07--小范围屈服与平面应变断裂韧度
- 格式:ppt
- 大小:861.50 KB
- 文档页数:43
平面应变断裂韧度K IC 的测定“工程力学”指出,材料对本身的裂纹或类裂纹缺陷的存在十分敏感,裂纹失稳扩展是脆性断裂的主要原因。
控制断裂的三个主要因素是裂纹的形状和尺寸、工作应力和材料抵抗裂纹扩展的能力(材料的断裂韧度)。
前二者是作用,为断裂的发生提供条件;在“线弹性断裂力学”中,用裂纹尖端的应力强度因子K 来描述,且()a w a f K πσ ,=上式的适用条件为裂纹尺寸a ≥2.52⎪⎪⎭⎫⎝⎛ys IC K σ,即在线弹性或小范围屈服条件下才成立。
后者是抗力,阻止断裂的发生;在一定条件下(满足平面应变条件)是一材料常数,称为材料的平面应变断裂韧度,记作K IC ,可由实验测定。
一、实验目的测定材料的平面应变断裂韧度K IC二、实验设备和仪器1.力传感器、双悬臂夹式引伸计。
2.三点弯曲试验装置。
3.材料试验机。
4.高频疲劳试验机。
5.精密量具(游标卡尺和读数显微镜等)。
三、实验原理含有I 型(张开型)裂纹试样,其应力强度因子一般可表达为:式中:() ,w a f 是试样的几何形状因子,在试样形状、尺寸和加载方式为一定的条件下是一常数。
随着外载荷F 的增加,K I 随之增加。
然而K I 的增加不是无限的,这种增加受到材料性能的限制,即当K I 增加到某一临界值时,裂纹就会失稳扩展引起材料脆断。
这个临界值代表材料抗脆断的能力,也就是材料的断裂韧度。
所以在测试时,只要在试样的加载过程中,测出裂纹失稳扩展时的临界载荷F q 和试样裂纹尺寸a ,就可以求出试样材料的临界应力强度因子(),(81)I K f a w aσπ=-K q 。
如果试样尺寸满足平面应变和小范围屈服条件,则此时的临界应力强度因子即为该材料的平面应变断裂韧度K IC 。
四、实验方法采用带穿透裂纹的试样测定金属材料平面应变断裂韧度是目前断裂力学测试技术中发展较完善的一种方法。
1.K I 标定公式对于三点弯曲试样,应力强度因子K I 的表达式为:I 3/2(/)FSK f a w BW=(8-2) 式中:S 、B 、W 及a 分别为试样的跨度、厚度、宽度,以及试样的裂纹尺寸;F 为作用于试样中点的集中力。
1、解释:形变(应变)强化、弹性变形、刚度、弹性不完整性、弹性后效、弹性滞后、Bauschinger效应、应变时效、韧性、脆性断裂、韧性断裂、平面应力状态、平面应变状态、低温脆性、高周疲劳、低周疲劳、疲劳极限、等强温度、弹性极限、疲劳极限、应力腐蚀开裂、氢脆、腐蚀疲劳、蠕变极限、持久强度、松弛稳定性、磨损。
2.弹性滞后环是由于什么原因产生的。
材料的弹性滞后环的大小对不同零件有不同的要求?弹性滞后环是由于材料的加载线和卸载线不重合而产生的。
对机床的底座等构件,为保证机器的平稳运转,材料的弹性滞后环越大越好;而对弹簧片、钟表等材料,要求材料的弹性滞后环越小越好。
3.断口的三个特征区?微孔聚集型断裂、解理断裂和沿晶断裂的微观特征分别为?断口的三要素是纤维区、放射区和剪切唇。
微孔聚集型断裂的微观特征是韧窝;解理断裂的微观特征主要有解理台阶和河流和舌状花样;沿晶断裂的微观特征为石状断口和冰糖块状断口。
4.应力状态系数α值大小和应力状态的软硬关系。
为测量脆性材料的塑性,常选用应力状态系数α值(大)的实验方法,如(压缩)等。
5. 在扭转实验中,塑性材料的断口方向及形貌,产生的原因?脆性材料的断口的断口方向及形貌,产生的原因?在扭转试验中,塑性材料的断裂面与试样轴线垂直;脆性材料的断裂面与试样轴线成 450 。
