数学物理方法第一章
- 格式:ppt
- 大小:1.92 MB
- 文档页数:49
§1.2 复平面区域与边界的定义在解析函数论中,函数的定义域不是一般的点集,而是满足一定条件的点集,称为区域。
z0的邻域 : 点集 z z z0
称为z0的邻域 z0的去心邻域 : 点集 z 0 z z0 U z0 , ˆ z , U 0 称为z0的去心邻域内点 : G是一个平面点集, z0 G.如果有z0的一个邻域该邻域内的所有点都属于G, 则z0 称为G的内点. 显然,孤立点集没有内点
开集:如果G的每一点都是其内点,则G称为开集区域:平面点集D称为区域,则有 1. D是开集 (开集性 2. D是连通的 (连通性如 0 arg z 就是一个区域 D 的边界点:设 D 为一区域,点 P 不属于 D ,但在 P 的任何邻域内,有区域D 中的点,则称点P为D的边界点。
D的所有边界点组成D的边界。
如区域0 arg z ,其边界为实轴闭区域:区域D与它的边界一起构成闭区域,记为 D
单连通区域与多连通区域: D是平面一个区域,如果在其中任意作一条简单闭曲线,曲线的内部总属于D则称D是单连通的。
否则,称D是多连通的。
单
连通边界线的取向:多连通若观察者沿边界线走时,区域总保持在观察者的左边,那么观察者的走向为边界线的正向;反之,则称为边界线的负向。
数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第一章 波动方程和行波法引言数理方法(泛定方程)(三类)在物理学的研究中起着重要作用,即研究如何从物理学的实际问题中导出数理方程呢?我们先从弦振动方程入手。
基本步骤:(物理模型−−−−→定量化数学模型) 1.建立坐标系(时间,空间)2.选择表征所研究过程的物理量u (一个或几个)。
表征物理量的选择常常是建立一个新方程的起点。
3.寻找(猜测)物理过程所遵守的物理定律(物理公理)4.写出物理定律的表达式,即数学模型。
1.1 弦振动方程1.1.1 弦的横振动方程(均匀弦的微小横振动)演奏弦乐用(二胡,提琴)的人用弓在弦上来回拉动,弓所接触的是弦的很小的一段,似乎只能引起这个小段的振动,实际上振动总是传播到整个弦,弦的各处都振动起来。
振动如何传播呢?1. 物理模型实际问题:设有一根细长而柔软的弦,紧绷于A ,B 两点之间,在平衡位置附近产生振幅极为微小的横振动(以某种方式激发,在同一个平面内,弦上各点的振动方向相互平行,且与波的传播方向(弦的长度方向)垂直),求弦上各点的运动规律。
2.分析:弦是柔软的,即在放松的条件下,把弦弯成任意的形状,它都保持静止。
绷紧后,相邻小段之间有拉力,这种拉力称为弦中的张力,张力沿线的切线方向。
由于张力的作用,一个小段的振动必带动它的邻段,邻段又带动它自己的邻段…,这样一个小段的振动必然传播到整个弦,这种振动传播现象叫作波。
弦是轻质弦(其质量只有张力的几万分之一)。
根张力相比,弦的质量完全可以略去。
① 模型实际上就是:柔软轻质细弦(“没有质量”的弦) ② 将无质量的弦紧绷,不振动时是一根直线,取为X 轴。
③ 将弦上个点的横向位移记为u 。
(,)u u x t = ④ 已知:线密度(,)()x t t ρρ=,重量不计,张力(,)T x t 切线方向,不随x 变化,弦中个点的张力相等(小振动下T 与地无关)⑤ 研究方法:连续介质,微积分思想,任意性。
第一章复变函数§1.1 复数与复数运算1、下列式子在复数平面上个具有怎样的意义?(1)z≤ 2解:以原点为心,2 为半径的圆内,包括圆周。
(2)z−a=z−b,(a、b 为复常数)解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。
(3)Re z>1/2解:直线x=1/ 2右半部分,不包括该直线。
