八年级数学角的度量.doc
- 格式:doc
- 大小:218.43 KB
- 文档页数:11
角的度量知识点归纳
嘿,咱今儿就来好好唠唠角的度量那些事儿!
你说角啊,那可真是几何世界里的小精灵!它无处不在,小到咱身边的各种物品的拐角,大到广阔天空中星辰的夹角。
那怎么去度量这些小精灵呢?这就得说到咱们的度量工具啦!就像咱要知道自己多重得用秤一样,度量角就得用专门的量角器。
先说说角的单位吧,度!这就像是给角定了个标准尺码似的。
一度有多大呢?你可以想象一下把一个圆平均分成 360 份,每一份就是一度,是不是挺神奇的?这就好比把一个大蛋糕切成 360 小块,每一块都有它自己的“地位”呢!
那怎么用量角器去量角呢?嘿,这可得仔细着点。
把量角器的中心和角的顶点重合,零刻度线和角的一条边重合,然后看看角的另一条边对着量角器上的刻度是多少,那就是这个角的度数啦!就像给角穿上了一件合适的尺码衣服。
还有啊,角也分大小呢!锐角就像个害羞的小孩子,小小的;直角呢,就像是站直了的士兵,直直的;钝角啊,那就是个有点懒洋洋的家伙,大咧咧的。
这多形象啊!
咱再想想,生活中是不是到处都有角的存在呀?你看那打开的门,不就是个角吗?还有那钟摆摆动形成的角,是不是很有趣?
而且角还有很多有趣的性质呢!比如两个角拼在一起会变成一个更
大的角,这就像搭积木一样,一块一块堆起来。
角的度量知识点虽然听起来好像有点复杂,但只要咱多去观察,多
去实践,就会发现其实也没那么难啦!这不就跟咱学走路似的,一开
始跌跌撞撞,后来不也走得稳稳当当啦?
总之呢,角的度量可真是个有趣又实用的知识,咱可得好好掌握它,让它为咱的几何学习添砖加瓦呀!别小瞧了这些小小的角,它们里面
的学问可大着呢!咱可得把它们研究透咯!。
《角的度量》(优秀6篇)篇一:《角的度量》篇一教学建议一、知识结构二、重点、难点分析本节教学的重点是角度计算中的进位制问题、互余与互补的概念;难点是互余与互补概念的理解和应用。
熟练掌握的相关知识可以为进一步研究相交线、平行线打下基础。
1.度、分、秒的互换:如果一个角比1°还小,那么怎样度量它的大小?为了更精密地度量角。
我们把1°的角60等份,每一份叫做1分的角,1分记作1";又把1"的角60等份,每一份叫做1秒的角,1秒记作1"".即1°=60",1"=60"".这表明角的度、分、秒是60进制的,这和计量时间的时、分、秒是一样的。
例如:∠α的度数是32度48分51秒。
记作∠α=32°48"51"".除法过程中,要注意度、分、秒是六十进制的,要把度的余数乘以60化为分,继续除得精确到分,把分的余数乘以60化为秒,继续除得精确到秒的近似值。
2.若两个角的和是一个直角,这两个角叫做互为余角,若两个角的和是一个平角,这两个角叫做互为补角。
理解这两个概念,要把握以下几点:(1)必须具备两个角;(2)两个角的和是一个定值:互余两角的和是,互补两角的和是;(3)与两个角的位置无关,只考虑两角间的数量关系。
3.结合小学已经学过的概念,说明小于平角的角可以按照大小分成三类。
分类的思想对于科学研究比较重要。
要按照某种特征进行分类,例如按照大小、按照轻重,等等。
分类要不重不漏。
就是说,在把一群事物分类时,要使其中的每一事物都归入某一类,不能无类可归(不漏),并且只归入某一类,不能既归入这一类,又归入另一类或另几类(不重).这里只是初步渗透分类的思想,以后还要遇到分类,如三角形的分类。
三、教法建议1.本节的教学内容中,对分类的数学思想加强了要求,由于分类的思想不是第一次出现,因此,可以简单进行小结,使得学生能够加深认识。
角的度量计算角是平面几何中重要的概念之一,我们常常需要计算角的度量,以便解决各种几何问题。
本文将介绍角的度量计算的方法及其应用。
一、角的度量单位角的度量单位常用的有度(°)和弧度(rad)。
一圆周的度量为360°或2π弧度,其中1°等于π/180弧度。
