数理方程第一章作业
- 格式:pptx
- 大小:175.90 KB
- 文档页数:5
数理方程练习题(1)一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是(双曲)型,取值为负对应的是(椭圆)型,取值为零对应的是(抛物)型。
2.在实际中广泛应用的三个典型的数学物理方程:第一个叫(弦自由横振动),表达式为(2tt xx u a B u =),属于(双曲)型;第二个叫(热传导),表达式为( 2t xx u a B u =),属于(椭圆)型;第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=;(B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xφ?=><<?==??==?的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=?=+∑(D) ()001,cos sin cos n n n n at n at n x u x t a b t a b l llπππ∞=??=+++??∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ](A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+;(C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
第1单元简易方程第1课时等式与方程一填空。
1.含有()是方程。
2.判断是不是方程,首先要看(),再看()。
3.方程()是等式,等式()是方程。
(填“一定”或“不一定”)。
二、下面哪些是等式,哪些是方程?9—X=3 20+30=50 80÷4=20y+17=38 X—14 7y=6336+x〈40 54÷x=9 30+x〉80第2课时等式的性质和解方程(1)一填空。
1.等式两边()加上或减去(),所得结果仍然是等式,这是()。
2.已知4+A=9-B,当A=1.5时,B=()。
3.如果x+15=y-7.2,那么x()y。
(填“>”或“<”)4.五年级有学生40人,有一天请假a人,这天出席了()人。
二、解方程81—X=35 32+X=46 X-47=59 45+X=56三、列方程解答。
一只家鼠的寿命是X年,已知猫的寿命是这只家鼠的5.5倍。
这只猫的寿命是11年,这只家鼠的寿命是几年?第3课时等式的性质和解方程(2)一.填一填。
1.某商店卖出100件衣服,销售总额达m元,每件衣服卖了()元。
2.每千克苹果m元,每千克梨n元,4m表示(),6n表示(),4m+6n表示()。
3.一堆煤有a吨,每车运b吨,运了4车,还剩()吨。
二.解方程。
6X=54 2X= 15.9 X÷3=4.5 4÷X=10三.列方程解决实际问题。
1.养禽场养鸡、鸭共有2000只,鸡的只数是鸭的4倍,养鸭多少只?2.于老师在体育用品商店买了5个足球,付出100元,找回22.5元,每个足球多少元?第4课时列方程解决简单的实际问题(1)1.水果店卖出5筐梨,平均每筐重30千克,这时还剩75千克的梨,水果店原有梨多少千克?2.根据题意写出等量关系,再列方程。
(1)小红身高145厘米,小华身高X厘米,小红比小华高15厘米。
小华身高X厘米+()=小红身高145厘米方程:(2)一个乒乓球的价钱是X元,一副乒乓球拍的价钱是它的20倍,一副乒乓球拍的价钱是60元。
第一章定义和方程类型1、34233(,,)v v v xyv g x y z x x y z∂∂∂+++=∂∂∂∂ 是( D )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 1、22(,,)vxy v g x y z z∂+=∂ 是( A )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶1、33232(,,)v v vv xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( C )偏微分方程A 、 一阶B 、二阶C 、 三阶D 、 四阶 2、2(,)txx u a u f x t -= (其中0>a ) 属于( A )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 2、2(,)ttxx u a u x t ϕ-= (其中0>a ) 属于( B )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合2、22(,,)tt xx u a u x y t ϕ+= (其中0>a ) 属于( C )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 2、(,)xx yy u u f x y += (其中(,)u u x y =) 属于( C )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 4、下列方程是非线性偏微分方程的是( A )A 22()()sin u u x x y 抖+=抖 B (,)u uf x y x y抖+=抖 C 22(,)(,)cos u ua x tb x t x x t抖+=抖 D 3433(,,)v v v g x y z x x y z ∂∂∂++=∂∂∂∂ 7、下列方程是非齐次方程的是( A )A(,)(,)0u uxy f x y f x y x y 抖+=?抖, B 2,0t xx u a u a =?C 22(,)(,)0u u a x t b x t x t 抖+=抖 D 34330v v v x x y z ∂∂∂++=∂∂∂∂3、在用分离变量法求解定解问题200,0,0|0,|0|()t xx x x x l t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( D ) A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x ln π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、{},...2,1,sin =n x n π D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x ln π 3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧====><<=====)(|),(|0|,0|0,0,0002x u x u u u t l x u a u t t t l x x x x xx tt ψϕ时,得到的固有函数系为( B )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n πB 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos ,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x l n π3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧===><<====)(|0|,0|0,0,002x u u u t l x u a u t l x x xx t ϕ时,得到的固有函数系为( A )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、,...2,1,2)12(sin=⎭⎬⎫⎩⎨⎧-n x l n π7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( A )类边界条件。
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得ux s x )()(ρx∂∂=xESu()若=)(x s 常量,则得22)(tu x ∂∂ρ=))((xu x E x∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu ∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。