3.1.2复数的几何意义 教案.doc教学设计
- 格式:doc
- 大小:183.70 KB
- 文档页数:4
第三章数系的扩充与复数的引入【课题】:3.1.2 复数的几何意义【学情分析】:教学对象是高二的学生,学生已经学过代数、解析几何的相关知识,所以本节课要求学生通过类比实数的几何意义自己探索复数的几何意义,由于学生已经学过平面向量及其几何表示、坐标表示,得到用平面向量来表示复数就比较容易了.【教学目标】:(1)知识与技能:了解复数的几何意义,会用复平面的点和向量来表示复数;(2)过程与方法:在解决问题中,通过数形结合的思想方法,加深对复数几何意义的理解;(3)情感态度与价值观:培养学生用联系的观点分析、解决问题的能力。
【教学重点】:复数的代数形式和复数的向量表示.【教学难点】:复数的向量表示.【课前准备】:powerpoint课件六、 作业1、在复平面内,复数2)31(1i ii+++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-=iiz 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+=+=2,23,32,214321 对应的点4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论.解:因为︱1z ︱=52122=+,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5,所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上.4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置: (!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0.解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上? 解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3)6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+=则.4322=+a 解得 ±=a 1.所以 .31i z +±=。
《复数的几何意义》教学设计教学目标:1知识与技能:理解复数的几何意义;根据复数的几何意义,在复平面内能描出复数的点;会运用复数的几何意义判断复数所在的象限及求复数的模。
2过程与方法:通过类比实数的几何意义学习复数的几何意义,类比向量求模来学习求复数的模,培养学生的逻辑思维能力。
3情感态度与价值观:通过复数的学习,培养学生数形结合的数学思想,从而激发学生学习数学的兴趣。
教学重点:复数的几何意义以及复数的模。
教学难点:复数的几何意义及模的综合应用。
教学方法:主要让学生类比实数的几何意义,探究出复数的几何意义;类比向量的模探究出复数的模。
教学过程:一、复习引入上节课引入了复数,学习了复数的定义,从而把数系由实数系扩充到了复数系,请同学们回忆:复数是如何定义的? 把形如z a bi =+的数叫做复数,其中a ,b 都是实数。
a 叫实部,b 叫虚部,i 叫虚部单位。
i 又是什么特点?21i =-复数(),z a bi a b R =+∈表示实数的条件是?0b =;表示虚数的条件是?0b ≠;表示纯虚数的条件是?0,0a b =≠ 我们上节课知道了,对于一般的两个复数是不能比较大小的,那么为什么不能比较大小?复数的本质是什么?又有什么意义呢?这节课我们从形的角度研究复数,学习复数的几何意义。
二、新课讲解1复数的几何意义(1)师:在几何上,我们可以用什么来表示实数呢?生:数轴上的点!师:实数与数轴上的点有着怎样的对应关系?生:一一对应师:也就是说实数与数轴上的点,在数与形上是一一对应的,因此,在几何上,我们可以用数轴上的点来表示实数;类比实数的表示,在几何上,我们可以用什么来表示复数呢?师:复数的代数式是(),z a bi a b R =+∈,一个复数是由那两部分唯一确定的? 生:由实部a 与虚部b 共同唯一确定的师:若将实部a 与虚部b 构成一个有序实数对(),a b ,那么复数z a bi =+与有序实数对(),a b 之间有怎样的对应关系呢? 生:一一对应师:而有序实数对(),a b 又与直角坐标系中的什么是一一对应的呢?生:直角坐标系中的点 师:这个点横坐标是a ,纵坐标是b !这样,我们就建立了复数z a bi =+与平面直角坐标系中的点(),a b 的这种一一对应的关系,通常这个点用大写的Z 来表示。
2019-2020年高中数学《3.1.2复数的几何意义》教案 新人教A 版选修1-2 教学要求:理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量。
教学重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。
教学难点: 根据复数的代数形式描出其对应的点及向量。
教学过程:一、复习准备:1. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。
14,72,83,6,,20,7,0,03,3i i i i i i i +-+---2.复数,当取何值时为实数、虚数、纯虚数?3. 若,试求的值,(呢?)二、讲授新课:1. 复数的几何意义:① 讨论:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?(分析复数的代数形式,因为它是由实部和虚部同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标) 结论:复数与平面内的点或序实数一一对应。