二、角度的计算方法1. 两条直线的夹角计算当两条直线相交时,它们的夹角可以通过以下方法计算:- 度数法:通过使用量角器或直角器等工具,将夹角两边各延伸出一段,然后使用量角器等工具进行测量,读取测量结果即得到夹角的度数。
- 弧度法:使用三角函数sin、cos或tan计算夹角的正弦、余弦或正切值,然后在查找三角函数表或使用计算器的反三角函数功能,得到夹角的弧度值。
2. 弧长与半径的关系弧是圆周上的一段曲线。
当我们知道弧的长度和半径时,可以使用以下公式计算角的度数:角度 = 弧长 / (半径× π) × 360°3. 扇形面积扇形是由圆心、半径和两个夹角构成的图形。
当知道扇形的夹角时,可以使用以下公式计算扇形的面积:面积 = (夹角 / 360°)× π × (半径^2)4. 弓形长弓形是由圆周上两点和圆心共同围成的图形。
当知道弓形的夹角时,可以使用以下公式计算弓形的弧长:弧长 = (夹角 / 360°)× 2π × 半径三、角度计算的应用角度计算在实际问题中具有广泛的应用。
以下是一些常见的应用场景:1. 建筑工程:计算建筑物之间的夹角,以确定设计中的空间排布和布局。
2. 航海导航:计算经纬度之间的夹角,以确定船只或飞机的航向和方位。
3. 机器人运动控制:通过计算关节之间的夹角,控制机器人的姿态和运动。
4. 游戏开发:计算游戏角色的朝向和旋转角度,以实现虚拟世界中的模拟效果。
总结:角的度量计算在几何学和工程学中起着重要的作用。
通过了解角度的计算方法和应用场景,我们可以更好地理解和解决各种与角度有关的问题。
《角的度量》说课稿一、教学内容今天我们要学习的课题是《角的度量》。
我们将使用人教版《数学》八年级上册第100页至102页的内容。
这部分内容主要包括角的概念、角的度量方法以及度量工具的使用。
学生将通过这部分内容的学习,掌握角的度量方法,能够准确地测量和比较角的大小。
二、教学目标1. 学生能够理解角的概念,掌握角的度量方法,能够使用量角器准确地度量角的大小。
2. 学生能够通过观察和操作,发现角的大小与边的长短无关,与两边叉开的大小有关。
3. 学生能够运用角的知识解决实际问题,提高学生的数学应用能力。
三、教学难点与重点1. 教学难点:学生能够熟练地使用量角器,准确地度量角的大小。
2. 教学重点:学生能够理解角的概念,掌握角的度量方法。
四、教具与学具准备1. 教具:量角器、直尺、圆规。
2. 学具:量角器、直尺、圆规、角模型。
五、教学过程1. 实践情景引入:让学生观察教室里的角,引导学生发现角无处不在,激发学生的学习兴趣。
2. 角的概念:引导学生通过观察和操作,发现角是由一点引出的两条射线所围成的图形。
3. 角的度量方法:讲解并示范使用量角器度量角的大小,引导学生通过观察和操作,发现角的大小与边的长短无关,与两边叉开的大小有关。
4. 度量工具的使用:讲解量角器的构造和使用方法,引导学生进行实际操作,巩固角的度量方法。
5. 随堂练习:让学生独立完成教材上的练习题,检验学生对角的度量方法的掌握程度。
六、板书设计角的度量1. 角的概念:由一点引出的两条射线所围成的图形。
2. 角的度量方法:使用量角器,观察两边叉开的大小。
3. 度量工具的使用:量角器的构造和使用方法。
七、作业设计1. 作业题目:教材第102页的练习题。
2. 作业答案:待学生完成作业后,教师进行批改和讲解。
八、课后反思及拓展延伸1. 课后反思:教师应反思课堂教学的效果,观察学生对角的度量方法的掌握程度,对教学过程中存在的问题进行改进。
2. 拓展延伸:引导学生运用角的知识解决实际问题,如设计一些相关的数学题目,让学生运用所学知识进行解答。
角的度量角是几何学中一种基本的图形,常用来描述物体之间的相对位置和方向。
在数学中,角的度量是研究角的大小和度量的一门学科。
角的定义角可以通过两条射线的交点来定义。
这两条射线被称为角的边,交点被称为角的顶点。
角的度量与顶点关联的射线的位置和方向有关。
角的度量单位在角的度量中,我们使用角度作为度量单位。
