9.8相似三角形的性质(2)
- 格式:ppt
- 大小:1.09 MB
- 文档页数:9
ACBC'A'第6章第5节相似三角形的性质(2)【教学目标】1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;了解性质定理的探索过程和证明方法.2.会运用图形的相似性质解决一些简单的实际问题;3.经历探索性质定理的形成过程,使学生体验从特殊到一般的认知规律,以及由观察—猜想—论证—归纳的数学思维过程.[设计意图]重视数学对象的逻辑关系和内部联系,引导学生积极体验数学结论的理和美的要求.【教学重难点】重点:探索得出相似三角形对应线段的比等于相似比;并会运用性质解决实际问题. 难点:由特例归纳出一般结论.[设计意图]教师通过对重难点的把握,提高学生合作探究、解决问题的能力,让学生体会到由特殊到一般的数学研究方法,并能够运用到数学学习过程中.【教学过程】本节课的内容结构是:对应高(已有经验)---对应中线(特例1)---对应角平分线(特例2)---其他对应线段(通例)---位置对应线段(一般结论)---现实问题(应用)一、设置情境,引出问题远古的时候,有一位国王非常聪明,他把国家治理得井井有条,一片繁荣景象.他还酷爱数学,每日早朝之时,必先考考各位大臣的聪明才智.有一天,国王说:我有两块形状相同的三角形土地,一块是4亩,一块是16亩,现在我想把每块土地都分割成两块三角形形状,我只有一个要求就是-----分割线之比是1:2,各位大臣有多少种方法?办法高明者奖励黄金10两,白银10两.[设计意图]调动学生学习兴趣,激发其探究欲望.情境的设置既引导学生回顾已学的相似三角形性质,又引发学生要继续探索其他性质的需要.分析题意可以得到解决问题的办法就是:找到相似三角形中哪些线段的比等于相似比.二、合作探究,形成新知问题1:△ABC ∽△'''A B C ,相似比为k ,AD 和''A D 分别是△ABC 和△'''A B C 的中线,那么?''ADA D =问题2: △ABC ∽△'''A B C ,相似比为k ,AD 和''A D 分别是△ABC 和△'''A B C 的角平分线,那么?''ADA D =[设计意图]在探索相似三角形对应中线、对应角平分线性质时,迁移了相似三角形对应高的证明方法,对学生来讲,这两个结论证明并不难,因为有了上节课的经验.将典型特例作为引导性材料,让学生直观感知性质,形成性质的“模式直观”.问题3:角平分线、中线变为对应角的三等分线、四等分线、…n 等分线,对应边的三等分线、四等分线、…n 等分线,结论还成立吗?[设计意图]适度铺垫,让学生拾阶而上.有了前面探索的基础,学生完全有能力独立完成“变式问题”的探索,在探索过程中,发展学生类比探究的能力与独立解决问题的能力,培养学生全面思考的思维品质.问题4:如果△ABC ∽△'''A B C ,相似比为k ,点D 、'D 分别在BC 、''B C 上,且''BDk B D =, 那么结论还成立吗?问题5:如果△ABC ∽△'''A B C ,相似比为k ,点D 、'D 分别在BC 、''B C 上,且''(01)''BD B D m m BC B C ==<<,那么结论还成立吗? [设计意图]跟进追问,尝试延续知识探索.这一环节为学生对相似三角形性质的认识插上想象的翅膀,既有提炼总结与完善,也有脑洞大开之设想.基于以上探索.我们发现总结:相似三角形对应线段的比等于相似比.[设计意图]让学生感受数学结论的简洁美和统一美,让学生深入数学“理”的实质性思考,获得数学“美”的切身体验.三、巩固新知,解决问题例题分析:见课本例题.先自学2分钟,然后请一同学带着大家学习一下例题.[设计意图]先让学生独立思考,然后说说自己是如何想的,重在暴露思维过程.如果学生说的不到位,课堂上就可以采用思维策略与方法上的启发引导.变式1: 如图,△ABC 是一块锐角三角形的余料,边长BC =120mm ,高AD =80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点在AB 、AC 上,这个正方形的零件的边长为多少?BC变式2:有一块三角形铁片ABC ,BC =12 cm .高AH =8 cm ,按图(1)、(2)两种设计方案把它加工成一块矩形铁片DEFG ,且要求矩形的长是宽的2倍,为了减少浪费,加工成的矩形铁片的面积应尽量大些.请你通过计算判断(1)、(2)两种设计方案哪个更好.[设计意图]由情境问题的解决到自学例题,再经例题加以拓展延伸,进一步巩固新知,使学生体会图形之间的联系.在学生已经较好的掌握基础知识的前提下,安排适当的拓展题,锻炼学生思维的灵活性,提高学生灵活运用所学知识的能力.四、概括总结,激发思考通过本节课的学习,你对相似三角形的性质有了哪些新的认识?在本节的学习过程中,有无激发你新的思考?[设计意图]为了使学生对所学内容有一个完整而深刻的印象,引导学生进行小结.加深了学生对知识点的理解,同时也启发学生继续思考本节遗留问题.课后作业:(1)课本习题6.5第3、4题.(2)第二天,国王说:我想把它们都分割成一块三角形和一块四边形形状,请同学们继续探讨.【教学感悟】(1)(2)。
数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。
它是一门古老而崭新的科学,是整个科学技术的基础。
随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。
以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。
数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。
