第03章 光合作用
- 格式:ppt
- 大小:4.57 MB
- 文档页数:51
观察植物的光合作用过程光合作用是植物通过吸收阳光、水和二氧化碳,将其转化为养分和氧气的过程。
作为生命的能量源泉,光合作用在维持地球生态平衡和氧气循环中起着重要的作用。
一、光合作用的概述光合作用是指植物利用光能将二氧化碳和水转化为养分和氧气的过程。
通过一个复杂的反应链,光能被转化为化学能,以供植物的生长和发育。
二、光合作用的反应过程1. 光合作用的第一阶段——光能捕捉在植物叶绿素中,存在着光合作用的关键分子——叶绿素。
当阳光照射到叶绿素时,叶绿素分子会吸收光能,并将其转化为电子能量,使得叶绿素激发。
2. 光合作用的第二阶段——电子传递和ATP合成激发的激发态叶绿素通过电子传递链向前传递,最终将电子和质子转移到最终受体——辅酶NADP+上,形成了高能的辅酶NADPH。
同时,光合作用的反应还使得质子被推至胞间隙,形成了质子梯度。
质子梯度通过ATP合酶酶作用,将ADP和磷酸转化为高能的三磷酸腺苷(ATP)。
3. 光合作用的第三阶段——CO2固定和糖合成在这一阶段,植物通过Calvin循环中的一系列酶催化反应,将二氧化碳通过化学反应与辅酶NADPH和ATP反应,最终形成六碳的糖分子。
这些糖分子可以进一步转化为葡萄糖等有机物,供植物进行生长和代谢所需。
三、光合作用的调节与影响因素光合作用的过程受到多种因素的调节和影响。
其中,光强度、温度和二氧化碳浓度是最主要的因素。
光强度过高或过低,温度过高或过低,以及二氧化碳浓度不足,都会对光合作用的效率产生不利影响。
四、观察植物的光合作用过程的途径1. 叶绿素释放氧气实验通过将植物叶片置于水中,利用光照的作用,观察到气泡从叶片中产生,这是由于光合作用生成的氧气被释放出来。
2. 测量光合速率实验通过测量植物在不同光照条件下的二氧化碳摄取速率或氧气释放速率,可以间接地评估植物的光合速率,进而观察到光合作用过程的变化。
3. 叶绿素荧光测量实验利用叶绿素分子的荧光特性,可以间接地测量植物叶片叶绿素的活性和光合作用的效率,从而观察植物光合作用过程的变化。
第三章 光合作用1、 名词解释1.光合色素:指植物体内含有的具有吸收光能并将其用于光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素等。
2.原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。
3.红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。
4. 爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。
5.光合链:即光合作用中的电子传递。
它包括质体醌、细胞色素、质体蓝素、铁氧还蛋白等许多电子传递体,当然还包括光系统I和光系统II的作用中心。
其作用是水的光氧化所产生的电子依次传递,最后传递给NADP+。
光合链也称Z链。
6.光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。
7.作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。
8.聚光色素:指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。
聚光色素又叫天线色素。
9.希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。
10.光合磷酸化:叶绿体(或载色体)在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。
