北科大-平面断裂韧度测试实验
- 格式:pdf
- 大小:508.19 KB
- 文档页数:7
平面应变断裂韧性的测定陈国滔材科095 40930366一、实验目的1.理解平面应变断裂韧性的应用及限制条件;测试的基本方法,基本操作及操作要点;2.了解平面应变断裂韧度KIC3.通过三点弯曲试验测量40Cr的平面应变断裂韧度。
二、试验原理1.材料断裂原理含有缺陷的构件可能在远低于材料屈服强度的工作应力下断裂, 只要这些缺陷达到某种临界尺寸。
即使有些构件, 起初的缺陷尺寸没有达到某种临界尺寸, 但由于工作于某种疲劳载荷下, 或某种腐蚀介质里, 或某种限度的低温状态下, 起初的缺陷尺寸将会增大,即裂纹发生亚临界的稳定扩展, 直至达到某种临界尺寸而突然发生不稳定的脆断。
断裂条件是:式中, 为正应力,2a为试样或者构建中的裂纹长度。
2.材料的平面应变断裂韧性根据线弹性断裂力学,断裂的判据是裂纹前沿应力强度因子K达到其临界值——材料的平面应变断裂韧度,即:K=Y≥是材料抵抗裂纹扩展能力的式中Y是裂纹的形状因子。
平面应变断裂韧度KIC特征参量,它与裂纹的尺寸及承受的应力无关。
平面应变断裂韧性,可以用于:①评价材料是否适用,作为验收和产品质量控制的标准。
②材料的断裂韧度受到冶金因素(成分、热处理)的制造工艺(如焊接、成形)影响。
可对构件的断裂安全性进行评价。
三、实验仪器及材料1.实验仪器①WDW-200D微机控制电子式万能材料试验机(拉伸力准确度优于示值的0.5%)②游标卡尺(精度0.02mm)③双悬臂夹式引伸计(原长10.00mm)④工具显微镜15JE(精度0.001mm)2.实验材料本试验采用经过860℃淬火、220℃回火处理的40Cr钢,屈服强度σs=1400MPa。
3.实验试样SE(B)三点弯曲试样:4. 试样中裂纹的制备要求测定裂纹失稳扩展时的裂纹应力强度因子的临界值,要求裂纹尖端具有足够高的应力集中效应,否则,易于造成试验因为应力——位移曲线不符合要求而得不到预定结果。
为此,试样中裂纹的制备由两道工序完成。
北京科技⼤学材料⼒学性能平⾯应变断裂韧性试验报告材科09级平⾯应变断裂韧性试验报告⼀、试验⽬的、任务与要求1.通过三点弯曲试验测定40Cr的平⾯应变断裂韧度;2.加深理解平⾯应变断裂韧度的应⽤及其前提条件。
⼆、试验原理断裂条件是:σ√aa=材料常数σ为正应⼒,2aa为试样或者构件中的裂纹长度。
线弹性断裂⼒学断裂判据:KK=YYYY√aa≥KK II IIY是裂纹形状因⼦。
平⾯应变断裂韧度KK II II是材料抵抗裂纹扩展能⼒的特征参量,它与裂纹的尺⼨及承受的应⼒⽆关。
它可以⽤于:●评价材料的适⽤性●作为材料的验收和质量控制标准●对构件的断裂安全性进⾏评价三、试验材料与试样本试验所⽤材料为40Cr钢,热处理⼯艺为:860℃淬⽕,220℃回⽕,屈服强度RR pp0.2= 1400MMMMaa1。
试样为三点弯曲试样SE(B),名义跨距S=4W。
其标准⽐例和公差见图1:图1 弯曲试样SE(B)的标准⽐例和公差1屈服强度由单向拉伸试验得出,并⾮本试验所得。
四、试验仪器与设备1.WDW-200D万能拉伸试验机;2.⼯具显微镜,最⼩分度为0.001 mm;3.YYJ-4/10引伸计,能够准确指⽰裂纹嘴标距间的相对位移,且能稳妥地安在试样上;4.游标卡尺,精度为0.02 mm。
五、试验步骤1.试验之前按照国标要求预先制备好疲劳裂纹;2.测量试样厚度B:从疲劳裂纹顶端⾄试样的⽆缺⼝边,沿着预期的裂纹扩展线,在三个等间隔位置上测量厚度B,准确到0.025 mm或0.1%B,取较⼤者,取三次测量平均值;3.测量试样宽度W:在缺⼝附近⾄少三个位置上测量宽度W,准确到0.0025 mm或0.1%W,取较⼤者,计算平均值;4.在试样上粘贴引伸计卡装⼑⼝2;5.在试样上装载引伸计后,将试样装于试验机上,不断调整试样位置,使其处于载样台的正中,裂纹扩展⾯与加载压头要处于⼀个平⾯上,避免⼆者错位或形成明显不为0的夹⾓。
