt △ACD ≌Rt △AED.∴AE=AC.∴△DEB 的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10 cm. 13.已知:如图,在△ABC 和△A ′B ′C ′中,∠B=∠B ′,∠BAC=∠B ′A ′C ′,AD,A ′D ′分别是∠BAC,∠B ′A ′C ′的平分线,且AD=A ′D ′.求证:△ABC ≌△A ′B ′C ′.证明:∵∠BAC=∠B ′A ′C ′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线,∴∠BAD=∠B ′A ′D ′.∵∠B=∠B ′,AD=A ′D ′,∴△ABD ≌△A ′B ′D ′(AAS).∴AB=A ′B ′.在△ABC 和△A ′B ′C ′中,∠B=∠B ′,AB=A ′B ′,∠BAC=∠B ′A ′C ′,∴△ABC ≌△A ′B ′C ′(ASA).14.PC=PD.理由如下:过点P 分别作PE ⊥OA ,PF ⊥OB ,垂足分别为点E ,F.又∵OM 平分∠AOB ,∴PE=PF.又∵∠AOB=90°,∠PEO=∠PFO=90°,∴∠EPF=90°.∴∠EPC+∠CPF=90°.又∵∠CPD=90°,∴∠CPF+∠FPD=90°.∴∠EP C=∠FPD.在△PCE 与△PDF 中,∠PEC=∠PFD ,PE=PF ,∠EPC=∠FPD ,∴△PCE ≌△PDF(ASA).∴PC=PD.第2课时 角的平分线的判定要点感知1 角的内部到角的两边的距离相等的点在角的______上.预习练习1-1 已知点P 为∠AOB 内部的一点,PD ⊥OB 于点D,PC ⊥OA 于点C,且PC=PD,则OP 平分_____.要点感知2 三角形的三条内角平分线相交于一点,并且这一点到_____.预习练习2-1 如图,在△ABC 中,BD ,CE 分别平分∠ABC ,∠ACB,并且BD ,CE 相交于点O,过O 点作OP ⊥BC 于点P,OM ⊥AB 于点M,ON ⊥AC 于点N,则OP ,OM ,ON 的大小关系是_____.知识点1 角平分线的判定1.已知:如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB.下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有( )A.1个B.2个C.3个D.4个2.已知:如图所示,BE=CF,DF⊥AC于点F,DE⊥AB于点E,BF和CE相交于点D.求证:AD平分∠BAC.知识点2 角平分线的性质与判定的综合运用3.如图,△ABC中,∠ABC,∠ACB的角平分线相交于O,下面结论中正确的是( )A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定4.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.知识点3 角平分线的性质与判定的实际应用5.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.6.某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.7.如图所示,AD⊥OB,BC⊥OA,垂足分别为D,C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定8.如图所示,P为△ABC外部一点,D,E分别在AB,AC的延长线上,若点P到BC,BD,CE 的距离都相等,则关于点P的说法最佳的是( )A.在∠DBC的平分线上B.在∠BCE的平分线上C.在∠BAC的平分线上D.在∠DBC,∠BCE,∠BAC的平分线上9.三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路距离相等,则可供选择的地方有_____处.10.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.11.如图,D,E,F分别是△ABC三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BAC.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D 移动到什么位置时,AD 恰好平分∠BAC,请说明理由.挑战自我13.已知:如图所示,在△ABC 中,BD=DC,∠1=∠2,求证:AD 平分∠BAC.参考答案课前预习要点感知1 平分线 预习练习1-1 ∠AOB要点感知2 三边的距离相等 预习练习2-1 OP=OM=ON 当堂训练 1.D 2.证明:∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴∠DEB=∠DFC=90°,在△BDE 和△CDF 中,∠BDE=∠CDF, ∠DEB=∠DFC,BE=CF,∴△BDE ≌△CDF(AAS).∴DE=DF.又∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴AD 平分∠BAC. 3.B 4.证明:过点D 分别作DE ⊥AB,DG ⊥AC,DF ⊥BC,垂足分别为E,G,F.又∵BD 平分∠ABC,CD 平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD 平分∠EAC,即AD 是∠BAC 的外角平分线.5.图略.提示:作∠AOB 的角平分线,与AB 的交点即为点M 的位置.6.