简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。
这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质基本性质:内项积等于外项积。
(比例=====等积)。
主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
、会运用相似三角形对应高的比与相似比的性质解决有关问题;
、经历“操作—观察—探索—说理”的数学活动过程,发展合情推理和有条理的表达能力
(1)∠BAC = ,∠B =
(
(2)AB
EF
= = = ( )
全等三角形与相似三角形性质比较全等三角形
对应边相等
对应角相等
周长相等
2.如图:△ABC是一块锐角三角形的余料,边长
高AD=80mm,要把它加工成正方形零件,
其余两个顶点在AB、AC上,这个正方形的零件的边长为多少?
思考题:
有一块三角形铁片ABC,BC=12cm
两种设计方案把它加工成一块矩形铁片
宽的2倍,为了减少浪费,加工成的矩形铁片的面积应尽量大些。
请你通过计算判断(1)、(2)两种设计方案哪个更好?
课堂小结
作业。
A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。
2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。
如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。
数学组八年级数学导学案第二章相似图形6相似三角形的性质(2)导学提纲一、学习目标1、理解并掌握相似三角形周长比等于相似比。
2、面积比等于相似比的平方并能用来解决问题。
二、预习内容1、相似三角形的性质:相似三角形对应边_____________,对应角_________________。
相似三角形对应中线,对应角平分线,对应高的比等于_____________________。
2、△ABC 与△A ´B ´C 相似,相似比为43。
(1)求△ABC 与△A ´B ´C ´的周长之比?(2)△ABC 与△A ´B ´C ´面积比是多少?3、已知△ABC 与△A ´B ´C 相似,相似比为k,求(1)c △ABC :c △A ´B ´C ´=____________ (2) s △ABC :s △ABC=_____________由以上题目可得:相似三角形周长比等于______________;面积比等于____________________。
相似三角形的性质____________________________________________3、已知两相似三角形的面积比为25:4,求它们的周长比。
三、课上拓展1、两相似三角形一组对应边分别为20cm 和8cm ,它们的周长差为60cm ,则这两个三角形周长分别为___________2、若△ABC ∽△DEF ,且面积之比为1:2,则其相似比为________________3、如图,在△ABC 中,D 、E 分别为AB 、AC 上点,AD :AB=AE :AC=2:3,求s △ADE :s 四边形BCED四、课后巩固 在 ABCD 中,E 为CD 上一点,AE 、BD 相交于F ,DE :EC=3:2,求s △ABF :s△DEF学习反思:ED CB AFE D CBA。
初二数学·相似三角形的性质(二)
第1课时
一、教学目标
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成。
分析示意图:结论→∽→∽
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
[1][2][3]。
数学教案-相似三角形的性质(第2课时)_八年级数学教案(第2课时)一、教学目标1.掌握相似三角形的性质定理2、3.2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美二、教法引导先学后教,达标导学三、重点及难点1.教学重点:是性质定理的应用.2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具.六、教学步骤[复习提问]叙述相似三角形的性质定理1.[讲解新课]让学生类比“全等三角形的周长相等”,得出性质定理2.性质定理2:相似三角形周长的比等于相似比.∽,同样,让学生类比“全等三角形的面积相等”,得出命题.“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.性质定理3:相似三角形面积的比,等于相似比的平方.∽,注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是,它们的面积之经不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.例1 已知如图,∽,它们的周长分别是60cm和72cm,且AB=15cm,,求BC、AB、、.此题学生一般不会感到有困难.例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.解:设原地块为,地块在甲图上为,在乙图上为.∽∽且,..学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:,而[小结]1.本节学习了相似三角形的性质定理2和定理3.2.重点学习了两个性质定理的应用及注意的问题.七、布置作业教材P247中A组4、5、7.八、板书设计概率与频率的教学设计概率与频率是人教版九年级上册第二十五章概率初步第一节的内容。