11.光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。
光呼吸的主要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。
光呼吸之所以需要光就是因为RuBP的再生需要光。
12.光补偿点:同一叶子在同一时间内,光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。
13.CO2补偿点:当光合吸收的CO2量与呼吸释放的CO2量相等时,外界的CO2浓度。
14.光饱和点:增加光照强度,光合速率不再增加时的光照强度。
15.光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比。
16. 碳素同化作用:自氧植物吸收二氧化碳,将其转变成有机物的过程,称为植物的碳素同化作用。
第三章植物的光合作用1光合作用的主要器官:叶片。
光和作用的主要细胞器:叶绿体。
2、叶绿体的结构:外膜、内膜、基质、基粒(圆饼状、浓绿色颗粒)、嗜锇滴(脂滴)、基粒类囊体、基质类囊体、3、基质:固定CO2,合成淀粉并贮藏。
4、基粒:类囊体垛叠成基粒,是高等植物光合细胞所特有的膜结构。
光合色素主要集中在基粒中,光能转化为化学能。
5、嗜锇滴:亲脂性醌类物质,叶绿体脂质的仓库,片层合成需要脂质时,从嗜锇滴调用,嗜锇滴就减少,叶绿体衰老时,片层解体,嗜锇滴增大。
6、类囊体:许多片层组成的片层系统。
类囊体膜又称为光合膜,完成光合作用的能量转换7、光合色素:叶绿素(蓝绿色的叶绿素a、黄绿色的叶绿素b)和类胡萝卜素(胡萝卜素、叶黄素),排列在类囊体膜上。
8大部分的叶绿素a和叶绿素b具有收集和传递光能的作用,少数特殊状态的叶绿素a有光能转化为化学能的作用。
叶绿素不参与氢传递,而以电子传递和共振传递的方式参与光反应。
叶绿素的“头部”为金属卟(bu)啉环,金属为Mg原子;“尾巴”为叶绿醇链,是亲脂部分。
9、叶绿素吸收光谱最强的两个区域:640—660nm的红光部分,430—450nm的蓝紫光部分,对绿光吸收最少。
胡萝卜素和叶黄素最大吸收带在蓝紫光部分,不吸收红光等长波长的光。
10、荧光和磷光现象:叶绿素被光激发后产生,叶绿素分子的激发是光能转化为化学能的第一步。
叶绿素溶液在透射光(入射光,波长短,能量大)下呈绿色、在反射光(波长长,能量小)下呈红色的现象,叫荧光现象。
叶绿素从第一单线态回到基态发生的光叫荧光;从第一三线态回到基态发出的光做磷光。
胡萝卜素和叶黄素也有荧光现象。
11叶绿素的合成:四个阶段,需要氮、镁元素。
(谷氨酸一ALA 2ALA -PBG)(4PBG- 原卟啉区+Mg -Mg原卟啉—单乙烯基原叶绿素酯a)(单乙烯基原叶绿素酯a+光+NADPH+原叶绿素酯a氧化还原酶—叶绿素酯a)(叶绿素酯a—叶绿素a)叶绿素a——叶绿素b 原卟啉区+Fe—亚铁血红素12、植物的叶色:正常的叶子(叶绿素:胡萝卜素=3: 1)(叶绿素a: b=3:1)(叶黄素:胡萝卜素=2:1).秋天时叶片衰老,叶绿素易降解,类胡萝卜素较稳定,故叶子呈现黄色。
《植物⽣理学》第七版课后习题答案第⼀章植物的⽔分⽣理⽔势:⽔溶液的化学势与纯⽔的化学势之差,除以⽔的偏摩尔体积所得商。
渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了⽔的⾃由能,因⽽其⽔势低于纯⽔⽔势的⽔势下降值。
压⼒势:指细胞的原⽣质体吸⽔膨胀,对细胞壁产⽣⼀种作⽤⼒相互作⽤的结果,与引起富有弹性的细胞壁产⽣⼀种限制原⽣质体膨胀的反作⽤⼒。
质外体途径:指⽔分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻⼒⼩,移动速度快。