在三角形内部分别作出两条角平分线,其交点O 就是小亭的中心位置,图略. 课后作业7.A8.D9.410.(1)证明:∵∠1=∠2,OD ⊥AB ,OE ⊥AC ,∴OE =OD ,∠ODB =∠OEC =90°.在△BOD 和△COE 中,∠BOD=∠COE ,OD=OE ,∠ODB=∠OEC,∴△BOD ≌△COE(ASA).∴OB =OC. (2)证明:在△BOD 和△COE 中,∠ODB=∠OEC ,∠BOD=∠COE , OB=OC ,∴△BOD ≌△COE(AAS).∴OD =OE.又∵OD ⊥AB ,OE ⊥AC ,∴AO 平分∠BAC ,即∠1=∠2.11.证明:过点D 作DH ⊥AB 于H ,DG ⊥AC 于G.∵S △DCE =21CE ·DG,S △DB F=21BF ·DH,S△DCE=S △DBF ,∴21CE ·DG=21BF ·DH.又∵CE=BF,∴DG=DH.∴点D 在∠BAC 的平分线上,即AD 平分∠BAC.12.移动到BC 的中点时,AD 恰好平分∠BAC.理由如下:∵D 是BC 的中点,∴BD =CD.∵DE ⊥AB,DF ⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C,∴△DEB ≌△D FC(AAS).∴DE =DF.又∵DE ⊥AB,DF ⊥AC,∴AD 平分∠BAC.13.证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F.在△BED 和△CFD 中,∠BED=∠CF D=90°,∠1=∠2,BD=CD,∴△BED ≌△CFD(AAS).∴DE=DF.又DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.。
第六讲角平分线的性质教学目标:1.学会用尺规作图,作一个角等于已知角,作已知角的角平分线2.能利用角平分线的性质解决简单问题3.角平分线的性质及判定定理的运用重点难点:1.角平分线的性质的运用与逆用。
2.利用角平分线构造全等三角形。
3.继续学习证明及综合法证明的格式。
知识导航:1.角平分线的画法CB(1)已知∠AOB,求作∠AOB 的角平分线:①以O 为圆心,适当长为半径画弧,交OA 于M,交OB 于N。
②分别以M,N 为圆心,以大于12MN 长为半径作弧,在∠AOB 的内部两弧交于点C。
③过O、C 两点作射线OC,射线OC 就是所求角的角平分线。
2.角平分线的性质及判定(1)角平分线的性质:角的平分线上的点到角的两边的距离相等。
(2)角平分线的判定:角的内部到角的两边的距离相等的点在角的角平分线上。
3.三角形的角平分线的性质(1)三角形的三条角平分线交于一点,这点到三边的距离相等。
(2)三角形两个外角的角平分线也交于一点,这点到三边所在的直线的距离相等。
(3)三角形外角平分线交点共有三个,所以到三角形三遍所在直线距离相等的点有4 个。
考点/易错点1角平分线是一种对称模型,一般情况下,有下列三种作辅助线的方式:1.由角平分线上的一点向角的两边作垂线;2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;3.OA=OB,这种对称的图形应用得也较为普遍。
典型例题:【例1】尺规作图:请在图上作一个∠AOC,使其是已知∠AOB 的32倍.(要求:写出已知、求作,保留作图痕迹,在所作图中标上必要的字母,不写作法和结论) 已知:求作:【答案】已知:∠AOB .求作:∠AOC ,使∠AOC =32∠AOB .作图如右上所示:【解析】首先画出∠AOB 的角平分线,再以OB 为边,画∠BOC=∠BOF.【例2】如图,在Rt△ABC 中,∠C=90°,BD 平分∠ABC 交AC 于点D,DE⊥AB 于E,若AC=3cm,则AD+DE 为()A. 3cm B.4cmC.2cm D.无法确定【答案】A.【解析】∵BD 平分∠ABC,∠C=90°,DE⊥AB,∴DE=DC,∴AD+DE=AD+DC=AC,∵AC=3cm,∴AD+DE=3cm.【例3】如图,已知四边形ABCD 中,AD∥BC,若∠DAB 的平分线AE 交CD 于E,连接BE,且BE 恰好平分∠ABC,则AB 的长与AD+BC 的大小关系是()A.AB>AD+BC B.AB<AD+BC C.AB=AD+BC D.无法确定【答案】C.【解析】解法1:在AB 上截取AF=AD,连接EF,易证AE⊥BE,△ADE≌△AFE(SAS),所以∠1=∠2,又∠2+∠4=90°,∠1+∠3=90°,所以∠3=∠4,所以可证△BCE≌△BFE,所以BC=BF,所以AB=AF+BF=AD+BC;解法2:如图,延长AE 交BC 延长线于F,∵AD∥CB,∴∠CBA+∠BAD=180°,∵BE 平分∠CBA,AE 平分∠BAD,∴∠EBA+∠BAE=90°,∴∠BEA=180°﹣90°=90°,∴BE⊥AF,由△ABE≌△FBE (ASA),可得BA=BF,AE=FE,于是可证△ADE≌△FCE(ASA),所以AD=CF,所以AB=BC+CF=BC+AD.【例4】如图,在△ABC 中,∠C=90°,AC=14,BD 平分∠ABC,交AC 于D,AD=10,则点D 到AB 的距离为()A.10 B.4 C.7 D.6【答案】B.【解析】解:如图,过点D 作DE⊥AB 于E,∵AC=14,AD=10,∴CD=AC﹣AD=14﹣10=4,∵BD 平分∠ABC,∠C=90°,∴DE=CD=4.【例5】如图,在△ABC 中,AC=CB,∠C=90°,AD 是∠BAC 的平分线,∠E=90°,那么AD 与BE 的长度关系为。