然后设置加载速率为0.3mm/min进⾏加载;6.试样断裂后,测量裂纹长度aa:在B/4、B/2、3B/4的位置上测量裂纹长度aa2、aa3、aa4,同时测量aa1与aa5。
断裂韧性测试实验报告随着断裂力学得发展,相继提出了材料得、、等一些新得力学性能指标,弥补了常规试验方法得不足,为工程应用提供了可靠得断裂判据与设计依据。
下面介绍下这几种方法得测试原理及试验方法。
1、三种断裂韧性参数得测试方法简介1、1平面应变断裂韧度得测试对于线弹性或小范围得型裂纹试样,裂纹尖端附近得应力应变状态完全由应力强度因子所决定。
就是外载荷,裂纹长度及试样几何形状得函数。
在平面应变状态下,当与得某一组合使=,裂纹开始失稳扩展。
得临界值就是一材料常数,称为平面应变断裂韧度。
测试保持裂纹长度a为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时得、代入所用试样得表达式即可求得。
得试验步骤一般包括:(1)试样得选择与准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等);(2)断裂试验;(3)试验结果得处理(包括裂纹长度得测量、条件临界荷载得确定、实验测试值得计算及有效性得判断)。
1、2延性断裂韧度得测试积分延性断裂韧度就是弹塑性裂纹试样受型载荷时,裂纹端点附近区域应力应变场强度力学参量积分得某些特征值。
测试积分得根据就是积分与形变功之间得关系:(1-1)其中为外界对试样所作形变功,包括弹性功与塑性功两部分,为裂纹长度,为试样厚度。
积分测试有单试样法与多试验法之分,其中多试样法又分为柔度标定法与阻力曲线法。
但无论就是单试样法还就是多试样柔度标定法,都须先确定启裂点,而困难正在于此。
因此,我国GB2038-80标准中规定采用绘制阻力曲线来确定金属材料得延性断裂韧度。
这就是一种多试样法,其优点就是无须判定启裂点,且能达到较高得试验精度。
这种方法能同时得到几个积分值,满足工程实际得不同需要。
所谓阻力曲线,就是指相应于某一裂纹真实扩展量得积分值与该真实裂纹扩展量得关系曲线。
标准规定测定一条阻力曲线至少需要5个有效试验点,故一般要5 8件试样。
把按规定加工并预制裂纹得试样加载,记录曲线,并适当掌握停机点以使各试样产生不同得裂纹扩展量(但最大扩展量不超过0、5mm)。
平面应变断裂韧性K IC 的测定一、实验目的1、学习金属平面应变断裂韧度的试样制备,断口测量和数据处理。
2、掌握金属平面应变断裂韧度K 1C 的测定方法。
二、实验原理本实验按照国家标准GB 4161-84规定进行。
断裂韧度是材料抵抗裂纹扩展能力的一种量度,在线弹性断裂力学中,材料发生脆性断裂的判据为:K1≤K1C ,式中K1为应力场强度因子,它表征裂纹尖端附近的应力场的强度,其大小决定于构件的几何条件、外加载荷的大小、分布等。
K1C 是在平面应变条件下,材料中I 型裂纹产生失稳扩展的应力强度因子的临界值,即材料平面应变断裂韧度。
裂纹稳定扩展时,K1和外力P 、裂纹长度a 、试件尺寸有关;当P 和a 达到Pc 和ac 时,裂纹开始失稳扩展。
此时材料处于临界状态,即K1=K1C 。
K1C 与外力、试件类型及尺寸无关(但与工作温度和变形速率有关)。
(一)、应力强度因子K q 的表达式对三点弯曲试件来说式中:S 为试件跨度,B 为试件厚度,W 为试件高度,a 为试件裂纹长度。
试件B 、W 和S 间比为B :W :S=1 : 2: 8,见图示 :修正系数f/(a/w )为a/w 的函数,可查表,a/w 在0.45-0.55之间。