6. 材料截面上缺口的存在,使得缺口根部产生(应力集中)和(双(三)向应力),试样的屈服强度(升高),塑性(降低)。
7. 低温脆性常发生在具有什么结构的金属及合金中,在什么结构的金属及合金中很少发现。
低温脆性常发生在具有体心立方结构的金属及合金中,而在面心立方结构的金属及合金中很少发现。
8. 按断裂寿命和应力水平,疲劳可分为?疲劳断口的典型特征是?9.材料的磨损按机理可分为哪些磨损形式。
10. 不同加载试验下的应力状态系数分别为多少?11. 材料的断裂按断裂机理可分为?按断裂前塑性变形大小可分为?答:材料的断裂按断裂机理分可分为微孔聚集型断裂,解理断裂和沿晶断裂;按断裂前塑性变形大小分可分为延性断裂和脆性断裂。
断裂力学的研究进展和现状周刚发布时间:2021-08-09T06:37:53.384Z 来源:《中国电业》(发电)》2021年第8期作者:周刚[导读] 本文还介绍了宏、微观断裂力学的发展动态,对两者的研究方法进行比较分析,得出异同及结合点。
身份证号:61012519810308xxxx摘要:本文在梳理有关断裂力学的主要著作、国内外主要会议的基础上,介绍了断裂力学理论的研究进展与发展现状,主要涵盖以下方面,即断裂力学的起源与发展动态,断裂力学主要试验标准分析和总结,断裂力学的主要工业应用领域及评估标准分析,数值模拟技术在断裂力学中的应用。
本文还介绍了宏、微观断裂力学的发展动态,对两者的研究方法进行比较分析,得出异同及结合点。
关键词:断裂力学,研究进展,现状1、断裂力学的概述断裂力学是为解决机械结构断裂问题而发展起来的力学分支,是近几十年才发展起来的一支新兴学科。
它将力学、物理学、材料学及数学、工程科学紧密结合,从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件(荷载、温度、介质腐蚀、中子辐射等)作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律[1]。
断裂力学的关注点在于如何建立评定带缺陷或裂纹运行的机械结构的安全性标准以及怎样预防断裂事故的产生。
虽然它起步较晚,但随着当今社会的快速发展,已经在航空航天、桥梁、铁路、船舶等工程领域得到了广泛地应用。
2、断裂力学的起源与发展动态早在1920年,英国的物理学家Griffith在对玻璃的断裂研究中就提出了断裂力学概念[2]。
随后,他提出了能量释放率理论,这奠定了断裂力学的基础。
此后,有许多学者都开始致力于对格氏理论研究的发展。
1960年,Irwin在经过实验计算后建立了临界应力强度因子准则,进而奠定了线弹性断裂力学的理论基础[3]。
我国对于断裂力学的研究可追溯到二十世纪。
20世纪40年代,李四光出版的专著《地质力学之基础与方法》中应用Griffith的断裂理论以解释地质学中断层运动与地震现象[4]。
1、实验目的:2、学习了解金属平面应变断裂韧度K1C试样制备, 断口测量及数据处理的关键要点。
3、掌握金属平面应变断裂韧度K1C的测定方法。
一、实验原理本实验按照国家标准GB4161-84规定进行。
(一)断裂韧度是材料抵抗裂纹扩展能力的一种量度, 在线弹性断裂力学中,材料发生脆性断裂的判据为: K1≤K1C, 式中K1为应力场强度因子, 它表征裂纹尖端附近的应力场的强度, 其大小决定于构件的几何条件、外加载荷的大小、分布等。
K1C是在平面应变条件下, 材料中Ⅰ型裂纹产生失稳扩展的应力强度因子的临界值, 即材料平面应变断裂韧度。
