固体表面
- 格式:ppt
- 大小:654.50 KB
- 文档页数:22
第二章固体表面§2-1 固体表面特征及类型§2-2 固体表面能§2-3 固体表面分析技术固体表面:一般指固气界面,它实际上是由凝聚态物质靠近气体或真空的一个或几个原子层(0.5~10nm)组成。
界面是相与相之间的交界所形成的物理区域。
若其中一相为气体,这种界面通常称为表面。
界面是一个区域,在该区域中从一相之性质变为邻相之性质。
此种转变至少在分子大小的距离才能表现出来。
故界面/表面有厚度,而非简单的几何面。
①绝大多数晶体是各向异性,因而同一晶体可以有许多性能不同的表面。
(1)不均匀固体表面两大特征(2)存在力场ZnO微米棒②晶格缺陷、空位或位错可造成表面不均匀。
(1)不均匀性固体表面两大特征肖特基缺陷弗伦克尔缺陷线缺陷(刃型位错线缺陷(螺旋位错)③在空气中暴露,表面被外来物质所污染,吸附外来原子,外来原子可占据不同的表面位置,形成有序或无序排列,也引起表面不均匀。
(1)不均匀性固体表面两大特征④固体表面无论怎么光滑,从原子尺度衡量,实际上也是凹凸不平的。
(1)不均匀性固体表面两大特征硅片外观硅片绒面结构⑤不论表面进行多么严格的清洁处理,总有一些杂质由固体内部偏析到表面上来,从而使固体表面组成与内部不同(表面偏析)。
(1)不均匀性固体表面两大特征问题2:合金中有两种组份,表面的组成与体相的组成往往有差别,为什么?铝合金铸锭宽面锰偏析⑥同一种物质,制备和加工条件不同也会有不同的表面性质。
(1)不均匀性固体表面两大特征剪开的纸与撕开的纸晶体中每个质点周围都存在着一个力场,在晶体内部,质点力场是对称的。
但在固体表面,质点排列的周期重复性中断,使处于表面边界上的质点力场对称性破坏,表现出剩余的键力,称之为固体表面力。
固体表面两大特征(2)存在力场固体表面力的产生示意图超市的卷状购物袋在揭开的时候有一种互相拉扯的感觉,为什么?新拉出来的玻璃丝可粘住很多碎玻璃丝,就像磁铁吸引铁钉一样,给个解释。
第十一章固体表面11.1本章学习要求1.了解固体表面特性,了解液固界面吸附。
2.掌握气固界面的吸附作用、特性及Freundlich定温式、Langmuir单分子层吸附定温式等相关吸附理论。
了解 B.E.T多分子层吸附定温式及其内容。
3.理解物理吸附和化学吸附的意义和区别。
4.了解液体对固体表面的润湿作用。
理解接触角和 Young方程。
11.2内容概要11.2.1气体在固体表面的吸附1.吸附及类型:固体表面因存在过剩的不平衡力场而具有吸附能力。
它从其周围的介质中吸附其它物质粒子时,可降低固体的表面张力,使体系的Gibbs自由能减小,即吸附作用可以自发进行。
具有吸附能力的物质称为吸附剂(adsorbent);被吸附的物质称为吸附质(adsorbate)。
根据吸附作用力的不同,可将吸附分为物理吸附和化学吸附。
2.等温吸附公式:一定温度下,吸附平衡时,单位质量吸附剂所吸附气体的体积(折算为273K,标准状态下)或物质的量称为吸附量(adsorbance),单位为或。
定温下吸附量与气体平衡压力p的关系式称为吸附等温式。
(1)Freundlich吸附等温式:或式中k、n为经验常数。
以对作图,应得一直线,其截距为,斜率为,由此可求得k、n。
此式是经验公式,一般适用于中压范围。
(2)Langmuir单分子层吸附理论:(ⅰ)气体在固体表面上的吸附是单分子层的;(ⅱ)固体表面是均匀的,各处吸附能力相同;(ⅲ)已被吸附的气体分子间无作用力;(ⅳ)吸附平衡是吸附与解吸的动态平衡。
(3)Langmuir吸附等温式:或其中:b是吸附平衡常数,,吸附速率常数k1与解吸速率常数k-1之比。
是饱和吸附量。
以对p作图得直线,其截距为,斜率为,由此可求得和b。
由值,可进一步求算吸附剂的比表面积S0,S=S:1kg吸附剂具有的表面积;:1kg吸附剂饱和吸附单分子层吸附质分子的物质的量;A:吸附质分子的截面积m2;mL:Avcgadro常数();多数化学吸附是单分子层吸附,当复盖率不大,吸附热变化较小时均能满足Langmuir吸附等温式。
第二章固体表面的物理化学特性1:表面:一种凝聚态物质与另外的物质或者真空之间的过渡区域,一般有一个或者几个原子组成(0.5~10nm)(表面原子近程有序)2:范德瓦尔斯键:固体中的原子、离子、或分子之间存在一定的结合键,这种结合键与原子结构有关,最简单的固体可能是凝固太的惰性气体,惰性气体因其原子外壳电子层已经填满而呈稳定状态,通常惰性气体原子之间的结合键非常微弱,只有处于很低的文ushi才会液化和凝固,这种结合键称为范德瓦尔斯键,处惰性气体外,许多分子之间也可通过这种键结合为固体。
分子间和氢键都属于物理键或次价键3:氯化钠固体是离子键结合的,硅石共价键结合,铜是金属键结合,这三种间都较强,铜属于化学键或主价键。
4:常见金属的晶体结构主要有三种:面心立方(fcc)、密排六方(hcp)、体心立方(bcc)。
5:表面能:要形成新的表面,需要外界提供能量,是一些键发生断裂。
6:固体材料的界面有三种:表面(固体材料与气体或液体的分界面);晶界(多晶材料内部成分、结构相同而取向不同地晶粒或亚晶之间的界);相界(固体材料中成分、结构不同地两相之间的界面)。
7:理想表面:一种理论上认为的结构完整的二维点阵平面,表面的原子分布位置和电子密度都和体内一样。
8:清洁表面:是指在特殊环境中经过特殊处理后获得的表面,是不存在吸附、催化反应或杂质扩散等物理、化学效应的表面。
(其结构式TLK模型P23)9:晶体表面达到稳定态的方式:自行调整;依靠表面的成分偏析。
10:θ<90°称为润湿,θ>90°称为不润湿。
11:表面电子态(表面态):能带其电子态就会和体内布洛赫波连结起来,在体内便有不为零的几率分布,严格说这就不是表面态,这称为表面共振。
12:表面态分类:外诱表面态;本征表面态。
13:表面态和界面态的重要性:表面的原子排列与体内不同;从电荷的分布来看,表面局部电子态波函数自最外一层原子面分别向体内和真空呈指数衰减,分布在表面两侧约1~1.5nm 范围内;表面态(或零界态)对半导体材料和器件的性质,尤其是对表面电导和光学性质有重大影响。