凸轮机构基本知识
- 格式:ppt
- 大小:570.00 KB
- 文档页数:7
凸轮机构§1凸轮机构的应用和分类一、凸轮机构的组成1、凸轮机构--由凸轮、推杆和机架三构件组成的高副机构。
凸轮--具有曲线轮廓或凹槽的构件,是主动件。
推杆--被凸轮直接推动的构件,作间隙的连续的移动或摆动。
优点:1)只要适当设计凸轮廓线,可得到任意需要的从动件运动规律;2)结构简单,尺寸紧凑。
缺点:1)高副机构,点、线接触,承载能力低,易磨损;2)凸轮廓线加工复杂,不容易保证精度。
2、应用举例二、凸轮机构的分类1、按凸轮形状分1)盘状凸轮--径向尺寸变化;2)移动凸轮--回转中心处于无穷远处的盘状凸轮;3)圆柱凸轮--将移动凸轮卷成圆柱体而成;4)圆锥凸轮--将盘状凸轮的一部分(扇形)卷成圆锥体而成。
2、按从动件形状分1)尖端推杆2)滚子推杆3)平底推杆附加:按推杆运动情况分:直动推杆和摆动推杆(摆杆)3、按照凸轮与推杆维持高副接触的形式分1)力封闭的凸轮机构(力锁合)利用重力或弹簧力等外力进行锁合。
2)几何封闭的凸轮机构(形锁合)利用从动件本身的几何形状使凸轮与之保持接触。
§2 凸轮机构推杆常用运动规律凸轮的有关术语:(以尖端直动从动件盘状凸轮为例)基圆---以凸轮最小向径r o为半径所作的圆;推程---推杆从最低位置运动到最高位置的过程·h;回程---推杆从最高位置运动到最低位置的过程·h;推程运动角---推程中凸轮转过的角度·Φ;回程运动角---回程中凸轮转过的角度·Φ';近休止角---推杆在最低位置停留时,凸轮转过的角度·Φs';远休止角---推杆在最高位置停留时,凸轮转过的角度·Φs;升程---推杆的最大位移·h。
1、等速运动推程:V=C1,(常数)S=∫Vdt=∫C1dt=C1t +C2 ,a=dv/dt=0, 代入初始条件,可得:t=0,S=0→C2=0 ; t= Φ/ω,S=h ,→C1=hω/Φ;所以推程从动件运动方程为:S=t hω/Φ=hφ/Φ; V=hω/Φ; a=0 ; φ∈(0,Φ)回程:V=C'1,(常数)S=∫Vdt=∫C'1dt=C'1t +C'2 ,a=dv/dt=0,代入初始条件,可得:t=0,S=h→C'2=h ,t=Φ'/ω, S=0→C'1= - hω/Φ' ;所以回程从动件运动方程为:S=h(1-φ/Φ' ) ; V= - hω/Φ' ; a=0 ; φ∈(0,Φ' )由于等速运动在行程始末存在刚性冲击(a→∞),故只能用于低速工况。
第三章凸轮机构§3-1凸轮机构的组成和类型一、凸轮机构的组成1、凸轮:具有曲线轮廓或沟槽的构件,当它运动时,通过其上的曲线轮廓与从动件的高副接触,使从动件取得预期的运动。
2、凸轮机构的组成:由凸轮、从动件、机架这三个大体构件所组成的一种高副机构。
二、凸轮机构的类型1.依照凸轮的形状分:空间凸轮机构:盘形凸轮:凸轮呈盘状,而且具有转变的向径。
它是凸轮最大体的形式,应用最广。
移动(楔形)凸轮:凸轮呈板状,它相关于机架作直线移动。
盘形凸轮转轴位于无穷远处。
空间凸轮机构:圆柱凸轮:凸轮的轮廓曲线做在圆柱体上。
2.依照从动件的形状分:(1)尖端从动件从动件尖端能与任意形状凸轮接触,使从动件实现任意运动规律。
结构简单,但尖端易磨损,适于低速、传力不大场合。
(2)曲面从动件:从动件端部做成曲面,不易磨损,利用普遍。
(3)滚子从动件:滑动摩擦变成转动摩擦,传递较大动力。
(4)平底从动件优势:平底与凸轮之间易形成油膜,润滑状态稳固。
