MR灌注成像(PWI),MR弥散成像(DWI)及fMRI 基本概念
- 格式:doc
- 大小:29.50 KB
- 文档页数:1
MR灌注加权成像(PWI)MR灌注加权成像(perfusion weighted imaging,PWI)主要反映组织的微血管灌注分布及血流灌注情况。
该项技术在脑部应用最早、最成熟,主要反映脑组织中血流动力学信息。
主要参数有1、脑血容量(CBV):根据时间-密度曲线下方封闭的面积计算得出2、脑血流量(CBF):脑血流量值越小,意味着脑组织的血流量越低3、平均通过时间(MTT):开始注射对比剂到时间-密度曲线下降至最高强化值一半时的时间,主要反映的是对比剂通过毛细血管的时间。
4、峰值时间(TTP):在TDC上从对比剂开始出现到对比剂浓度达到峰值的时间,TP值越大,意味着最大对比剂团峰值到达脑组织的时间越晚。
分类根据成像原理,PWI技术主要分为对比剂首过法和动脉自旋标记法,前者需要注射外源性对比剂,在临床上应用较为广泛,后者以动脉血中的质子作为内源性对比剂,无须注射外源性对比剂。
动脉自旋标记(arterial spin labeling,ASL)技术无需引入外源性对比剂,是一种利用血液作为内源性示踪剂的磁共振PWI方法。
采用超快速扫描,观察器官或组织的血流灌注情况,观察更早期的缺血病变或显示器官的血流通过状况、局部血流量的变化。
它是将流动的血液作为一种内源性的磁性示踪剂,利用MR信号对质子的自旋运动的自然敏感性,把流动的血液作为标记物进行灌注成像,是一种安全无创的方法。
对比剂的使用1、常用顺磁性对比剂Gd-DTPA,它是一种非特异性细胞外间隙顺磁性对比剂。
一般采用单倍剂量(0.1mmol/kg)或双倍剂量。
2、对比剂第一次通过期间,主要存在于血管内,血管外极少,血管内外浓度梯度最大,信号的变化受弥散因素影响小,故能反应组织的血液灌注情况为使对比剂早期居于血管内而不进入组织,即保证没有对比剂的再循环和漏出,必须使用高压注射器,注射流率为3~4ml/s。
若团注速度过慢,则信号下降程度降低,易导致参数计算错误。
联合应用弥散加权成像(DWI)、灌注加权成像(PWI)、磁共振波谱成像(MRS)等磁共振成像技术对胶质瘤复发与放射性脑损伤的鉴别诊断价值分析发表时间:2019-11-18T10:55:13.007Z 来源:《健康世界》2019年14期作者:曾忠杰[导读] 对患者胶质瘤术后复发与放射性脑损伤进行有效诊断鉴别,具有创伤小和准确率高等临床应用优势,值推广使用。
赣州市人民医院影像科 341000摘要:目的:分析联合应用弥散加权成像(DWI)、灌注加权成像(PWI)、磁共振波谱成像(MRS)等磁共振成像(Magnetic Resonance Imaging,MRI)技术对胶质瘤复发与放射性脑损伤的鉴别诊断价值;方法:将2017年1月至2019年2月我院收治的82例胶质瘤复发与放射性脑损伤患者视为鉴别诊断对象,根据患者入院先后顺序纳入对照组与观察组,每组均为41例,对照组患者采用组织病理活检诊断方式,观察组全部患者均实施DWI、PWI和MRS等MRI技术,比较两组的诊断准确率和患者对诊断方式的满意度评分,分析观察组诊断方式对胶质瘤复发和放射性脑损伤患者的诊断效果,判断其应用价值。
结果:两组的诊断正确率和患者满意对比,MRI技术中DWI、PWI 和MRS联合应用的诊断结果与组织病例活检无明显差异(P>0.05),而患者满意率评分则高于对照组(P<0.05)。
结论:联合应用DWI、PWI和MRS等MRI技术,对胶质瘤复发与放射性脑损伤患者具有较高的临床诊断效果,相较于组织活检诊断方式,对患者造成的创伤相对较小,患者认同度和满意度更高,具有较高临床诊断应用价值。
关键词:弥散加权成像;灌注加权成像;磁共振波谱成像;磁共振成像技术;胶质瘤复发;放射性脑损伤脑胶质瘤,包括高级别胶质瘤(high grade glioma,HGG)和低级别胶质瘤(low grade glioma,LGG),其中HGG治疗方式主要为化疗,而LGG主要采用手术全切治疗。
