19.3坐标与图形的位置
- 格式:ppt
- 大小:1.92 MB
- 文档页数:20
19.3 坐标与图形的位置1.在给定的直角坐标系中,会根据坐标描出点的位置,并能求出顺次连接所得图形的面积;(重点) 2.能建立适当的直角坐标系,描述图形的位置;(难点)3.通过用直角坐标系表示图形的位置,使学生体会平面直角坐标系在实际问题中的应用.一、情境导入某小区里有一块如图所示的空地,打算进行绿化,小明想请他的同学小慧提一些建议,小明要在电话中告诉小慧同学如图所示的图形,为了描述清楚,他使用了直角坐标系的知识.你知道小明是怎样叙述的吗?二、合作探究探究点一:在坐标平面内描点作图在平面直角坐标系中(每个小方格的边长为单位1)描出下列各点,并将各点用线段依次连接起来:A(0,2),B(-1,-2),C(2,0),D(-2,0),E(1,-2),A(0,2);观察得到的图形,你觉得它的形状像什么?解析:根据网格结构找出各点的位置,然后顺次连接即可.解:如图所示,形状像五角星.方法总结:本题考查了坐标与图形性质,在平面直角坐标系中准确找出各点的位置是解题的关键.探究点二:坐标平面内图形面积的计算如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC的面积.解析:本题宜用补形法.过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,然后根据S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA即可求出△ABC的面积.解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F.∵A(2,-1),B(4,3),C(1,2),∴BD=3,CD=1,CE=3,AE=1,AF =2,BF=4,∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA =BD·DE-12DC·DB-12CE·AE-12AF·BF=12-1.5-1.5-4=5.方法总结:主要考查如何利用简单方法求坐标系中图形的面积.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法,计算三角形一边的长,并求出该边上的高;方法二:补形法,将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差;方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.探究点三:建立适当的直角坐标系描述图形的位置【类型一】根据点的坐标确定直角坐标系右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.解析:由已知白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),可知y 轴应在从左往右数的第四条格线上,且向上为正方向,x 轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋②的坐标是(1,-2).故答案为(1,-2).方法总结:根据点的坐标确定平面直角坐标系时,先将点的坐标进行上下左右平移得到原点的坐标,过这个点的水平线为x 轴、铅直线为y 轴.【类型二】 根据几何图形建立直角坐标系并求点的坐标长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.解析:以点(-2,-3)向右2个单位,向上3个单位建立平面直角坐标系,然后画出长方形,再根据平面直角坐标系写出各点的坐标即可.解:如图建立直角坐标系,∵长方形的一个顶点的坐标为A (-2,-3),∴长方形的另外三个顶点的坐标分别为B (2,-3),C (2,3),D (-2,3).方法总结:由已知条件正确确定坐标轴的位置是解决本题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了.三、板书设计坐标平面内的图形⎩⎪⎨⎪⎧在坐标平面内描点作图坐标平面内图形面积的计算建立适当的直角坐标系描述图形的位置通过学习建立直角坐标系的多种方法,让学生体验数学活动充满着探索性与创造性,激发学生的学习兴趣,感受数学在生活中的应用,增强学生的数学应用意识,让学生认识数学与人类生活的密切联系,提高他们学习数学的兴趣。
冀教版数学八年级下册《19.3 坐标与图形的位置》教学设计4一. 教材分析冀教版数学八年级下册《19.3 坐标与图形的位置》是学生在学习了平面直角坐标系、坐标与图形的变化等知识的基础上,进一步探究坐标与图形的位置关系。
本节课的内容主要包括点的坐标、直线方程、圆的方程等,通过这些知识的学习,使学生能够更好地理解坐标与图形的位置关系,提高他们的空间想象能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系、坐标与图形的变化等知识,具备了一定的数学基础。
但部分学生对坐标与图形的位置关系的理解还不够深入,需要通过本节课的学习来进一步巩固和提高。
此外,学生对计算机软件绘制图形的能力也各不相同,需要在教学过程中进行针对性的指导。
三. 教学目标1.知识与技能:使学生掌握点的坐标、直线方程、圆的方程等基本知识,理解坐标与图形的位置关系。
2.过程与方法:通过观察、操作、探究等方法,提高学生的空间想象能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.重点:点的坐标、直线方程、圆的方程等基本知识。
2.难点:坐标与图形的位置关系的理解。
五. 教学方法1.情境教学法:通过实际例子,引导学生观察、操作、探究,提高他们的空间想象能力和解决问题的能力。
2.小组合作学习:引导学生相互讨论、交流,培养他们的团队协作能力。
3.启发式教学:教师提问,引导学生思考,激发他们的学习兴趣。
六. 教学准备1.准备相关课件和教学素材。
2.准备计算机软件,以便学生绘制图形。
3.准备练习题,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)教师通过一个实际例子,如判断某个点是否在某个三角形内,引导学生回顾平面直角坐标系和坐标与图形的变化等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师讲解点的坐标、直线方程、圆的方程等基本知识,并通过图形进行展示,让学生直观地理解坐标与图形的位置关系。