不计摩擦时,凸轮给从动件的力始终垂直于从动件的平底,受力平稳,传动效率高,经常使用于高速。
缺点:凸轮轮廓必需全数是外凸的。
3.依照从动件的运动形式分:4.依照凸轮与从动件维持高副接触的方式分:(1)力封锁型凸轮机构:利用重力、弹簧力或其它外力使从动件与凸轮轮廓始终维持接触。
封锁方式简单,对从动件运动规律没有限制。
5、其它反凸轮机构:摆杆为主动件,凸轮为从动件。
应用实例:自动铣槽机应用反凸轮实现料斗翻转§3-2凸轮机构的特点和功能一.凸轮机构的特点一、优势:(1)结构简单、紧凑,具有很少的活动构件,占据空间小。
(2)最大优势是关于任意要求的从动件运动规律都能够毫无困难地设计出凸轮廓线来实现。
2、缺点:由于是高副接触,易磨损,因此多用于传力不大的场合。
二.功能1、实现无特定运动规律要求的工作行程应用实例:车床床头箱中利用凸轮机构实现变速操纵2、实现有特定运动规律要求的工作行程应用实例:自动机床中利用凸轮机构实现进刀、退刀3、实现对运动和动力特性有特殊要求的工作行程应用实例:船用柴油机中利用凸轮机构操纵阀门的启闭4、实现复杂的运动轨迹应用实例:印刷机中利用凸轮机构适当组合实现吸纸吸头的复杂运动轨迹§3-3从动件运动规律设计一.基础知识1、从动件运动规律:从动件的位移、速度、加速度及加速度转变率随时刻或凸轮转角转变的规律。
第六章凸轮机构第一节凸轮机构的基本类型一.凸轮机构的组成凸轮机构是由凸轮、从动件和机架三个基本构件所组成的一种高副机构。
凸轮是一个具有曲线轮廓或凹槽的构件,当它运动时,通过其上的曲线轮廓与从动件的高副接触,使从动件获得预期的运动。
凸轮机构在各种机械,尤其是在自动化生产设备中得到了广泛的应用。
图6-1所示为一内燃机的配气机构。
凸轮1是一个具有变化向径的盘形构件,当它回转时,迫使推杆2在固定导路3内作往复运动,以控制燃气在适当的时间进入气缸或排出废气。
图6-1 内燃机配气机构图6-2所示为自动机床的进刀机构。
当具有凹槽的凸轮1回转时,其凹槽的侧面迫使从动件2绕O点作往复摆动,通过扇形齿轮2和刀架上的齿条3控制刀架作进刀和退刀运动。
图6-2 自动机床进刀机构二.凸轮机构的分类在工程实际中,凸轮机构的形式多种多样,常用的分类方法有以下三种:1.按凸轮的形状分(1)盘形凸轮机构(图6-1)凸轮是绕固定轴转动且具有变化向径的盘形构件,当凸轮绕其固定轴转动时,从动件在垂直于凸轮轴的平面内运动。
它是凸轮的基本形式,结构简单,应用广泛。
(2)移动凸轮机构(图6-3)凸轮是具有曲线轮廓且只能作相对往复直线移动的构件,它可看作是轴心在无穷远处的盘形凸轮。
(3)圆柱凸轮机构(图6-2)凸轮的轮廓曲线位于圆柱面上,它可以看作是把移动凸轮卷成圆柱体而得。
图6-3移动凸轮机构2.按从动件的形状分(1)尖底从动件(图6-4a)从动件的尖端能够与任意复杂的凸轮轮廓保持接触,使从动件实现任意的运动规律。
这种从动件结构最简单,但易于磨损,故仅适用于速度较低和作用力不大的场合。
(2)滚子从动件(图6-4b)从动件端部装有可自由转动的滚子,凸轮与从动件之间的摩擦为滚动摩擦,减小了摩擦磨损,可用来传递较大的动力,故应用较广。
(3)平底从动件(图6-4c)从动件与凸轮之间为线接触,接触处易形成油膜,润滑状况好,传动效率高,常用于高速场合,但仅能与轮廓全部外凸的凸轮相配合。
凸轮机构及其设计知识点凸轮机构是一种常用于机械传动和控制系统中的重要装置,它通过凸轮的形状和运动将旋转运动转化为直线或近似直线的运动。
本文将介绍凸轮机构的基本原理、分类以及一些重要的设计知识点。