(二)、试样尺寸要求及试样准备a 、平面应变条件对厚度的要求当试件的厚度足够时,在厚度方向上的平面应力层所占比重很小,裂纹顶端的广大区域处于平面应变状态。
这时整个试样近似地均处在平面应变条件下,从而才能测得一稳定的K1C 值。
对试件厚度要求推荐为:)/(5.21s C K B σ≥弯曲试样的f(a/w)b 、小范围屈服条件对裂纹长度的要求对常用三点弯曲试样,因裂纹顶端存在或大或小的塑性区,塑性区半径ry 不能无限地接近零。
K1近似可成立的r 值是裂纹顶端塑性区与广大弹性区交界的界面处。
对三点弯曲要求:21)/(5.250s C y K r a σ≈≥c 、韧带尺寸要求韧带尺寸也称韧带宽度(W-a ),对应力强度因子K 数值有大影响,如韧带宽度过小,背表面对裂纹塑性变形将失去约束作用,在加载过程中试样整个韧带屈服,裂纹试样不再近似地认为弹性体,这时线弹性理论的分析方法也就不适用。
飞行器设计实验Ⅱ材料平面应变断裂韧度测试实验报告姓名:学号:任课教师:分组:实验地点:实验时间:2014年 4 月10 日一.实验目的:1.理解断裂韧度的概念和作用。
2.掌握平面应变断裂韧度的测量原理和方法。
3.理解试验件设计和数据处理的关键要点。
二.实验原理:本方法使用预制疲劳裂纹试样通过增加力来测定金属材料的断裂韧度()。
力与缺口张开位移可以自动记录,也可以将数据储存到计算机。
根据对试验记录的线性部分规定的偏离来确定2% 最大表观裂纹扩展量所对应的力。
如果认为试验确实可靠,值就可以根据这个力计算。
而表征了在严格拉伸力约束下有尖裂纹存在时材料的断裂抗力。
这时:a) 裂纹尖端附近的应力状态接近于平面应变状态;b) 裂纹尖端塑性区的尺寸比裂纹尺才、试样厚度和裂纹前沿的韧带尺寸要足够小。
如图2.1所示,断裂韧性随试件厚度的增加而减少,超过一定的厚度后,断裂韧性趋于一个下限值而保持不变。
图2.1 断裂韧性随试件厚度的变化曲线测量断裂韧性的方法一般有三点弯曲和紧凑拉伸两种实验方法,这里我们采用紧凑拉伸方法,其试验件形式如下图2.2所示。
图2.2 紧凑拉伸试样图按照GB/T4161-2007,只有试样厚度(B )和裂纹长度(a )以及韧带尺寸(W-a )均满足公式2-1、公式2-2和公式2-3时,试验结果才是有效的。
由于不能提前保证满足这种要求,因此,最初试验采用的试样尺寸应该是保守的,如果材料的形状不能同时满足公式2-1、公式2-2和公式2-3的要求时,则不能按照本方法进行有效的测定。
平面应变2IC S 2.5K B σ⎛⎫≥ ⎪⎝⎭2-1 小范围屈服2IC S 2.5K a σ⎛⎫≥ ⎪⎝⎭2-2 ()2IC S 2.5K W a σ⎛⎫-≥ ⎪⎝⎭ 2-3 宽度(W) 通常是厚度(B)的两倍,即W :B=2:1。
裂纹长度在0. 45W ~0. 55W 之间,,取裂纹长度a=0.5W 。
而已知:IC S 40MPa m =330MPa K σ≈ 2-4 则代入公式2-1、公式2-2和公式2-3,得: 2B 2.536.7,36.7,36.7mmB=40mm W=80mm a=40mm Ic s K mm a mm W a σ⎛⎫≥≈ ⎪⎝⎭≥-≥令,则,按照GB/T4161-2007,缺口宽度应该在0.1W内,且应该大于1.6mm,则取为4mm。
平面应变断裂韧度KⅠC的测定1 实验目的利用预制好疲劳裂纹的试样测定金属材料的平面应变断裂韧度K IC2 实验设备1、万能材料试验机;2、动态电阻应变仪、X-Y函数记录仪、载荷传感器及夹式引伸计;3、游标卡尺。
3 实验原理及装置对于三点弯曲试样,应力强度因子K I 的表达式为:I13/2(/)FSK Y a WBW式中:S、B、W及a分别为试样的跨度、厚度、宽度,以及试样的裂纹尺寸(如图8-3所示);F为作用于试样中点的集中力;1(/)Y a W为形状修正系数,其值可查表得到(表8-1)。