(4)z+Re z≤1解:即x2 +y2 +x≤1,则x≤1,y2 ≤1−2x,即抛物线y2 =1−2x及其内部。
(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数)解:(6)0 <arg zz−+ii<π4解:zz−+ii=x2+x2y−1−i2x2+(y+1)2因为0 <arg zz−i+i<π4x+ 2 −(2yx+1) 2>0x 2 2 ++(yy2+−11)2>所以,即x <0,x2 +y2 −1+2x >0 x0 <x2x−+(+22yyx+1)22 −1<1x+( y+1)2 2综上所述,可知z 为左半平面x<0,但除去圆x2 +y2 −1+2x =0 及其内部z -1 ≤(7)1,z +12z-1 x 1 iy x y 1 4y−+⎡+−⎤2 2 2==+⎢⎥解:()[()] +++++iy 1 y22 2z 1 x 1 x⎣x 1 y⎦+ 2 +2所以()[()]x+−+≤++222 y 1 4y2 x 1 y2 22化简可得x≥0(8)Re(1 /z) =2⎛⎞⎡−⎤1 x iy x解:Re( ⎟=R e 21/ z=⎜) Re 2 ==⎜⎟⎢⎥⎝iy⎦x ⎣x++y+y⎠x2 2 2即(1/ 4)1/16x− 2 +y=2(9)Re Z2 =a2解:Re Z2 =x2 −y2 =a2(10) z1 +z+z−z=2 z+2 z2 2 22 1 2 1 22解:()()()()()() x1+x+y+y+x−x+y−y=2 x+y+2 x+y2 2 2 2 2 2 2 22 1 2 1 2 1 2 1 1 2 2 可见,该公式任意时刻均成立。
第1篇复变函数论>> 第1章解析函数1.复数在哪几种表示式?在进行复数的各种运算时,各以何种形式为方便?2.为什么不用定义虚数单位?3.复数的辐角主值是如何选取的?argz的规定方式是否是惟一的?为什么?z=0和z=的辐角有无意义?4.若规定0<argz≤2,z=x+iy,那么如何用arctan来表示argz之值?5.复数的运算与向量的运算和实数的运算有何异同?6.以下说法是否正确:若z1与z2为复数域中的两个数,则不能比较其大小。
7.试指出下式中的错误-1=i2=8.下列两个命题是否成立?其逆命题成立否?(1)模与辐角分别相等的两个复数一定相等;(2)共轭复数的模一定相等。
9.表示什么曲线上的点?10.|z|,|z-z|的几何意义是什么?11.满足不等式:|z-a|<r(r>0,a为复常数),Rez>0,Imz>0的点z各位于何处?12.复数和间有何关系?13.何谓邻域?何谓区域?14.f(z)在z 0点解析与f (z )在z 0点可导有无区别?15.f(z)在区域 内解析与f(z)在区域 内可导有无区别?16.判断下列命题是否正确:(1)若f(z)在z0连续,则存在; (2)若存在,则 在 z 0 是解析的; (3)若z0是的奇点,则 在z 0处不可导; (4)若z0是和g (z )的一个奇点,则它也是 + 和 的奇点;(5)若和 可导,则 = 也可导; (6)若和 均为调和函数,则 = 为解析函数; (7)若在z 0点满足C-R 条件,则 在z 0点可导;17.xy 2能否成为z 的一个解析函数的实部?为什么?18.试总结:(1)判断复变函数为解析函数的方法。
(2)判断解析函数为常数的方法。
19.试比较下列各对函数有何区别?与;(2)与(1)(3)与;(4)与.20. 和Lnz的多值性分别体现在何处?Riemann面如何构造?21.判断下列等式是否正确?;(1)(2)(3)(4)(5)22.指出下列推导过程中的错误:设z≠0,则(1)因为(-z)2=z2;(2)所以Ln(-z)2=Lnz2;(3)于是有Ln(-z)+Ln(-z)=Lnz+Lnz;(4)所以2Ln(-z)=2Lnz;(5)故得Ln(-z)=Lnz。