坐标与图形的位置1.方格纸上有A ,B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(-4,3);若以A 点为原点建立直角坐标系,则B 点坐标为( C )A .(-4,-3)B .(-4,3)C .(4,-3)D .(4,3) 解析:画出图来易得.故选C.2.如图,在△ABC 中,A (0,4),C (3,0),且△ABC 面积为10,则B 点坐标为(-2,0). 解析:S △ABC =12BC ·4=10,解得BC =5,∴OB =5-3=2, ∴点B 的坐标为(-2,0).3.如图,等边三角形ABC ,B 点在坐标原点,C 点坐标为(4,0),A 点的坐标为(2,23).解析:如图所示,过点A 作AD ⊥BC , ∵△ABC 为等边三角形,∴BD =CD =2,OA =4.根据勾股定理,得AD =23,∴点A 的坐标为(2,23).4.如图,草房地基AB 长15米,房檐CD 的长为20米,门EF 宽6米,CD 到地面的距离为18米,请你建立适当的坐标系,并写出A,B,C,D,E,F各点的坐标.解:草房所在的平面图是轴对称图形,如图,以直线AB为x轴,以线段AB的中垂线为y轴,建立坐标系.∵AB长15米,且在x轴上,A点在负轴上,B点在正轴上,故得出A(-7.5,0),B(7.5,0),E(-3,0),F(3,0),C(-10,18),D(10,18).5.在如图所示的网格中,每个小正方形的边长都为1.(1)试作出直角坐标系,使点A的坐标为(2,-1);(2)在(1)中建立的直角坐标系中描出点B(3,4),C(0,1),并求△ABC的面积.解:(1)作出直角坐标系如图所示.(2)如图所示.S △ABC =3×5-12×3×3-12×2×2-12×5×1=6.6.如图所示,已知等边三角形ABC 两个顶点的坐标为A (-4,0),B (2,0). (1)求点C 的坐标; (2)求△ABC 的面积.解:(1)如图,作CD ⊥AB 于点D ,则AD =12AB =3,所以点D 的坐标为(-1,0),所以CD=AC 2-AD 2=33,所以点C 的坐标为(-1,33).(2)S △ABC =12AB ·CD =12×6×33=9 3.7.在棋盘中建立如图①所示的直角坐标系,三颗棋子A,O,B的位置如图①,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图②,添加棋子C,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可).解:(1)如图所示,直线l即为该图形的对称轴.(2)P(2,1)或(-1,-1)(答案不唯一).1.2分式的乘法和除法第1课时分式的乘除法【知识与技能】理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.【过程与方法】经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.【情感态度】通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.期末模拟卷(3)一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)3.(3分)要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数4.(3分)对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限5.(3分)下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,26.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形7.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.(3分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若n边形的每个内角都是150°,则n=.10.(3分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为cm.11.(3分)已知点A(a,b),B(4,3)关于y轴对称,则a+b=.12.(3分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为.13.(3分)如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=.14.(3分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.15.(3分)矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=°.16.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是cm.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.(6分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.(6分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.19.(6分)已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.20.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B0.5<t≤1 20C1<t≤1.5 aD 1.5<t≤2 30E t>2 10请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?23.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x (时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.(10分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)55 36售价(元/箱)63 4225.(10分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.26.(12分)已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.期末模拟卷(3)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.2.(3分)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)【解答】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C在第二象限;∵点距离x轴2个单位长度,距离y轴3个单位长度,所以点的横坐标是﹣3,纵坐标是2,故选:C.3.(3分)要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数【解答】解:频数分布直方图是用来显示样本在某一范围所占的比例大小,故选:D.4.