磁共振扩散加权成像(DWI和ADC图)基本原理及临床应用展开全文什么是功能磁共振成像?以常规T1WI和T2WI为主的各种磁共振成像技术,主要显示人体器官或组织的形态结构及其信号强度变化,统称常规MRI检查或常规MR成像序列。
随着MRI系统硬件和软件的发展,相继出现了多种超快速成像序列(如EPI技术),单次采集数据的时间已缩短至毫秒。
以超快速成像序列为主的MRI检查,能够评价器官的功能状态,揭示生物体内的生理学信息,统称为功能磁共振成像,或功能性成像技术(functional imaging techniques)。
这些技术包括弥散加权成像(DWI)、灌注加权成像(PWI),脑功能成像(fMRI),心脏运动和灌注实时成像(real-time imaging),磁共振波谱成像(MRS),全身成像,磁共振显微成像等。
b因子在弥散加权成像中有何作用?弥散(diffusion)是描述水和其他小分子随机热运动(布朗运动)的术语。
宏观看,水分子的净移动可通过表观弥散系数(ADC)描述,并通过应用两个梯度脉冲测量,其成像机制与相位对比MRA类似。
DWI 的信号强度变化取决于组织的ADC状态和运动敏感梯度(MPG)的强度。
MPG由b因子(即弥散梯度因子,又称b值)控制。
b因子实际上决定ADC参与构成图像对比度的份额,即弥散权重的程度。
在DWI 扫描序列中,如果采用长TR和长TE,且b=0,将形成普通的T2WI 对比(SE-EPI)或T2*WI对比(GRE-EPI)图像。
随着b因子增大(通常为500~1000s/mm2),图像的对比度也由T2权重逐步向弥散权重转变。
当MR图像中病变组织的高信号并非由于T2时间延长,而是反映ADC降低时,就形成所谓的DWI。
是否开启MPG是DWI 与常规MRI的不同点。
如何分析DWI和ADC图?弥散加权序列扫描产生2种图像,即弥散图(DWI)和ADC图。
在弥散图中,病变或受损组织的信号强度往往高于正常组织,而弥散自由度最大区域的信号强度最低,这使病变组织在DWI的信号表现类似于常规“T2WI”。
MRI弥散成像的基本原理一、磁共振弥散成像的基本概念1.弥散(diffusion):是描述小分子在组织中微观运动的物理概念,是分子等微观颗粒由高浓度向低浓度弥散的微观移动,即布朗运动,单位为mm2/s。
2.受限弥散:弥散在生物体内的表现。
弥散运动将使溶液系统中的浓度梯度逐渐消失。
但是,在生物体中细胞内外或小器官内外却能保持不同的化学环境,这是由细胞膜的屏障作用决定的,也就是说,膜有阻碍分子自由通过的功能,从而使有些分子的跨膜弥散受到限制。
受限弥散构成了弥散成像的基础。
3.弥散加权成像(diffusion-weighted MR imaging,DWI):人体中70%是水,通常所说的弥散主要指水分子或含水组织的弥散。
MR 通过氢质子的磁化来标记分子而不干扰它的弥散过程。
在任一常规MR成像序列中加入弥散梯度突出弥散效应即可行弥散加权成像,可以对组织中水分子的弥散行为直接进行检测。
人体内水分子弥散运动速率与状态呈微米数量级的运动变化,与人体组织细胞的大小处于同一数量级。
因此,弥散加权成像使MRI对人体的研究深入到细胞水平的微观世界,反映着人体组织的微观世界几何结构以及细胞内外水分子的转运等变化。
4.弥散张量成像(difussion tensor imaging,DTI):在均质的水中,水分子的弥散运动是一个三维的随机运动,在不同的方向上弥散程度相同,称为各向同性(isotropic)。
而在人体组织中,水分子在三维空间的弥散要受多种局部因素如细胞膜及大分子物质的影响。
尤其在有髓鞘的神经纤维中,水分子沿轴突方向的弥散速度远大于垂直方向的弥散,此种有很强方向依赖性的弥散,即弥散的各向异性(anisotropic),即水分子的活动在各个方向上其弥散规律不是随机均等的,而是有弥散方向的不均匀性。
这个现象在脑白质、骨骼肌、心肌等多种组织中均可见到。
各向异性的程度用量化指标来测定,并用向量图或彩色编码来表示即为弥散张量成像。