角度用符号°来表示。
一圆周被等分为360个角度单位。
整个圆周的角度为360°。
直角直角是一种特殊的角,它的度量为90°。
直角可以被看作是两条互相垂直的直线所形成的角。
直角的特性包括:两条边相互垂直,角的度量为90°。
锐角锐角是角度度量小于90°的角。
对于一个锐角,其度量值将介于0°和90°之间。
钝角钝角是角度度量大于90°的角。
对于一个钝角,其度量值将介于90°和180°之间。
角的度量方法度度量法度度量法是最常用的度量角的方法。
使用度度量法,角的度量直接以度数的形式表示。
例如,一个锐角可以表示为45°,一个钝角可以表示为135°。
弧度度量法弧度度量法是另一种常用的度量角的方法。
在弧度度量法中,角的度量以弧长与半径的比值表示。
弧度用符号rad表示。
整个圆周的角度为2π弧度,其中π约等于3.14159。
例如,一个直角的度量为π/2弧度。
角的度量的计算计算角的度量通常涉及到使用三角函数,如正弦、余弦和正切。
通过使用这些三角函数,我们可以在给定相关边长数据的情况下,计算出角的度量。
角的度量的应用角的度量在许多领域中都有广泛的应用。
以下是一些例子:•工程学中的角度测量•地理学中的方位角和地球经纬度•物理学中的力和运动分析•计算机图形学中的三维建模和渲染•相机学中的视角计算总结角的度量是研究角大小和度量的一门学科。
角可以通过两条射线的交点来定义,其度量受到角度和弧度两种方法的支配。
角的度量在数学以及其他许多学科领域中都有广泛的应用,为我们理解和计算物体之间的相对位置和方向提供了重要的工具。
角的度量认识角的度量单位和计算方法角是几何学中重要的概念之一,用来衡量两条线段之间的夹角或者绕着一个点旋转的过程。
在日常生活和各个学科中,我们经常会遇到角,比如测量方向、计算速度和描述物体的旋转等。
因此,了解角的度量单位和计算方法对我们的学习和工作非常重要。
一、角的度量单位角的度量单位有两种,度(°)和弧度(rad)。
度是我们常见的角度单位,它是将一个圆分成360等份,每一份被定义为1度。
我们通常用角度符号°表示,例如30°表示一个角度的度数为30。
弧度是一种更加抽象的度量单位,它是一个弧所对应的半径长等于弧长的角所包含的弧度数。
弧度用角度符号rad表示。
二、角的计算方法1. 度的计算方法:当已知一个角的度数时,可以通过以下方法进行计算:- 如果角在直角内,度数为90°,即直角。
- 如果两个角的度数相加等于180°,则它们为补角。
- 如果两个角的度数相加等于90°,则它们为互补角。
- 如果两个角的度数相等,则它们为对顶角。
2. 弧度的计算方法:当已知一个角的弧度数时,可以通过以下方法进行计算:- 弧度 = 圆的弧长 / 圆的半径。
其中,圆的弧长是以圆心为中心的弧所对应的圆周上的线段长度。
- 一个完整的圆的弧度为2πrad,即360°。
三、角的度量和计算实例现在,让我们通过一些实例来理解角的度量和计算方法:1. 示例一:假设有一个角的度数为45°,让我们将其转换为弧度。
由于一个完整的圆的弧度为2πrad,即360°,所以可以通过以下计算转换度数为弧度:弧度= (45° / 360°) * 2π = π/4 rad2. 示例二:假设有两个补角,一个角的度数为30°,求其补角的度数。
由于补角的度数相加等于180°,所以可以通过以下计算求解补角的度数:补角的度数 = 180° - 30° = 150°3. 示例三:假设有一个角的弧度为3π/4 rad,求其对应的度数。
《角的度量》讲义一、角的基本概念在数学的广阔天地里,角是一个非常重要的概念。
当两条射线从同一个端点出发,就形成了角。
这个共同的端点叫做角的顶点,两条射线则是角的两条边。
角的大小与边的长短没有关系,而是取决于两条边张开的程度。
想象一下,把扇子慢慢打开,角就逐渐变大;再慢慢合上,角又逐渐变小。
为了更方便地描述和研究角,我们给角进行了分类。
