高考数学人教版理科一轮复习配套课件9.5古典概型
- 格式:ppt
- 大小:965.50 KB
- 文档页数:15
[备考方向要明了] 考 什 么怎 么 考1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件及事件发生的概率.高考对本节内容的考查多为选择题或填空题,难度中低档,如2012年广东T7,上海T11等. [归纳·知识整合] 1.基本事件的特点 (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和. [探究] 1.在一次试验中,其基本事件的发生一定是等可能的吗? 提示:不一定.如试验一粒种子是否发芽,其发芽和不发芽的可能性是不相等的. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)有限性:试验中所有可能出现的基本事件只有有限个; (2)等可能性:每个基本事件出现的可能性相等. [探究] 2.如何判断一个试验是否为古典概型? 提示:关键看这个实验是否具有古典概型的两个特征:有限性和等可能性. 3.古典概型的概率公式 P(A)= [自测·牛刀小试] 1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( ) A. B. C. D.1 解析:选C 基本事件总数为(甲,乙),(甲,丙),(乙,丙)共3种.甲被选中共2种,所以甲被选中的概率为. 2.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,在选出的两人中有中国人的概率为( ) A. B. C. D.1 解析:选C 用列举法可知,共6个基本事件,有中国人的基本事件有3个. 3.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为奇数的概率为( ) A. B. C. D. 解析:选A 由题意得基本事件共有10种,2张卡片之和为奇数须一奇一偶,共有6种,故所求概率为=. 4.若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5的下方的概率为________. 解析:点P在直线x+y=5下方的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)六种可能,故P==. 答案: 5.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________. 解析:点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6种情况,只有(2,1),(2,2),这两种情况满足在圆x2+y2=9内部,所以所求概率为=. 答案: 简单古典概型的求法 [例1] 编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号A1A2A3A4A5A6A7A8得分1535212825361834运动员编号A9A10A11A12A13A14A15A16得分1726253322123138(1)将得分在对应区间内的人数填入相应的空格: 区间[10,20)[20,30)[30,40]人数(2)从得分在区间[20,30)内的运动员中随机抽取2人, 用运动员编号列出所有可能的抽取结果; 求这2人得分之和大于50的概率. [自主解答] (1)4,6,6. (2)得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A 10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13}共15种. “从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:{A4,A5},{A4,A10},{A4,A11},{A5,A10},{A10,A11}共5种. 所以P(B)==. 本例条件不变,从得分在区间[20,30)内的运动员中随机抽取2人,求这2人得分之和小于50的概率. 解:得分之和小于50的所有可能结果有: {A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A5,A13},{A10,A13},{A11,A13}. 故这2人得分之和小于50的概率为P=. ——————————————————— 应用古典概型求概率的步骤 (1)仔细阅读题目,分析试验包含的基本事件的特点; (2)设出所求事件A; (3)分别列举事件A包含的基本事件,求出总事件数n和所求事件A包含的基本事件数m; (4)利用公式求出事件A的概率. 1.从某小组的2名女生和3名男生中任选2人去参加一项公益活动. (1)求所选2人中恰有一名男生的概率; (2)求所选2人中至少有一名女生的概率. 解:设2名女生为a1,a2,3名男生为b1,b2,b3,从中选出2人的基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10种. (1)设“所选2人中恰有一名男生”的事件为A,则A包含的事件有:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3)共6种,则P(A)==, 故所选2人中恰有一名男生的概率为. (2)设“所选2人中至少有一名女生”的事件为B,则B包含的事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3)共7种,则P(B)=, 故所选2人中至少有一名女生的概率为. 较复杂的古典概型的概率 [例2] 为振兴旅游业,四川省2012年面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客.在省外游客中有持金卡,在省内游客中有持银卡. (1)在该团中随机采访2名游客,求恰有1人持银卡的概率; (2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率. [自主解答] (1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡. 设事件A为“采访该团2人,恰有1人持银卡”, 则P(A)==, 所以采访该团2人,恰有1人持银卡的概率是. (2)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况. 