晶体的宏观对称性
- 格式:pdf
- 大小:2.36 MB
- 文档页数:14
矿物结晶学基础:晶体的宏观对称与分类晶体的宏观对称晶体的内部质点在三维空间为周期性的重复排列,因此晶体(原石)都具有一个特性----对称性→构成其外部几何形态的面、棱和角顶有规律地重复。
钻石原石海蓝宝原石尖晶石原石与成品对称是有限的不同的宝石矿物由于其内部质点按不同的规律重复排列(格子构造不同),因而会具有不同的对称性。
有的矿物晶体对称性很高(如钻石和尖晶石等),有的则对称性较低(如托帕石、天河石等)。
只有符合格子构造规律的对称才能在晶体上体现出来,因此晶体的对称是有限的。
对称性很高的石榴石对称性没那么明显的天河石如何分析对称性?为了研究和分析晶体的对称性,往往要进行一系列的操作----使晶体中相同部分重复而进行的操作,称之为对称操作。
进行对称操作所借助的几何要素(点、线、面)称为对称要素,一般包括对称面、对称轴和对称中心等。
对称面----是一个假想的通过晶体中心的平面,它将晶体平分为互为镜像的两个相等部分,以P来表示,最多可有9个。
对称面与非对称面的对比立方体的九个对称面(记作9P)对称轴----一根假想的通过晶体中心的直线。
怎么确定呢?围绕此直线旋转一周,看晶体中相同部分重复出现的次数,我们把次数叫轴次,且只能出现2、3、4、6次,分别表示为L2、L3、L4、L6。
其中轴次高于2次的对称轴(即L3、L4、L6)称为高次轴。
绿柱石具六次对称轴(可见正六边形的横截面)对称中心----一个假想的位于晶体中心的点,相应的对称操作就是对此点的反伸。
如果通过此点作任意直线,则在此直线上距对称中心等距离的两端必定可找到对应点。
对称中心用C来表示。
PS:对称中心C最多只有一个。
当存在对称中心时,晶面常成对分布、两两平行、同形等大......对称要素总结一个晶体中所有对称要素(对称面、对称轴和对称中心)的组合称为该晶体的对称型。
例如,萤石晶体存在三个L4、四个L3、六个L2、九个对称面P、一个对称中心C,那么萤石的对称型就是所有这些对称要素的总和。
晶体的宏观对称性一宏观对称性晶体的点阵结构使晶体的对称性跟分子的对称性有一定的差别。
晶体的宏观对称性仍然具有分子对称性的4种类型,但受到点阵的制约:旋转轴和反轴的轴次只能为1、2、3、4、6等几种。
因此,宏观对称元素只有:n=1,2,3,4,6;i,m,二宏观对称元素组合和32个点群对于宏观对称元素而言,进行组合是必须严格遵从两个条件的限制:第一,晶体的多面体外形是一种有限图形,因而各对称元素组合必须通过一个公共点,否则将会产生出无限多个对称元素来,这是与有限外形相互矛盾的;第二,晶体具有周期性的点阵结构,任何对称元素组合的结果,都不允许产生与点阵结构不相容的对称元素(如5、7、…等),可产生32个点群。
三晶系根据晶体的对称性,按有无某种特征对称元素为标准,将晶体分成7个晶系:立方晶系:在立方晶胞4个方向对角线上均有三重旋转轴(a=b=c, α=β=γ=90)六方晶系:有1个六重对称轴(a=b, α=β=90;, γ=120;)四方晶系:有1个四重对称轴(a=b, α=β=γ=90;)三方晶系:有1个三重对称轴(a=b, α=β=90;, γ=120;)正交晶系:有3个互相垂直的二重对称轴或2个互相垂直的对称面(α=β=γ=90;)单斜晶系:有1个二重对称轴或对称面(α=γ=90;)三斜晶系:没有特征对称元素十四种空间点阵由于这些型式是由布拉维(A.Bravais)在1885年推引得出的,故也称为"布拉维空间格子"。
⑴简单三斜(ap)⑵简单单斜(mP)⑶C心单斜(mC,mA,mI⑷简单正交(oP)⑸C心正交(oC,oA,oB)⑹体心正交(oI)⑺面心正交(oF)⑽简单四方(tP)⑾体心四方(tI)⑻简单六方(hP)⑼R心六方(hR)⑿简单立方(cP)⒀体心立方(cI)⒁面心立方(cF)。
第三章晶体的宏观对称性第一节对称性基本概念第二节晶体的宏观对称元素第三节宏观对称元素组合原理第四节晶体的三十二点群第一节对称性基本概念z对称–物体或图形的相同部分有规律的重复。
z对称动作(操作)–使物体或图形相同部分重复出现的动作。
z对称元素(要素)--对称动作所借助的几何元素(点、线、面)。