共质体途径:指⽔分从⼀个细胞的细胞质经过胞间连丝,移动到另⼀个细胞的细胞质,形成⼀个细胞质的连续体,移动速度较慢。
渗透作⽤:⽔分从⽔势⾼的系统通过半透膜向⽔势低的系统移动的现象。
根压:由于⽔势梯度引起⽔分进⼊中柱后产⽣的压⼒。
蒸腾作⽤:指⽔分以⽓体状态,通过植物体的表⾯(主要是叶⼦),从体内散失到体外的现象。
蒸腾速率:植物在⼀定时间内单位叶⾯积蒸腾的⽔量。
蒸腾⽐率:光合作⽤同化每摩尔CO2 所需蒸腾散失的⽔的摩尔数。
⽔分利⽤率:指光合作⽤同化CO2 的速率与同时蒸腾丢失⽔分的速率的⽐值。
内聚⼒学说:以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说。
⽔分临界期:植物对⽔分不⾜特别敏感的时期。
1. 将植物细胞分别放在纯⽔和1mol/L 蔗糖溶液中,细胞的渗透势、压⼒势、⽔势及细胞体积各会发⽣什么变化?答:在纯⽔中,各项指标都增⼤;在蔗糖中,各项指标都降低。
2. 从植物⽣理学⾓度,分析农谚“有收⽆收在于⽔”的道理。
答:⽔,孕育了⽣命。
陆⽣植物是由⽔⽣植物进化⽽来的,⽔是植物的⼀个重要的“先天”环境条件。
植物的⼀切正常⽣命活动,只有在⼀定的细胞⽔分含量的状况下才能进⾏,否则,植物的正常⽣命活动就会受阻,甚⾄停⽌。
可以说,没有⽔就没有⽣命。
在农业⽣产上,⽔是决定收成有⽆的重要因素之⼀。
⽔分在植物⽣命活动中的作⽤很⼤,主要表现在4个⽅⾯:⽔分是细胞质的主要成分。
第三章光与温度因子太阳辐射是光和热的最终来源,所以我们把这二个生态因子放在同一章里讨论。
我们知道,光和热的变化产生了地球表面的光照强度不同和温度的不同,植物、动物及其它们的群落随之发生着各种变化。
第一节太阳辐射与光一、光的性质与变化与动物相比,植物从无机环境中获得“食物”,光是植物的能量来源,矿质元素是植物的营养来源(Light is their energy source,minerals are their building bricks)。
而光的最终能量来源是太阳,太阳内聚极高温度,在氢原子发生核裂变且放射出能量,其中以1.94卡/cm2.min的能量被地球所吸收,称此为太阳常数,因此,光是地球上一切能量的最终来源。
光具有波粒二相性,它既是太阳辐射出来的电磁波又是一束束的粒子流,像密集的雨点一样辐射或打到植物的叶片上,使植物吸收光能。
到达地球的所有太阳辐射的光波大体上可分成三部分:I--紫外光,波长<400 nm;II--可见光,400 nm<波长<700 nm;III--红外光,波长>700 nm。
顾名思义,可见光是人们能够看得见的光,它对动植物的生理作用最为重要,因此,也称之为生理有效辐射,通常讲光由7种不同颜色(7个不同不波长)的光组成就是指可见光部分,具体光谱组成请见表(3-1)。
表3-1 光谱分布1.光的性质(1)光具有波粒二相性可以说是一种由太阳辐射出来的电磁波。
光波的二个峰值间的距离叫波长,波长越短,频率越高,能量越大:λ(波长)×V(频率)= C(光强)V = C/λ(2)光能一个光子在一定波长条件下具有的能量是:E = hv(h是普朗克常数,为6.6×10-27尔格/秒。
比如波长是680nm的光:E = 6.6×10-27尔格/秒×3×1017nm(光速)×(680)-1nm =2.9 ×10-12尔格1尔格= 10-7焦耳, 1卡= 4.2焦耳E= 2.9 ×10-12尔格/4.2×107尔格/卡= 6.9×10-20卡λ(3)光强进入一片树叶或一个森林群落的光,不仅决定它的质量(波长),而且还与它的振幅有关系(光强)。
植物生理学作业绪论一. 名词解释:植物生理学:是研究植物生命活动规律的科学,包括研究植物的生长发育与形态建成,物质与能量转化、信息传递和信号转导等3方面内容。