小于 90 度的角叫做锐角,直角是正好 90 度的角,而大于 90 度小于 180 度的角称为钝角。
平角是 180 度的角,就好像一条直线,但要注意,这可不是真正的直线哦,因为它还是有顶点和两条边的。
周角则是 360 度,转了整整一圈。
二、角的度量单位那怎么来准确地度量角的大小呢?这就需要用到角的度量单位。
我们常用的角的度量单位是度,用符号“°”来表示。
把一个圆平均分成 360 份,每一份所对的角的大小就是 1 度。
除了度,还有分和秒。
1 度等于 60 分,1 分等于 60 秒。
比如说,一个角是 30 度 25 分 30 秒,就可以写成30°25′30″。
在实际度量角的时候,我们会用到量角器。
量角器是一个半圆形的工具,上面标有刻度,从 0 度到 180 度。
三、用量角器度量角的方法首先,把量角器的中心和角的顶点重合。
然后,让量角器的 0 刻度线与角的一条边重合。
接下来,看角的另一条边所对的量角器上的刻度,就是这个角的度数。
这里要特别注意,读数的时候要分清内圈刻度和外圈刻度。
如果角的一边对应的 0 刻度线在内圈,就读内圈刻度;如果在外圈,就读外圈刻度。
四、角的大小比较当我们有多个角需要比较大小时,可以用量角器分别量出它们的度数,度数大的角就大。
但如果没有量角器,也可以通过观察来进行简单的比较。
比如,两个锐角,开口越大的角越大;钝角一定比锐角大。
五、角的和与差角之间也可以进行加减运算。
比如,已知一个角是 30 度,另一个角是 50 度,那么它们的和就是80 度。
角的度量与运算角是几何学中常见的概念之一,它可以用来描述物体之间的相对方位关系,也是研究角平分线、角的倍角、角的度量等数学问题的基础。
本文将从角的度量开始,探讨角的运算及其应用。
一、角的度量角的度量是指用数值来表示角的大小。
角的度量通常有两种方式:度和弧度。
1. 度的度量:度是最常见的度量单位,以°为符号,一个圆共360°。
根据角的大小不同,可以进一步划分为三类角:(1) 顺时针角:角小于180°,表示角的位置和大小。
(2) 逆时针角:角大于180°,表示角的位置和大小。
(3) 全周角:角等于360°,表示角的位置和大小。
2. 弧度的度量:弧度用来更精确地描述角的大小,以弧长等于半径的弧所对应的角为1弧度。
弧度可以用radian(缩写为rad)为单位表示。
二、角的运算角的运算是指对角进行加、减、乘、除等数学运算的过程。
1. 角的加减运算:对于两个角A和B,它们的和角是由两个角的边按照同一端点首尾相连而成的。
若角的两边重合,和角为全周角。
角的减法是指给定两个角A和B,找到一个角C,使得C与B的和等于A。
2. 角的乘法运算:对于两个角A和B,它们的积角是由两个角的边按照同一顶点首尾相连而成的。
两个角的乘积角可以用夹角余弦公式或者夹角正弦公式来计算。
3. 角的除法运算:角的除法运算是指对于两个角A和B,找到一个角C,使得B与C的积等于A。
三、角的应用角的应用非常广泛,它在物理学、工程学、计算机图形学等领域都有重要的应用。
1. 物体的运动轨迹:在物理学中,角被用来描述物体的运动轨迹。
通过测量物体所经过的角度,可以得到物体在一段时间内的位移。
2. 工程设计:在建筑、机械等工程领域,角被广泛应用于设计和计算中。
例如,在建筑设计中,需要计算墙壁的倾斜角度,以确保风的承受能力。
3. 计算机图形学:在计算机图形学中,角被用来描述三维物体的旋转和平移。
通过控制角的大小和方向,可以实现物体的自由变换和动画效果。
角的度量课件以下是关于角的度量的课件内容:第一部分:角的度量概念1. 角的定义:两条相交线段所夹的空间部分称为角。
通常用大写字母表示,如∠ABC。
2. 角的顶点:两条相交线段的交点称为角的顶点。
3. 角的边:两条相交线段中的一条线段称为角的边。
4. 角的大小:表示为角的度数或弧度。
一般用小写字母表示,如∠ABC的大小可以表示为m∠ABC。
第二部分:角的度量单位1. 角的度数:用度来度量的角。
