变分法二阶条件资料
- 格式:ppt
- 大小:1.39 MB
- 文档页数:8
§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。
它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。
约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。
后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。
在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
第二章变分法变分法(Variational calculus )是研究泛函极值的数学方法,早在十七世纪末,几何学、力学等领域相继提出了一些泛函极值问题(最速降线问题、最小旋转曲面问题等),导致了变分法的形成和发展。
本章我们介绍变分法及其在最优控制中的应用。
第一节 泛函及其极值我们首先给出泛函的定义定义1.1 设Ω为一函数的集合,若对于每一个函数Ω∈)(t x ,都有一个实数J 与之对应,则称J 是定义在Ω上的泛函,记作))((t x J 。
Ω称为J 的容许函数集合,Ω∈)(t x 称为宗量。
例 1 对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函⎰+=21))(1()(2))((2x x dx x y x y x y J &π, 容许函数集合可表示为 })(,)(],,[)()({2211211y x y y x y x x C x y x y ==∈=Ω.第一章中介绍的三个性能指标1)终端型性能指标也称麦耶(Mayer )型性能指标)),(()(11t t x x J Φ=,2)积分型性能指标还称拉格郎日(Lagrange )型性能指标⎰=10))(),(,()(0t t dt t x t x t f x J &, 3)混合型性能指标也叫包尔查(Bolza )型性能指标⎰+Φ=10))(),(,()),(()(011t t dt t x t x t f t t x x J &, 它们都是泛函,并且它们之间可以相互转化。
引进新的函数)(0t x ,它是如下微分方程初值问题的解.0)()),(),(,()(0000==t x t x t x t f t x && 则拉格郎日(Lagrange )型性能指标就化为⎰=≡Φ10))(),(,()()),((01011t t dt t x t x t f t x t t x &, 变成麦耶(Mayer )型性能指标。
二阶变系数微分方程的●常数变易法●平移法●级数法 题型和题法系统讲座一、二阶变系数微分方程常数变易法已知()()()0y x p x y q x y '''++=的通解()1122Y x c y c y =+,求()()()()y x p x y q x y f x '''++=的通解y解答方法:令()()()()y x p x y q x y f x '''++=【例1】已知20x y xy y '''-+=的通解为()12ln Y x c x c x x =+,求2x y xy y x '''-+=的通解y 。
解:22111x y xy y x y y y x x x''''''-+=⇒-+= 令 ()()()12ln Y x v x x v x x x =+代入2111y y y x x x'''-+=,求得()1212212ln 11ln ln ln ln ln 11ln 11ln 1ln ln 2y c x c x x Y x x x x x x c x c x x x dx x x dx xxxxx xxxc x c x x x x =++⋅⋅=+-+++=++⎰⎰ 已知()()()0y x p x y q x y '''++=的一个特解1y ,求()()()()y x p x y q x y f x '''++=的通解y解答方法:()()()()y x p x y q x y f x '''++=可求得通解y 。
【例2】参见同济5版下册P300例4或同济6版上册P330例4。
【例3】已知1y x =是()2220x y x xy y '''-+=的一个特解,求()23222x y x xy y x '''-+=的通解y 。
第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron );③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间 数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===n j ni ij a A② 函数的积分: 函数空间数域 D ⊂=⎰n ba n f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw l f ⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。
第一章 变分法变分法(Variational calculus )是研究泛函极值的数学方法,早在十七世纪末,几何学、力学等领域相继提出了一些泛函极值问题(最速降线问题、最小旋转曲面问题等),导致了变分法的形成和发展。
本章我们介绍变分法及其在最优控制中的应用。
第一节 泛函及其极值我们首先给出泛函的定义定义1.1 设Ω为一函数的集合,若对于每一个函数Ω∈)(t x 有一个实数J 与之对应,则称J 是定义在Ω上的泛函,记作))((t x J 。
Ω称为J 的容许函数集合,Ω∈)(t x 称为宗量。
例1 对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函⎰+=21))(1()(2))((2x x dx x yx y x y J π 容许函数集合可表示为})(,)(],,[)()({2211211y x y y x y x x C x y x y ==∈=Ω绪论中介绍的三个性能指标1)终端型性能指标也称麦耶(Mayer )型性能指标)),(()(11t t x x J Φ=2)积分型性能指标还称拉格郎日(Lagrange )型性能指标⎰=1))(),(,()(0t t dt t xt x t f x J 3)混合型性能指标也叫包尔查(Bolza )型性能指标⎰+Φ=1))(),(,()),(()(011t t dt t xt x t f t t x x J 它们都是泛函,并且它们之间可以相互转化。
引进新的函数)(0t x ,它是如下微分方程初值问题的解)()),(),(,()(0000==t x t x t x t f t x则拉格郎日(Lagrange )型性能指标就化为⎰=≡Φ1))(),(,()()),((01011t t dt t xt x t f t x t t x 变成麦耶(Mayer )型性能指标。
§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。
它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。
约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。
后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。
在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。