则P(B)=P(B1)+P(B2)=+=, 所以采访该团2人,持金卡与持银卡人数相等的概率是. ——————————————————— 计算较复杂的古典概型的概率时应注意的两点 (1)解题的关键点是理解题目的实际含义,把实际问题转化为概率模型; (2)必要时将所求事件转化为彼此互斥的事件的和,或先求其对立事件的概率,进而利用互斥事件的概率加法公式或对立事件的概率公式求解. 2.(2012·新课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理. (1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式; (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n14151617181920频 数10201616151310 假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; 若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率. 解:(1)当日需求量n≥17时,利润y=85. 当日需求量n<17时,利润y=10n-85. 所以y关于n的函数解析式为 y= (nN). (2)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为 ×(55×10+65×20+75×16+85×54)=76.4. 利润不低于75元当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为p=0.16+0.16+0.15+0.13+0.1=0.7. 4种方法——基本事件个数的确定方法 (1)列举法:此法适用于基本事件较少的古典概型; (2)列表法:此法适合于从多个元素中选定一两个元素的试验,也可看成是坐标法; (3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求; (4)计数原理法:如果基本事件的个数较多,列举有一定困难时,可借助于两个计数原理及排列组合知识直接计算出m,n,再运用公式求概率. 1个技巧——求解古典概型问题概率的技巧 (1)较为简单问题可直接使用古典概型公式计算; (2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A的对立事件的概率,再由P(A)=1-P()求事件A的概率. 1个构建——构建不同的概率模型解决问题 (1)原则:建立概率模型的一般原则是“结果越少越好”,这就要求选择恰当的观察角度,把问题转化为易解决的古典概型问题; (2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”. 答题模板——求古典概型概率 [典例] (2012山东高考·满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率. [快速规范审题] 第(1)问 1.审条件,挖解题信息 观察条件:五张卡片,红色三张,标号1,2,3.蓝色2张,标号为1,2,从中取两张所有可能的结果n 2.审结论,明解题方向 观察所求结论:求两张卡片颜色不同且标号之和小于4的概率得出满足这两个条件的结果m 3.建联系,找解题突破口 利用古典概型概率公式求解:P= 第(2)问 1.审条件,挖解题信息 观察条件:红色卡片三张、蓝色卡片二张、绿色卡片一张,从中取两张得所有的可能的结果数n 2.审结论,明解题方向 观察所求结论:观察所求结论求两种卡片颜色 不同且标号之和小于4的概率得出满足这两个条件的结果m 3.建联系,找解题突破口 利用古典概型概率公式求解:P=[准确规范答题] 列举从5张卡片中任取两张的可能结果时,易漏掉或重复某种结果. (1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10种.(3分) 由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的. 从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D)共3种.(5分) 所求事件包含的事件数列举不全或重复.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(6分) (2)记F是标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种.(9分) 由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的. 从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F)共8种.(11分) 所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(12分) [答题模板速成] 求古典概型概率的一般步骤: 第一步 审清题意第二步 建立数量关系第三步 转化为数学模型第四步 解决数学问题理清题意,列出所有基本事件,计算基本事件总数分析所求事件,找出所求事件的个数根据古典概率公式求解得出结论解后反思,规范解答步骤,检查计数过程是否有误 一、选择题(本大题共6小题,每小题5分,共30分) 1.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,基本事件的个数为( ) A.2 B.4 C.6 D.8 解析:选C 设这4个学习小组为A、B、C、D,“从中任抽取两个小组”的基本事件有AB、AC、AD、BC、BD、CD,共6个. 2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是( ) A. B. C. D. 解析:选D 取出的三个数是连续自然数有4种情况,则取出的三个数是连续自然数的概率P==. 3.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( ) A. B. C. D. 解析:选D 小正方体三面涂有油漆的有8种情况,故所求其概率为=. 4.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) A. B. C. D. 