MR灌注成像(PWI)基本概念PWI1、CBV:脑血容量=CBF*MTT:CBV降低=低灌注,升高=高灌注。
蓝色为正常,红色为高灌注2、CBF脑血流(绿色信号为正常信号)3、MTT平均通过时间(黑、蓝色为低信号,时间延长)4、TTP达峰时间(红色为高信号,值增大时间增长)A:CBV正常或增加,MTT延长;提示脑梗塞后有侧支循环建立。
B:CBV降低 MTT延长 CBF明显减少,提示:无灌注或灌注不足C:CBV增高 CBF轻度增高或正常。
提示:血流再灌注,D:CBV增高CBF增高;提示:过度灌注DWI〈PWI 缺血暗带DWI大于且等于PWI或者PWI正常,可能部分或完全的自发性血流再通所致。
DWI=PWI 多为缺乏侧支循环的大面积梗死灶,发病早期即为不可逆性损伤。
PWI的测量指标相对脑血容量(rCBV):是指在感兴趣区内脑组织的血容量。
相对脑血流量(rCBF):是指在单位时间内通过兴趣脑组织的血流量。
相对对比剂平均通过时间(rMTT):是指血流通过感兴趣脑组织所需的平均时间。
单位:s达峰时间(rTTP):是指静脉注射对比剂达到感兴趣区脑组织所需的时间。
2. DWI与PWI相结合可以确定缺血半暗带(1)DWI<PWI,存在缺血半暗带,反映出治疗时机,临床可及时溶栓。
(2)DWI>PWI,说明梗死组织内有部分的血流再灌注(3)DWI与PWI范围一致,显示梗死区侧枝循环没有建立,梗死范围进一步扩大,为不可逆损伤。
(4)DWI正常而PWI显示异常,提示一过性脑缺血,没有梗死。
3. PWI在梗死区的微循环表现及所反映的问题(1)脑缺血改变:rCBV、rCBF 正常,MTT延长,提示为动脉狭窄或阻塞,但代偿良好。
(2)灌注不足:rCBV、rCBF下降,MTT延长(3)侧枝循环建立:rCBV正常或轻度增加,MTT延长(4)血流再灌注:rCBV增加,MTT正常或减少(5)血流过度灌注:rCBV明显增加。
【技术前沿】磁共振灌注成像(PWI)介绍展开全文基本原理:磁共振灌注造影成像(PWI)基于团注对比剂追踪技术,当团注顺磁性对比剂进入毛细血管床时,组织血管腔内的磁敏感性增加,引起局部磁场的变化,进而引起邻近氢质子共振频率的改变,后者引起质子自旋失相,导致T1和T2或T2*的值缩短,反映在磁共振影像上则是在T1WI上信号强度增加,而在T2或T2*WI上信号强度降低。
对比剂首过期间,主要存在于血管内,血管外极少,血管内外浓度梯度最大,信号的变化受弥散因素的影响很小,故能反映组织血液灌注的情况,间接反映组织的微血管分布情况。
临床应用:· 对血供变化最敏感的扫描序列。
· 与弥散加权对照,确定缺血半暗带和再灌注时间窗。
· 颅内和转移瘤鉴别。
· 胶质瘤级别鉴别。
临床病例:脑梗塞:弥散加权图像上可见右侧大脑半球大面积梗塞高信号,而从TTP 图像上,与左侧正常大脑区域相比,右侧大脑半球TTP达峰时间延长,这种异常区域明显大于DWI上梗死区域,相应区域的CBV,CBF均有下降。
胶质瘤:T1图像上可见中低信号占位,及其周围大面积水肿低信号。
灌注图像上可见CBV较高的区域是肿瘤实质,同时相应区域的MTT延长,水肿带MTT略升高,CBV明显下降。
脑膜瘤血供判断:T1增强图像上可见明显强化的占位肿块,周围伴低信号水肿带,PWI的CBV图像上,肿瘤血供异常丰富。
胶质瘤术后复发:T1增强图像上可见明显强化的占位肿块,周围伴低信号水肿带,PWI的CBV图像上,血供丰富的区域为复发的肿瘤组织,相比T1强化区域,对肿瘤实质定位更精确。
摘自:医学影像教育资讯。
MR灌注成像(PWI),MR弥散成像(DWI)及fMRI基本概念MR灌注成像(PWI),MR弥散成像(DWI)及fMRI 基本概念MR灌注成像(PWI)动态磁敏感增强灌注成像(DSCPWI)是最先用于脑部,多采用EPI序列、扫描10层~13层,每层20幅~40幅图像。
顺磁性对比剂高压注射后,以2ml/s或更快速率,对10层~13层,反复成像,观察对比剂通过组织信号变化情况,在T2WI中,对比剂通过时,组织信号强度下降,而对比剂通过后,信号会部分恢复。