z晶体外形的对称为宏观对称性,晶体内部结构原子或离子排列的对称性为微观对称性。
前者是有限大小宏观物体具有的对称性,后者是无限晶体结构具有的对称性。
两者本质上是统一的。
宏观对称性是微观对称性的外在表现。
晶体的对称必须满足晶体对称性定律。
晶体对称性对称自身:国际符号为1,习惯记号为L1。
当它处于任意坐标中的坐标原点时,它的坐标是1(000),所导出的一般位置等效点系为:x,y,z→x,y,z (1(000))反映面(reflection plane ):对称物体或图形中,存在一平面,作垂直于该平面的任意直线,在直线上距该平面等距离两端上必定可以找到对应的点。
这一平面即为反映面。
相应的对称操作为反映。
反映面的惯用符号:P ;国际符号:m ;圣佛里斯符号:Cs反映面的极射赤面投影对称中心(inversion center):对称物体或图形中,存在一定点,作通过该点的任意直线,在直线上距该点等距离两端,可以找到对应点,则该定点即为对称中心。
相应的对称操作为反演。
对称中心的惯用符号:C;国际符号:1;圣佛里斯符号:C对称中心的极射赤面投影返回旋转轴(rotation axe):物体或图形中存在一直线,当图形围绕它旋转一定角度后,可使图形相同部分复原,此直线即为旋转轴。
相应的对称操作为旋转。
在旋转过程中,能使图形相同部分复原的最小旋转角称为该对称轴的基转角(α)。
任何图形在旋转一周(360o)必然自相重复,因此有:360/ α= n n正整数n表示图形围绕旋转轴旋转一周过程中,图形相同部分重复的次数,因此n定义为旋转轴的轴次。
第四章晶体的宏观对称在第二章中已经介绍,晶体的生长过程,实质上就是质点按照空间格子规律有规则地进行堆积的过程;所以,只要生长时有足够的自由空间,晶体就必然会长成一定形状的几何多面体。
例如石盐常成立方体,而α-石英经常长成带有尖顶的六方柱体,等等。
在具有几何多面体外形的晶体——结晶多面体上,最突出的一个性质就是它的对称性。
晶体外形上的对称性是由其内部格子构造的对称性所决定的。
所以,一切晶体都是对称的。
不过,不同晶体之间的对称性往往又是有差别的,这表现在它们的对称要素可以有所不同,并且因此构成不同的对称型。
所以,有必要同时也有可能,根据晶体的对称特点来对晶体进行分类,即划分出不同的晶族和晶系。
由于晶体的对称性从本质上来讲取决于其内部的格子构造,因此,晶体的对称性不仅包含几何意义上的对称,而且也包含物理意义上的对称,亦即晶体中凡是具有方向性的物理性质,例如折射率、电导率、弹性模量、硬度等等,它们也都呈现相应的对称关系。
这是因为,晶体的各项物理性质都是取决于其组成质点的种类和它们的排列方式的。
所以,晶体的对称性决定并影响着晶体中涉及到几何及物理两方面的一切性质。
反过来,根据晶体的几何外形以及它们的一系列物理性质,又可以用来正确地确定晶体的对称性。
所以晶体的对称性对于我们认识晶质矿物的一系列特性都具有重要的意义。
另一方面,晶体的对称性对于晶体的利用还具有指导意义。
在本章中我们将依次阐述以上的有关内容,但限于讨论晶体外形上的对称,即晶体的宏观对称。
第一节对称的概念和晶体对称的特点一、对称的概念图形相同部分有规律的重复,称为对称。
具有对称特征的图形,称为对称图形。
对称是自然科学中最普遍的一种基本概念。
自然界许多东西都具有对称特点,如植物枝叶的对生与互生,花瓣、动物形体及器官的对称生长、晶体界限要素的对称分布等;建筑物、交通工具、生活用品等,常具有对称的外形;在装饰、装潢设计、纺织品中也常可见到对称图案。
所有对称物体和对称图案统称为对称图形。
晶体的宏观对称性物理科学学院 季淑英 2014020231摘 要: 晶体是内部原子或离子在三维空间呈周期性重复排列的固体,通过对晶体三类宏观对称操作的介绍,找出了晶体的8种基本宏观对称操作。
关键词:对称中心; 反映面; 旋转轴一 什么是晶体人们最早认识晶体是从石英开始的,只知道它天然的具有规则的几何多面体,真正揭开晶体内部结构是在1914年,人类首次测定了Nacl 的晶体结构。
此后,人们积累大量测定资料开始认识到:无论晶体的外形是否规则,它们内部的原子有规则地在三维空间呈周期性重复排列。
所以,晶体是内部原子或离子在三维空间呈周期性重复排列的固体,或着说晶体是具有格子结构的固体。