裂纹稳定扩展时, K1和外力P、裂纹长度a、试件尺寸有关;当P和a达到Pc和ac时, 裂纹开始失稳扩展。
此时材料处于临界状态, 即K1=K1C。
K1C与外力、试件类型及尺寸无关(但与工作温度和变形速率有关)。
(二)应力场强度因子K1表达式三点弯曲试样:K1=(PS/BW3/2)f(a/W)式中: S为试件跨度, B为试件厚度, W为试件高度, a为试件裂纹长度。
试件B.W和S的比例为: B: W: S=1: 2: 8, 见图2-1所示:图2-1三点弯曲试件图(三)修正系数f(a/W)为a/W的函数, 可以查表2-1, a/W在0.45-0.55之间。
(四)试样尺寸要求及试样制备平面应变条件对厚度的要求:中间三个读数平均值a=1/3(a2+a3+a4);3.根据测得到a和W值, 计算a/W值(精确到千分之一), f(a/W)数值查表或计算。
f(a/W)={3(a/W)1/2[1.99-(a/W)(1-a/W)×(2.15-3.93a/W+2.7a2/W2)]}/2(1+2a/W)(1-a/W)3/2将PQ、B.W和f(a/W)代入下式:K Q=(P Q S/BW3/2)f(a/W)即可算出KQ值, 单位MPam1/2。
相关换算单位公式:MPam1/2=MNm-3/2, MPa=MNm-2, 1kgf=9.807N, 1kgfmm-3/2=0.310MPam1/2。
平面应变断裂韧度K IC 的测定“工程力学”指出,材料对本身的裂纹或类裂纹缺陷的存在十分敏感,裂纹失稳扩展是脆性断裂的主要原因。
控制断裂的三个主要因素是裂纹的形状和尺寸、工作应力和材料抵抗裂纹扩展的能力(材料的断裂韧度)。
前二者是作用,为断裂的发生提供条件;在“线弹性断裂力学”中,用裂纹尖端的应力强度因子K 来描述,且()a w a f K πσ ,=上式的适用条件为裂纹尺寸a ≥2.52⎪⎪⎭⎫ ⎝⎛ys IC K σ,即在线弹性或小范围屈服条件下才成立。
后者是抗力,阻止断裂的发生;在一定条件下(满足平面应变条件)是一材料常数,称为材料的平面应变断裂韧度,记作K IC ,可由实验测定。
一、实验目的测定材料的平面应变断裂韧度K IC二、实验设备和仪器1.力传感器、双悬臂夹式引伸计。
2.三点弯曲试验装置。
3.材料试验机。
4.高频疲劳试验机。
5.精密量具(游标卡尺和读数显微镜等)。
三、实验原理含有I 型(张开型)裂纹试样,其应力强度因子一般可表达为:式中:() ,w a f 是试样的几何形状因子,在试样形状、尺寸和加载方式为一定的条件下是一常数。
随着外载荷F 的增加,K I 随之增加。
然而K I 的增加不是无限的,这种增加受到材料性能的限制,即当K I 增加到某一临界值时,裂纹就会失稳扩展引起材料脆断。
这个临界值代表材料抗脆断的能力,也就是材料的断裂韧度。
所以在测试时,只要在试样的加载过程中,测出裂纹失稳扩展时的临界载荷F q 和试样裂纹尺寸a ,就可以求出试样材料的临界应力强度因子K q 。
如果试样尺寸满足平面应变和小范围屈服条件,则此时的临界应力强度因子即为该材料(),(81)I K f a w =-的平面应变断裂韧度K IC 。
四、实验方法采用带穿透裂纹的试样测定金属材料平面应变断裂韧度是目前断裂力学测试技术中发展较完善的一种方法。
1.K I 标定公式对于三点弯曲试样,应力强度因子K I 的表达式为: I 3/2(/)FS K f a w BW = (8-2) 式中:S 、B 、W 及a 分别为试样的跨度、厚度、宽度,以及试样的裂纹尺寸;F 为作用于试样中点的集中力。