随着外载荷F的增加,K I 随之增加。
然而K I的增加不是无限的,这种增加受到材料性能的限制,即当K I增加到某一临界值时,裂纹就会失稳扩展引起材料脆断。
这个临界值代表金属材料抵抗裂纹失稳扩展的能力,也就是材料的断裂韧度K IC。
所以在测试时,只要在试样的加载过程中,测出裂纹失稳扩展时的临界载荷F Q和试样裂纹尺寸a,就可以求出试样材料的临界应力强度因子K Q。
如果试样尺寸满足平面应变和小范围屈服条件,则此时的临界应力强度因子即为该材料的平面应变断裂韧度K IC 。
具体的做法是:对预制有疲劳裂纹的试样加载,在加载过程中用仪器记录下载荷增加和裂纹扩展情况的F -V 曲线(V -裂纹嘴张开位移);根据曲线上裂纹失稳扩展时(临界状态)的载荷F Q 及试样断裂后测出的预制裂纹长度a ,代入应力强度因子K I 的表达式,可得13/2(/)Q Q F S K Y a W BW然后再根据规定的判据判断K Q 是不是平面应变状态下的K IC ,如果不符合判据的要求,则需加大试样尺寸重做实验。
实验装置如图8-1所示:应变仪记录仪图8-1 实验装置(三点弯曲试样) 4 实验步骤1、实验前先清洗裂纹嘴两侧,用胶将刀口粘到试样上;2、试验前用卡尺在裂纹前缘韧带部分测量试件厚度B 三次,测量精度精确到0.1%B 或0.025mm ,取其较大者,计算平均值。
断裂韧性测试实验报告随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。
下面介绍下这几种方法的测试原理及试验方法。
1、三种断裂韧性参数的测试方法简介1. 1 平面应变断裂韧度IC K 的测试对于线弹性或小围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。
I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。
在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。
I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。
测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。
IC K 的试验步骤一般包括:(1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲劳预制裂纹等);(2) 断裂试验;(3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的计算及Q K 有效性的判断)。
1. 2 延性断裂韧度R J 的测试J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。
测试J 积分的根据是J 积分与形变功之间的关系:a B U J ∂∂-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。
J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。
但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。
因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。
这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。