第一章植物的水分生理一. 名词解释①质外体途径:是水分通过细胞壁、细胞间隙等没有细胞质部分的移动方式,阻力小,水分移动速度快。
②共质体途径:是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
③渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
④水分临界期:指植物对水分不足特别敏感的时期。
二. 思考题1. 将植物细胞分别放在纯水和1 mol·L-1蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化答:渗透势是由于溶质颗粒的存在,降低了水的自由能;而压力势是指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,是由于细胞壁压力的存在而增加水势的值;水势是衡量水分反应或做功能量的高低,是每偏摩尔体积水的化学势差。
所以:(1)将植物细胞放入纯水中,由于纯水的浓度比细胞内液的浓度低,因此,纯水会向细胞质移动,引起细胞被动吸水,原生质体吸水膨胀,细胞的渗透势升高,压力势是增大,从而细胞的水势上升。
(2)而将植物细胞放入1 mol·L-1蔗糖溶液时结果则相反,植物细胞失水,发生质壁分离,胞内的离子浓度升高,细胞渗透势下降,压力势减少,即细胞水势明显降低。
4. 水分是如何进入根部导管的水分又是如何运输到叶片的答:根系是陆生植物吸水的主要器官,它从土壤中吸收大量水分,以满足植物体的需要。
植物根系吸水主要通过质外体途径、跨膜途径和共质体途径相互协调、共同作用,使水分进入根部导管。
而水分的向上运输则来自根压和蒸腾拉力。
正常情况下,因根部细胞生理活动的需要,皮层细胞中的离子会不断地通过内皮层细胞进入中柱,于是中柱内细胞的离子浓度升高,渗透势降低,水势也降低,便向皮层吸收水分。
第一章植物的水分代谢三、选择题1.植物在烈日照射下,通过蒸腾作用散失水分降低体温,是因为:(B)A.水具有高比热B.水具有高汽化热C.水具有表面张力2.一般而言,冬季越冬作物组织内自由水/束缚水的比值:(B)A.升高B.降低C.变化不大3.有一为水充分饱和的细胞,将其放入比细胞液浓度低 10 倍的溶液中,则细胞体积:(A)。
A.变大B.变小C.不变4.风和日丽的情况下,植物叶片在早上、中午和傍晚的水势变化趋势是(A)。
A.低→高→低B.高→低→高C.低→低→高5.已形成液泡的细胞,其衬质势通常省略不计,其原因是:(B)A.衬质势很低B.衬质势不存在C.衬质势很高,绝对值很小6.植物分生组织的细胞吸水靠(B)A.渗透作用B.代谢作用C.吸涨作用7.风干种子的萌发吸水靠(B)A.代谢作用B.吸涨作用C.渗透作用8.在同温同压条件下,溶液中水的自由能与纯水相比(B)A.要高一些B.要低一些C.二者相等9.在气孔张开时,水蒸汽分子通过气孔的扩散速度(B)A.与气孔的面积成正比 B.与气孔周长成正比 C.与气孔周长成反比10.蒸腾作用快慢,主要决定于(A)A.叶内外蒸汽压差大小 B.叶片的气孔大小 C.叶面积大小11.植物的保卫细胞中的水势变化与下列无机离子有关:(A)A.Ca2+B.K+C.Cl-12.植物的保卫细胞中的水势变化与下列有机物质有关:(C)A.糖B.脂肪酸C.苹果酸13.根部吸水主要在根尖进行,吸水能力最大的是(C)A.分生区B.伸长区C.根毛区14.土壤通气不良使根系吸水量减少的原因是(A)A.缺乏氧气B.水分不足C.C02 浓度过高15.植物的水分临界期是指:(C)A.对水分缺乏最敏感时期B.需水最多的时期C.需水最少的时期16.目前可以作为灌溉的生理指标中最受到重视的是:(C)A.叶片渗透势 B.叶片气孔开度 C.叶片水势四、是非判断与改正1.影响植物正常生理活动的不仅是含水量的多少,而且还与水分存在的状态有密切关系。