而晶体的规则几何外形,只是晶体内部格子构造的外在部表现。
二 晶体的宏观对称对称性是晶体的基本性质之一,一切晶体都是对称的;但不同的晶体的对称性往往又是互有差异的。
1 对称操作对一种晶体而言,其内部结构的质点表现出某种对称性的规律排列,当在进行某种操作(线性变换)后能使自身复原,这种对称性是晶体的一个客观存在的基本性质,是晶体内部结构的规律在几何形状上的表现,晶体的许多宏观性质都与其结构上的对称性有密切关系。
对称操作:维持整个物体不变而进行的操作称作对称操作,物体在某一正交变换下保持不变,即:操作前后物体任意两点间的距离保持不变的操作。
一个物体的对称操作越多,其对称性越高。
例如密度ρ作为位矢r 的函数,即)r (ρ。
我们可以定义一个引起坐标变换的操作g 满足’r gr r =→,如果这导致)r ()gr ()’r (ρρρ==那么g 是)r (ρ的一个对称操作。
2 对称元素对称操作过程中保持不变的几何要素:对称点,反演中心(i );对称线,旋转轴(n 或者n C )和旋转反演轴(n );对称面,反映面(m )等。
以上,考察在一定几何变换之下物体的不变性,使用的几何变换(旋转和反射)都是正交变换——保持两点距离不变的变换:⎪⎪⎪⎭⎫ ⎝⎛•⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛z y x a a aa a a a a a z y x 333231232221131211,,,其中,M 为正交矩阵,⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a M 2.1 对称中心和反演(i )取晶体中心为原点,将晶体中任一点()z ,y ,x 变成()z -,y -,x - ⎪⎪⎪⎭⎫⎝⎛=1-0001-0001-M2.2 对称面和反映(m )以0z =作为镜面,将晶体中的任何一点()z ,y ,x 变成()z -y x ,, ⎪⎪⎪⎭⎫ ⎝⎛=1-00010001M2.3 n 次旋转对称轴(n 或者n C )和n 次旋转反演轴(n ) 2.3.1n 次旋转对称轴(n 或者n C )若晶体绕某一固定轴旋转角度/n π2=α以后能自身重合,则称该轴为n 次旋转对称轴。
第1篇一、引言晶体是自然界中普遍存在的物质形态,它们在微观结构上具有高度的有序性。
晶体的这种有序性可以通过宏观对称操作来描述,这些操作能够保持晶体的几何形态和物理性质。
宏观对称操作是晶体学中一个重要的概念,它有助于我们理解晶体的结构特征和性质。
本文将详细探讨晶体的宏观对称操作,包括其定义、分类、性质以及在实际中的应用。
二、定义宏观对称操作是指对晶体进行一系列的几何变换,这些变换能够保持晶体的几何形态和物理性质不变。
这些操作包括旋转、反射、平移和螺旋等。
在晶体学中,这些操作被统称为点群对称操作。
三、分类1. 旋转操作旋转操作是指将晶体绕某一轴线旋转一定角度,使晶体的几何形态和物理性质保持不变。
旋转操作的轴线称为旋转轴,旋转角度称为旋转角。
根据旋转角的不同,旋转操作可以分为以下几种:(1)一级旋转:旋转角为360°,即整个晶体绕旋转轴旋转一周。
(2)二级旋转:旋转角为180°,即晶体绕旋转轴旋转半周。
(3)三级旋转:旋转角为120°,即晶体绕旋转轴旋转1/3周。
(4)n级旋转:旋转角为360°/n,即晶体绕旋转轴旋转1/n周。
2. 反射操作反射操作是指将晶体相对于某一平面进行镜像变换,使晶体的几何形态和物理性质保持不变。
这个平面称为反射面。
根据反射面的不同,反射操作可以分为以下几种:(1)镜面反射:反射面为晶体的一个平面。
(2)轴面反射:反射面为晶体的一个轴面。
(3)体对角面反射:反射面为晶体的一个体对角面。
3. 平移操作平移操作是指将晶体沿某一方向进行平行移动,使晶体的几何形态和物理性质保持不变。
平移操作可以看作是无限多个平移操作叠加的结果。
4. 螺旋操作螺旋操作是指将晶体绕某一轴线旋转一定角度,同时沿轴线方向进行平行移动,使晶体的几何形态和物理性质保持不变。
螺旋操作的轴线称为螺旋轴,旋转角称为螺旋角。
四、性质1. 对称性晶体的宏观对称操作具有以下性质:(1)自反性:晶体经过对称操作后,其几何形态和物理性质与原始状态相同。