(3分)对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限【解答】解:A、∵函数y=﹣2x是正比例函数,∴此函数的图象是一条直线,故本选项正确;B、∵当x=﹣1时,y=2,∴过点(﹣1,2),故本选项正确;C、∵k=﹣2<0,∴y随着x增大而减小,故本选项错误;D、∵k=﹣2<0,∴函数图象经过二四象限,故本选项正确.故选:C.5.(3分)下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选:C.6.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选:D.7.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.8.(3分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,∴S△ABO=S△ADO,故②正确;当∠ABD=45°时,则∠AOD=90°,∴AC⊥BD,∴矩形ABCD变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等,∴正确结论的个数是4个.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若n边形的每个内角都是150°,则n=12 .【解答】解:依题意得,(n﹣2)×180°=n×150°,解得n=12故答案为:1210.(3分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为12 cm.【解答】解:∵直角三角形斜边上的中线长为6cm,∴这个直角三角形的斜边长为12cm.11.(3分)已知点A(a,b),B(4,3)关于y轴对称,则a+b=﹣1 .【解答】解:∵点A(a,b),B(4,3)关于y轴对称,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故答案为:﹣1.12.(3分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为y=3x﹣4 .【解答】解:将正比例函数y=3x的图象向下平移4个单位长度,所得的函数解析式为y=3x﹣4.故答案为y=3x﹣4.13.(3分)如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC= 3 .【解答】解:∵AC平分∠BAD∴∠1=∠BAC∴AB∥DC又∵AB=DC∴四边形ABCD是平行四边形∴BC=AD又∵∠1=∠2∴AD=DC=3∴BC=3.14.(3分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12 米.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.15.(3分)矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=120 °.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵AC=2AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=180°﹣60°=120°;故答案为:120°.16.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是10 cm.【解答】解:CD=DE∵AC=BC∴∠B=45°∴DE=BE∵△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填10.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.(6分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).【解答】解:根据题意得:∠ABC=90°,则AB===450(米),即该河的宽度为450米.18.(6分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.19.(6分)已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.【解答】解:依题意可以设该一次函数解析式为y=kx+4(k≠0).把(﹣1,2)代入得到:2=﹣k+4,解得k=2,所以该函数解析式为:y=2x+4.其函数图象如图所示:.20.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【解答】证明:∵平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD.∵BE、DF分别是∠ABC、∠ADC的平分线,∴∠BEC=∠ABE+∠BAE=∠FDC+∠FCD=∠DFA,在△BEC与△DFA中,∵∴△BEC≌△DFA(AAS),∴AF=CE,∴AE=CF.21.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解答】解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,在Rt△ADE和Rt△BEC中,,∴Rt△ADE≌Rt△BEC(HL);(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.22.(8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B0.5<t≤1 20C1<t≤1.5 aD 1.5<t≤2 30E t>2 10请根据图表信息解答下列问题:(1)a=35 ;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?【解答】解:(1)a=100﹣5﹣20﹣30﹣10=35,故答案为:35;(2)条形统计图如下:(3)∵100÷2=50,25<50<60,∴第50个和51个数据都落在C类别1<t≤1.5的范围内,即小王每天进行体育锻炼的时间在1<t≤1.5范围内;(4)被抽查学生的达标率=×100%=75%.23.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x (时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【解答】解:(1)设线段DE所在直线对应的函数关系式为y=kx+b.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5;(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.