一圆大的角被定义为360度。
2. 角的弧度:用弧度来度量的角。
一圆大的角可以被定义为2π弧度。
弧度与度数之间的换算关系为:1弧度=180/π度。
第三部分:计算角的度量1. 已知两个角度,求它们的和:只需将两个角度相加即可。
2. 已知一个角的度数,求其补角和余角:补角是指两个角的度数相加等于90度,余角是指两个角的度数相加等于180度。
3. 已知一个角的度数,求其相反角:相反角是指两个角度相加等于360度。
第四部分:角的分类1. 锐角:角度小于90度。
2. 直角:角度等于90度。
3. 钝角:角度大于90度,小于180度。
4. 平角:角度等于180度。
第五部分:角的度量相关定理1. 同位角定理:同位角是指两个角度对应同一边而且位于两条相交线段的不同侧。
同位角相等的性质成立。
2. 对顶角定理:对顶角是指两条平行线被一条截断后,位于截断线两侧的相对角。
对顶角相等的性质成立。
3. 内错角定理:当一条平行线与两条平行线之间的交线截断后,所得的内错角相等的性质成立。
以上是关于角的度量的课件内容,希望对你的学习有帮助!。
角的度量教学建议 一、知识结构二、重点、难点分析本节教学的重点是角度计算中的进位制问题、互余与互补的概念;难点是互余与互补概念的理解和应用.熟练掌握角的度量的相关知识可以为进一步研究相交线、平行线打下基础.1.度、分、秒的互换:如果一个角比1°还小,那么怎样度量它的大小?为了更精密地度量角.我们把1°的角60等份,每一份叫做1分的角,1分记作1';又把1'的角60等份,每一份叫做1秒的角,1秒记作1''.即1°=60',1'=60''.这表明角的度、分、秒是60进制的,这和计量时间的时、分、秒是一样的.例如:∠α的度数是32度48分51秒.记作∠α=32°48'51''.除法过程中,要注意度、分、秒是六十进制的,要把度的余数乘以60化为分,继续除得精确到分,把分的余数乘以60化为秒,继续除得精确到秒的近似值.2.若两个角的和是一个直角,这两个角叫做互为余角,若两个角的和是一个平角,这两个角叫做互为补角.理解这两个概念,要把握以下几点:(1)必须具备两个角;(2)两个角的和是一个定值:互余两角的和是 ,互补两角的和是 ;(3)与两个角的位置无关,只考虑两角间的数量关系. 3.结合小学已经学过的概念,说明小于平角的角可以按照大小分成三类.分类的思想对于科学研究比较重要.要按照某种特征进行分类,例如按照大小、按照轻重,等等.分类要不重不漏.就是说,在把一群事物分类时,要使其中的每一事物都归入某一类,不能无类可归(不漏),并且只归入某一类,不能既归入这一类,又归入另一类或另几类(不重).这里只是初步渗透分类的思想,以后还要遇到分类,如三角形的分类. 三、教法建议1.本节的教学内容中,对分类的数学思想加强了要求,由于分类的思想不是第一次出现,因此,可以简单进行小结,使得学生能够加深认识.使学生自己能对一些事物进行分类.2.在角的内容中,对角的进位制要加以重视,因为这是与十进制不同的进制,以后由于不同的需要还会遇到不同的进制,在这里讲清楚后,以后再遇到,就会感到自然了.同时对于60这个数的特点进行分析,使学生对角的一些运算能很灵活.3.角的单位中的大、小单位的互化比课本的要求要高,应该尽可能的掌握.4.本节在对学生活动的安排上,时间可多一些,教师也可以根据情况酌情安排.在安排学生自己出题时,应多加鼓励,尽量用学生自己出的题.目的是调动学生学习的积极性.教学设计示例一、素质教育目标(一)知识教学点1.理解互为余角、互为补角的定义.2.掌握有关补角和余角的性质.3.应用以上知识点解决有关计算和简单推理问题.(二)能力训练点1.通过例3的讲解,培养学生用代数方法解几何问题的思路.2.通过有关余角、补角性质的推导,初步培养学生逻辑思维和推理能力.(三)德育渗透点通过互余、互补角性质的推导,说明事物之间具有普遍的联系性.