忽略T1效应,则T2WI的信号强度变化率与局部对比剂浓度成正比,与脑血溶量成正比。
连续测量,产生时间一信号强度曲线,分析曲线、对每个像素积分运算得到rcBV、rcBF、MTT、TTP图、DSCPWI临床应用,PWI 早期发现急性脑缺血灶,观察血管形态和血管化程度评价颅内肿瘤的不同类型。
PWI可早期发现心肌缺血,还可评价肺功能和肺栓塞、肺气肿。
MR弥散成像(DWI)DWI是在常规MRI序列的基础上,在x、y、z轴三个互相垂直的方向上施加弥散敏感梯度,从而获得反映体内水分子弥散运动状况的MR图像。
所谓弥散敏感梯度是在常规序列中加入两个巨大的对称的梯度脉冲。
在DWI中以表观弥散系数(ADC)描述组织中水分子弥散的快慢,并可得到ADC图。
将每一像素的ADC值进行对数运算后即可得到DWI图。
弥散张量成像(DTI)是在DWI的基础上,在6个~55个线方向上施加弥散敏感梯度而获得图像。
DTI主要参数为平均弥散率(DCavg),各向异性包括FA、RA、VR,还可分别建立FA、RA、VR图。
DWI的临床应用是缺血性脑梗死的早期诊断,常规MRI为阴性,而DWI 上可表现为高信号。
DTI的临床应用,动态显示并监测脑白质的生理演变过程,三维显示大脑半球白质纤维束的走行和分布、避免术中纤维束损伤。
MR功能成像(fMRI)脱氧血红蛋白主要缩短T2驰豫时间,引起T2加权像信号减低,当脑活动区域静脉血氧合血红蛋白增加,脱氧血红蛋白浓度相对减低时,导致T2时间延长,在T2WI上信号增强。
MR灌注成像(PWI),MR弥散成像(DWI)及fMRI 基本概念
MR灌注成像(PWI)
动态磁敏感增强灌注成像(DSCPWI)是最先用于脑部,多采用EPI序列、扫描10层~13层,每层20幅~40幅图像。
顺磁性对比剂高压注射后,以2ml/s或更快速率,对10层~13层,反复成像,观察对比剂通过组织信号变化情况,在T2WI中,对比剂通过时,组织信号强度下降,而对比剂通过后,信号会部分恢复。
忽略T1效应,则T2WI的信号强度变化率与局部对比剂浓度成正比,与脑血溶量成正比。
连续测量,产生时间一信号强度曲线,分析曲线、对每个像素积分运算得到rcBV、rcBF、MTT、TTP图、DSCPWI临床应用,PWI 早期发现急性脑缺血灶,观察血管形态和血管化程度评价颅内肿瘤的不同类型。
PWI可早期发现心肌缺血,还可评价肺功能和肺栓塞、肺气肿。
MR弥散成像(DWI)
DWI是在常规MRI序列的基础上,在x、y、z轴三个互相垂直的方向上施加弥散敏感梯度,从而获得反映体内水分子弥散运动状况的MR图像。
所谓弥散敏感梯度是在常规序列中加入两个巨大的对称的梯度脉冲。
在DWI中以表观弥散系数(ADC)描述组织中水分子弥散的快慢,并可得到ADC图。
将每一像素的ADC值进行对数运算后即可得到DWI图。
弥散张量成像(DTI)是在DWI的基础上,在6个~55个线方向上施加弥散敏感梯度而获得图像。
DTI主要参数为平均弥散率(DCavg),各向异性包括FA、RA、VR,还可分别建立FA、RA、VR图。
DWI的临床应用是缺血性脑梗死的早期诊断,常规MRI为阴性,而DWI 上可表现为高信号。
DTI的临床应用,动态显示并监测脑白质的生理演变过程,三维显示大脑半球白质纤维束的走行和分布、避免术中纤维束损伤。
MR功能成像(fMRI)
脱氧血红蛋白主要缩短T2驰豫时间,引起T2加权像信号减低,当脑活动区域静脉血氧合血红蛋白增加,脱氧血红蛋白浓度相对减低时,导致T2时间延长,在T2WI上信号增强。
所以脑功能成像时,活动区T2WI上表现为高信号。
fMRI成像需要高场强结合高梯度场及快速切换率的MR设备。
fMRI扫描参数为,层厚5~8,矩阵64×64或128×128,TR 2 000 ms~6 000 ms,TE 40 ms~60 ms,可提供较强的T2加权。
fMRI能对神经活动进行成像。
fMRI检查协助脑外科医生制定手术计划,避免术中损伤皮层。
精神病学临床应用正在研究。
fMRI可用于评价脑卒中患者的中枢损害及功能重组情况,在指导康复中起重要作用。