一、凸轮机构的基本原理凸轮机构利用凸轮的形状和运动来控制其他机械零件的运动,实现特定的功能。
其基本原理是通过凸轮的旋转或往复运动,驱动连杆等机械零件产生相应的运动。
凸轮机构的核心是凸轮轴,它负责凸轮的运动和传递动力。
二、凸轮机构的分类凸轮机构可以按照凸轮的形状、运动方式以及工作和运动周期的不同进行分类。
常见的分类方法有以下几种:1.按照凸轮的形状:- 圆形凸轮:凸轮轮廓为圆形,可将旋转运动转化为直线运动。
- 椭圆形凸轮:凸轮轮廓为椭圆形,可实现不同的工作周期。
- 特殊形状凸轮:凸轮轮廓根据实际需要来设计,如心形凸轮、叶形凸轮等。
2.按照凸轮的运动方式:- 旋转凸轮:凸轮沿着轴线的旋转运动。
- 往复凸轮:凸轮沿直线方向的往复运动。
3.按照工作和运动周期:- 连续工作凸轮机构:凸轮连续不断地运动,如发动机中的气门机构。
- 非连续工作凸轮机构:凸轮只在特定的时间段内运动,如变速器中的换挡机构。
三、凸轮机构设计的知识点凸轮机构的设计需要考虑到多个方面的因素,下面是一些设计中需要注意的知识点:1.选择适当的凸轮形状:根据所需的运动要求,选择合适的凸轮形状,如圆形、椭圆形或特殊形状。
2.确定凸轮的尺寸和运动参数:根据实际需求和运行环境,确定凸轮的尺寸和运动参数,如直径、偏心距离、转速等。
3.凸轮与连杆系统的设计:凸轮与连杆系统的设计需要考虑到运动学和动力学要求,确保凸轮的运动能够正确地传递给连杆系统。
4.选择适当的材料和制造工艺:凸轮机构需要承受较大的载荷和摩擦,选择适当的材料和制造工艺可以提高其使用寿命和运行效率。
5.考虑凸轮的润滑和冷却:凸轮与其他零件的接触面需要进行润滑和冷却,以减少摩擦和热量产生,提高凸轮的工作效率。
凸轮知识点凸轮(Cam)是一个具有曲线轮廓或凹槽的构件,通常在机械中用作回转或滑动件,把运动传递给紧靠其边缘移动的滚轮或在槽面上自由运动的针杆,或者从这样的滚轮和针杆中承受力。
凸轮机构(Cam mechanism)一般是由凸轮、从动件(Follower)和机架三个构件组成的高副机构。
凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动。
凸轮的分类:一般按外形可分为三类:1. 盘形凸轮:凸轮为绕固定轴线转动且有变化直径的盘形构件;2. 移动凸轮:凸轮相对机架作直线移动;3. 圆柱凸轮:凸轮是圆柱体,可以看成是将移动凸轮卷成一圆柱体。
凸轮的原理及应用:凸轮的原理主要是利用其形状和运动轨迹,使得滚轮或针杆在靠近凸轮边缘移动时,产生一定的规律运动。
凸轮的形状可以是简单的圆形,也可以是复杂的曲线或凹槽。
凸轮的应用非常广泛,如内燃机中的进气阀和排气阀、自动机床中的刀架、凸轮式开关等。
凸轮机构在机械中扮演着重要的角色,它可以实现从动件的规律运动,从而满足各种机械运动的要求。
凸轮机构的优点包括:结构简单、设计方便、运动规律易于控制等。
然而,凸轮机构也存在一些缺点,如接触面摩擦大、容易磨损等,因此在实际应用中需要进行润滑和维护。
为了更好地应用凸轮机构,我们需要了解其性能参数和设计方法。
一般来说,凸轮的设计需要考虑其形状、尺寸、运动轨迹等因素,而从动件的设计则需要根据实际应用需求进行设计。
此外,凸轮机构的设计还需要考虑制造和装配的工艺性,以确保其在实际应用中的可靠性和稳定性。
凸轮作为一种重要的机械部件,在机械传动中扮演着举足轻重的角色。
通过对凸轮的原理、分类、应用等方面的了解,我们可以更好地设计和应用凸轮机构,实现机械传动的精确控制和高效率运行。