(四)美育渗透点通过互余、互补的演示,使学全体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.二、学法引导1.教师教法:引导发现、尝试指导相结合.2.学生学法:学生积极参与,动手动脑,与主动发现相结合;三、重点·难点·疑点及解决办法(一)重点互为余角、互为补角的角的概念及有关余角、补角的性质.(二)难点有关余角和有关补角性质的推导.(三)疑点互余、互补的两个角图形的位置关系.(四)解决办法对重点、难点,应巧妙引导学生去发现,通过动手、动脑解决问题.对疑点,由学生思考并讨论,互相叙述“为什么”并相互纠正,同时,由教师进行逻辑点拨.四、课时安排1课时五、教具学具准备投影仪或电脑、三角板、自制胶片.六、师生互动活动设计1.通过教师演示,学生活动的方法创设情境,引出课题.2.通过学生讨论,归纳总结出互余、互补的定义,并通过两个练习对定义加以巩固.3.通过教师出示问题,学生思考并相互叙述,最后教师加以点拨的方法完成第一个性质的逻辑推理,其他性质由教师出示问题,学生模仿完成,最后学生做反馈练习.4.通过教师提问、学生回答完成图表的方法进行本节课的小结.七、教学步骤(一)明确目标正确理解互余、互补的定义并掌握其性质,并能运用进行简单的计算和推理.(二)整体感知通过教师演示和指导,学生动手动脑参与,顺利地使学生理解和掌握互余、互补的定义和性质,并通过对图形的识别和性质的理解,完成一些简单的计算和推理.(三)教学过程创设情境,引入课题师:上节课,我们学习了度量,认识了平角和直角,请同学们在练习本上画出一个平角和一个直角,并标明其度数.学生画图形的同时,投影显示以下图形,见图1及图2:图1图2教师演示:在以上两个图形的基础上,利用电脑(或投影),分别过两个角的顶点作活动射线,任意改变射线位置,让学生观察,如下图1及图2:图1图2学生活动:过自己所画两个角的顶点,任意作射线,同时观察老师演示.提出问题:射线把平角,直角分别分成了几个角?它们的度数关系如何?(学生容易答出:分成两个角,,.)教师演示:把射线固定一个位置不动,然后把两个图形中的角保持大小不变,拉开,如图1及图2(或拉开更远些,多变换几种位置).图1图2提出问题:与的和还是吗?与的和还是吗?学生活动:观察教师演示过程中的图形变换,同桌可相互讨论,回答教师提出的问题.【教法说明】与,与位置变换,前提是其大小不变.改变位置关系目的是:避免提出互补、互余角的概念后,学生误认为只有有公共顶点且和为,的两个角才是互补、互余的角.根据学生回答,教师肯定结论:不论、、、的位置关系如何变化,只要大小不变,与的和永远是平角,与的和永远是直角.像这样具有特殊关系的角,我们分别叫它们互为补角和互为余角.这就是我们要学习的角的度量一节中又一新知识.(板书课题)[板书]1.6 角的度量【教法说明】注重学生的参与意识,要让学生手脑并动,通过不断演示,学生观察,教师逐步提出问题,让学生养成自己发现问题,并没法解决问题的良好习惯.探究新知1.互为余角、互为补角的定义提出问题:你能根据前面老师的演示和说明,叙述一下具有什么关系的两个角叫互为余角和互为补角吗?学生活动:同桌相互讨论,互相纠正和补充,找学生口述.【教法说明】通过学生亲自动手画图,观察老师的演示,对互余、互补角概念的理解,可以说已经水到渠成.教师不必包办代替,要让学生自己总结归纳,以训练其归纳总结及口头表达能力.教师根据学生回答,给予肯定后给出答案:[板书]互为余角:如果两个角的和是一个直角,那么这两个角叫互为余角.其中一个角叫做另一个角的余角.直为补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.2.提出问题,理解定义.(投影显示)(1)以上定义中的“互为”是什么意思?(2)若,那么互为补角吗?(3)互为余角、互为补角的两个角是否一定有公共顶点?学生讨论以上三个问题.【教法说明】对定义的理解,提出的三个问题很关键,让学生讨论发表自己的见解,比教师单纯强调“注意”效果要好得多,同时也培养学生全面分析、考虑问题的能力.