解析:选D 对本题我们只看甲乙二人游览的最后一个景点,最后一个景点的选法有C×C=36种,若两个人最后选同一个景点共有C=6种选法,所以最后一小时他们在同一个景点游览的概率为P==. 5.(2012·广东高考)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A. B. C. D. 解析:选D 由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有CC=20个;若个位数为偶数时,这样的两位数共有CC=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C×1=5个.于是,所求概率为=. 6.如图,三行三列的方阵中有九个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( ) A. B. C. D. 解析:选D 从九个数中任取三个数的不同取法共有C==84种,因为取出的三个数分别位于不同的行与列的取法共有C·C·C=6,所以至少有两个数位于同行或同列的概率为1-=. 二、填空题(本大题共3小题,每小题5分,共15分) 7.(2012·上海高考)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示). 解析:所有的可能情况有CCC,满足条件有且仅有两人选择的项目完全相同的情况有CCC,由古典概率公式得P==. 答案: 8.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为的概率是________. 解析:从边长为1的正方形的中心和顶点这五点中,随机选取两点,共有10种取法,该两点间的距离为的有4种,所求事件的概率为P==. 答案: 9.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答). 解析:6节课共有A=720种排法,相邻两节文化课之间至少间隔1节艺术课的排法有AA=144种排法,所以相邻两节文化课之间至少间隔1节艺术课的概率为=. 答案: 三、解答题(本大题共3小题,每小题12分,共36分) 10.将一颗骰子先后抛掷2次,观察向上的点数,求: (1)两数之和为5的概率; (2)两数中至少有一个奇数的概率. 解:将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件. (1)记“两数之和为5”为事件A,则事件A中含有4个基本事件,所以P(A)==.所以两数之和为5的概率为. (2)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件.所以P(B)=1-=.所以两数中至少有一个奇数的概率为. 11.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”.设复数为z=a+bi. (1)若集合A={z|z为纯虚数},用列举法表示集合A; (2)求事件“复数在复平面内对应的点(a,b)满足a2+(b-6)2≤9”的概率. 解:(1)A={6i,7i,8i,9i}. (2)满足条件的基本事件的个数为24. 设满足“复数在复平面内对应的点(a,b)满足a2+(b-6)2≤9”的事件为B. 当a=0时,b=6,7,8,9满足a2+(b-6)2≤9; 当a=1时,b=6,7,8满足a2+(b-6)2≤9; 当a=2时,b=6,7,8满足a2+(b-6)2≤9; 当a=3时,b=6满足a2+(b-6)2≤9. 即B为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个. 所以所求概率P=. 12.(2012·江西高考)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点. (1)求这3点与原点O恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O共面的概率. 解:从这6个点中随机选取3个点的所有可能结果是: x轴上取2个点的有A1A2B1,A1A2B2,A1A2C1,A1A2C2共4种; y轴上取2个点的有B1B2A1,B1B2A2,B1B2C1,B1B2C2共4种; z轴上取2个点的有C1C2A1,C1C2A2,C1C2B1,C1C2B2共4种. 所选取的3个点在不同坐标轴上有A1B1C1,A1B1C2,A1B2C1,A1B2C2,A2B1C1,A2B1C2,A2B2C1,A2B2C2共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种. (1)选取的这3个点与原点O恰好是正三棱锥的四个顶点的所有可能结果有A1B1C1,A2B2C2,共2种,因此,这3个点与原点O恰好是正三棱锥的四个顶点的概率为P1==. (2)选取的这3个点与原点O共面的所有可能结果有A1A2B1,A1A2B2,A1A2C1,A1A2C2,B1B2A1,B1B2A2,B1B2C1,B1B2C2,C1C2A1,C1C2A2,C1C2B1,C1C2B2,共12种,因此,这3个点与原点O共面的概率为P2==. 1.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________. 解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为. 答案: 2.(2012·江苏高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 解析:由题意得an=(-3)n-1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P==. 答案: 3.(2012·福建高考)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55. (1)求an和bn; (2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率. 解:(1)设{an}的公差为d,{bn}的公比为q.依题意得 S10=10+d=55,b4=q3=8, 解得d=1,q=2,所以an=n,bn=2n-1. (2)分别从{an}和{bn}的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4). 符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P=.。