∴当甲队清理完路面时,乙队铺设完的路面长为87.5米,∴乙队还有160﹣87.5=72.5米的路面没有铺设完,答:当甲队清理完路面时,乙队还有72.5米的路面没有铺设完.24.(10分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)55 36售价(元/箱)63 42【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(63﹣55)x+(42﹣36)(50﹣x)=2x+300;(3)由题意,得55x+36(50﹣x)≤2000,解得x≤10,∵w=2x+300,y随x的增大而增大,∴当x=10时,y最大值=2×10+300=320元,此时购进B品牌的饮料50﹣10=40箱,∴该商场购进A、B两种品牌的饮料分别为10箱、40箱时,能获得最大利润320元.25.(10分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.【解答】证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC==4,∴OA=AC=2,在Rt△AOE中,AE=5,OE==,∴EF=2OE=2.26.(12分)已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.【解答】解:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,由8k+b=8,6k+b=0,解得k=4,b=﹣24,故直线AB的解析式为y=4x﹣24,由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,点M的坐标为(6.4,1.6).。
冀教版数学八年级下册19.3《坐标与图形的位置》教学设计一. 教材分析冀教版数学八年级下册19.3《坐标与图形的位置》是学生在学习了平面直角坐标系、坐标与图形的变化等知识的基础上,进一步研究图形在坐标系中的位置关系。
本节内容通过实例讲解,让学生掌握利用坐标判断图形位置的方法,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在之前的学习中,已经掌握了平面直角坐标系、坐标与图形的变化等知识,对坐标系有一定的认识。
但在实际应用中,如何利用坐标判断图形位置,仍需进一步巩固。
此外,学生对实际问题的解决能力有待提高。
三. 教学目标1.知识与技能:使学生掌握利用坐标判断图形位置的方法,能运用坐标解决实际问题。
2.过程与方法:通过实例分析,培养学生运用坐标分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探讨的良好学习习惯。
四. 教学重难点1.重点:利用坐标判断图形位置的方法。
2.难点:如何将实际问题转化为坐标问题,运用坐标解决实际问题。
五. 教学方法1.情境教学法:通过实例引入,激发学生兴趣,提高学生参与度。
2.启发式教学法:引导学生主动思考,培养学生解决问题的能力。
3.合作学习法:鼓励学生之间互相讨论,提高团队协作能力。
六. 教学准备1.准备相关实例,用于讲解坐标与图形位置的关系。
2.准备练习题,巩固所学知识。
3.准备课件,辅助讲解。
七. 教学过程1.导入(5分钟)利用一个生活中的实例,如电影院座位分布,引出坐标与图形位置的关系,激发学生兴趣。
2.呈现(10分钟)讲解坐标与图形位置的基本方法,如利用坐标判断点、线、面的位置关系。
通过课件展示,让学生更直观地理解。
3.操练(10分钟)让学生分组讨论,尝试用坐标判断给定图形的位置。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师选取部分题目进行讲解,巩固所学知识。
5.拓展(10分钟)引导学生将实际问题转化为坐标问题,运用坐标解决实际问题。
19.3坐标与图形的位置教学目标【知识与能力】1、进一步巩固在直角坐标系中,会根据坐标轴描出点的位置,由点的位置写出它的坐标.2、能结合所给图形的特点,建立适当的直角坐标系,用坐标描述图形的位置.3、认识同一直角坐标系中,图形位置的变化与点的坐标变化之间的关系.【过程与方法】1、通过建立坐标系,表示图形上点的坐标,感受直角坐标系的作用.2、经历建立坐标系描述图形的过程,进一步发展数形结合意识.【情感态度价值观】通过学习建立直角坐标系的多种方法,让学生体验数学活动充满探索与创造,增强学生的数学应用意识.教学重难点【教学重点】根据实际问题建立适当的直角坐标系,用坐标描述图形的位置.【教学难点】经历建立坐标系描述图形的过程,进一步发展数形结合意识.课前准备坐标纸若干张教学过程教师活动学生活动设计意图课前热身在直角坐标系中描出以下各点,并将各点用线段依次连接起来,观察A点与B点有什么特殊的位置关系:A(-3, 0), B(3, 0),C( 2, 4), D(-2,3).总结:根据坐标通过描点连线得到图形,经历从数到形的思维过程.描点、连线、回答问题.巩固前两节所学知识,使学生能准确熟练地在坐标系中描出相应的点,同时观察图形特点,体会坐标与对应点之间的位置关系,发展数形结合意识,同时为引入新知做好铺垫.请你支招引入教材41页小亮的问题.思考,提出解决问题方案——建立直角坐标系,借助坐标描述图形的位置与形状.明确本节课需要解决的问题,激发学生学习的兴趣,但并不要求现在解决,而是希望在本节课后再解决.1、板书课题.2、教材41页“一起探究”.3、教材42页“做一做”.1、针对第(1)问题,思考:同一点在不同的坐标系中,坐标相同吗?通过学习建立直角坐标系的多种方法,让学探究新知引导学生总结:(1)平面上的点与坐标一一对应,形与数完美结合.(2)选择适合自己的直角坐标系.(3)建立适当的直角坐标系,借助坐标来描述图形的位置,经历从形到数的思维过程.2、针对第(2)问题,体会:各种直角坐标系的优点.3、针对第(3)问题,体会:建立直角坐标系的多样性;选择适合自己的直角坐标系.4、“做一做”深化认生体验到数学活动充满了探索与创造,感受数学在生活中的应用,进一步发展数形结合意识.反思提升1、本节课我们解决了什么问题?2、解决问题的过程中,用到了什么知识和数学思想?学生从内容、方法等角度反思、梳理本节课的收获.(小组交流,代表发言.)整理内容、数学思想方法,培养学生学习后进行反思的良好习惯.当堂测试1、教材42页练习1、2.2、(选作)平面内有乐凯中学,惠友超市,若以乐凯中学为原点建立直角坐标系,则惠友超市坐标为(2,4);若以惠友超市为原点坐标轴方向不变建立直角坐标系,则乐凯中学坐标为().A.(2, 4)B.(-2, 4)C.(2 , -4)D.(-2,-4)学生独立完成.注重思考的过程,培养学生严谨的学习态度和有条理的语言表达能力,实现人人都学有价值的数学.(选做题为作业中B组第二题的寻宝问题做好铺垫.)布置作业必做:1、教材43页A组.2、完成情境引入问题.选做:教材43页B组.学生课下完成.巩固所学内容,获得更多经验;层次性的作业,可以使不同的学生在数学上得到不同的发展. 坐标图形直角坐标系从数到形从形到数。