通过学生回答,教师对以上三个问题给予肯定或否定.反馈练习:投影显示1.若与互补,则,若与互余,2.角的余角为,补角为,的余角为.补角为.3.如图1:是直线上一点,是的平分线,图1①的补角是____________②的余角是____________③的补角是____________【教法说明】第l、2两题可由学生抢答,这两题是为以下例3做铺垫的.第1题实质上也是把定义的文字语言转化成几何语言,强调反之也成立.通过第3题要培养学生的识图能力.2.有关互余、互补角的性质师:通过以上练习,我们对互余、互补角的概念有了较深刻的理解,下面我们提出一个新问题,看你们能否解决.投影出示:例4 与互补,与互补,若,那么和相等吗?为什么?【教法说明】学生思考并讨论,同桌互相叙述“为什么”讲相互纠正.有时学生间的交流比师生对话效果会更好.找学生试述“为什么”,估计逻辑性不会太强,教师可加以点拨:解决几何问题往往要从已知入手,联想出结论:如由与互补你想到什么结论?()与互补呢?().因为要比较的是与的大小,以上两式可表示为:,.已知中,则一定等于.教师边引导学生叙述边板书出较规范的格式:[板书]∵与互补,∴即.∵与互补,∴即.∵,∴.【教法说明】此问题中的“为什么”实际上是几何中的推理问题,要有严密的逻辑性.学生第一次接触,因此,“放”可以,而且必须“收”.教师引导由已知产生联想,一环紧扣一环,写出推理过程,渗透“∵∴”的书写格式.提出问题:通过以上题目,你是否发现了两个等角的补角间有怎样的关系?你能试着总结吗?【教法说明】由学生发现性质,并归纳总结,培养学生由具体题日抽象出几何命题的能力和语言表达能力.学会由具体到抽象考虑问题的方法.学生活动:同桌讨论,并互相叙述总结规律.教师对学生回答进行纠正、整理后板书,并给出符号语言,强调此性质的应用.[板书]同角或等角的补角相等.∵,,∴.提出问题:与互余,与互余,若,那么等于吗?为什么?你由此问题又能得出什么结论?学生活动:教师不给任何提示的情况下,在练习本上仿照例4的格式,写出“为什么”及得出的结论.教师找同学回答后板书.[板书]同角或等角的余角相等.∵,,∴.师:有关余角和补角的性质很有用,以后遇到有同角(或等角)的补角就可以根据这个性质,知道它们都相等.反馈练习:投影显示图11.见图1,若与互余,与互余,则______=______根据是:________图22.见图2,若与互补,与互补,则______=_______根据是:_________图33.如图3,是直线上的一点,平分,,则【教法说明】第1、2两题主要强调互余、互补角性质的应用,设计成活动胶片(或电脑课件)把图中的角多变换几个位置.第2题中当拼成两相交线时为下一步学习对顶角相等做准备.第3题可以找、的余角有几个,把题再拓宽些.(四)总结、扩展以提问的形式列出下表互余的角互补的角数量关系对应图形性质同角或等角的余角相等同角或等角的补角相等思考题(投影出示)1.锐角的余角一定是锐角吗?2.一个锐角和一个钝角一定互为补角吗?3.一个角的补角比这个角的余角大多少度?4.相等且互补的两个角各是多少度?5.一个角的补角一定比这个角大吗?【教法说明】小结后由学生看书,让学生提出问题,学生提出以上问题,则发动同学们讨论,没提出以上问题教师再提出,由学生讨论.八、布置作业课本第38页练习第1、2题.作业答案1.较大角是,比萨斜塔倾斜了.2.的补角是,余角是.九、板书设计1.6 角的度量1.定义如果两个角的和是一个平角,那么这两个角互为补角.如果两个角的和是一个直角,那么这两个角互为余角.2.性质同角或等角的补角相等.同角或等角的余角相等.例3 解:_________________________________________________________________________________(练习板演)______________。