②复平面:以轴为实轴, 轴为虚轴建立直角坐标系,得到的平面叫复平面。
复数与复平面内的点一一对应。
③例1:在复平面内描出复数14,72,83,6,,20,7,0,03,3i i i i i i i +-+---分别对应的点。
(先建立直角坐标系,标注点时注意纵坐标是而不是)观察例1中我们所描出的点,从中我们可以得出什么结论?④实数都落在实轴上,纯虚数落在虚轴上,除原点外,虚轴表示纯虚数。
思考:我们所学过的知识当中,与平面内的点一一对应的东西还有哪些?⑤Z a bi =+↔一一对应复数复平面内的点(a,b),Z a bi =+↔一一对应复数平面向量OZ ,↔一一对应复平面内的点(a,b)平面向量OZ注意:人们常将复数说成点或向量,规定相等的向量表示同一复数。
2.应用例2,在我们刚才例1中,分别画出各复数所对应的向量。
练习:在复平面内画出23,42,13,4,30i i i i i +--+--所对应的向量。
小结:复数与复平面内的点及平面向量一一对应,复数的几何意义。
【教学设计】3.1.2《复数的几何意义》福建省福清华侨中学王莺教学目标:1.知识与技能:了解复数的几何意义和复数模的几何意义,并能适当应用。
2.过程与方法:通过类比实数的几何意义来学习复数的几何意义,类比向量求模来学习求复数的模,培养学生的逻辑思维能力。
3.情感态度与价值观:通过复数几何意义的学习,培养学生数形结合的数学思想,从而激发学生学习数学的兴趣。
教学重点:复数的几何意义以及复数的模。
教学难点:复数的几何意义及模的综合应用。
教学方法:主要让学生类比实数的几何意义,探究出复数的几何意义;类比向量的模探究出复数的模。
教学过程:一、复习引入上节课引入了复数,学习了复数的定义,从而把数系由实数系扩充到了复数系,请同学们回忆:(1)复数是如何定义的?把形如z=a+bi的数叫做复数,其中a,b都是实数。
a叫实部,b叫虚部,i叫虚部单位。
i又是什么特点?(2)复数z=a+bi (a,b∈R )表示实数的条件是?表示虚数的条件是?表示纯虚数的条件是?(3)两个复数相等的充要条件是什么?我们上节课知道了,对于一般的两个复数是不能比较大小的,那么为什么不能比较大小?复数的本质是什么?又有什么意义呢?这节课我们从形的角度研究复数,学习复数的几何意义。
二、新课讲解1.复数的几何意义(1)师:在几何上,我们可以用什么来表示实数呢?------数轴上的点!师:实数与数轴上的点有着怎样的对应关系?-------一一对应!师:也就是说实数与数轴上的点,在数与形上是一一对应的,因此,在几何上,我们可以用数轴上的点来表示实数。
类比实数的表示,在几何上,我们可以用什么来表示复数呢?师:一个复数是由哪两部分唯一确定的?------由实部a与虚部b共同唯一确定的!师:若将实部a与虚部b构成一个有序实数对(a,b),那么复数z=a+bi (a,b∈R )与有序实数对(a,b)之间有怎样的对应关系呢?------一一对应!师:而有序实数对(a,b)又与直角坐标系中的点(a,b)是一一对应的。
复数的几何意义(教学设计)究复数的几何意义是本节课的重点,它是复数运算的重要基础。
在之前研究实数的几何意义和绝对值的意义后,学生可以通过类比来理解复数的几何意义。
本节课的目标是让学生理解复数的几何意义,能够在复平面内描出复数的点,并能够运用复数的几何意义判断复数所在的象限和求复数的模。
本节课的重点是复数的几何意义和复数的模,难点是复数的几何意义和模的综合应用。
教师采用类比实数的几何意义和绝对值的几何意义的方法,让学生探究出复数的几何意义,并通过类比向量求模的公式来研究求复数的模的公式。
建议学生通过已学内容大胆探索复数的几何意义和复数的模的定义及公式。
教学过程中,教师可以通过创设情境,让学生进行讨论,引起认知冲突,从而促进学生的思考和探究。
例如,教师可以让学生回答复数的代数形式和实数、虚数、纯虚数的条件分别是什么,让学生思考实数与数轴上的点的对应关系和复数与有序实数对、坐标点的对应关系等问题,从而找到复数的几何意义。
同时,教师也可以通过探究平面向量OZ的坐标和复数的另一个几何意义来让学生更好地理解复数的几何意义。
在教学中,教师可以准备三角板、多媒体等教具,让学生更加直观地理解复数的几何意义。
通过本节课的研究,可以培养学生的逻辑思维能力,激发学生研究数学的兴趣,同时也可以让学生更加深入地理解复数的概念和应用。
探究复数的几何意义:教师通过多媒体展示,让学生认识复平面内的点Z(a,b)与复数z=a+bi的一一对应关系。
复平面的有关概念介绍:复平面是由实轴和虚轴组成的平面,实轴表示实数,虚轴除原点外都是纯虚数。
探究复数的模:让学生通过类比实数的绝对值、向量的模的几何意义,归纳出复数的模的几何意义,即z=|z|=OZ=√(a²+b²)。
例1:让学生思考实数x分别取什么值时,复数z=x²+x-6+(x²-2x-15)i对应的点Z在第三象限,并通过学生黑板做题和师生点评来总结例1的方法规律。
【学习目标】1.理解复数与从原点出发的向量的对应关系;2.了解复数的几何意义 【学习过程】: 一、学前准备:1. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。
14,72,83,6,,20,7,0,03,3i i i i i i i +-+---2.复数(4)(3)z x y i =++-,当,x y 取何值时为实数、虚数、纯虚数?3. 实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?4.若(,)A x y ,(0,0)O ,则=OA5. 若),(11y x =a ,),(22y x =b ,则b +α = ,b a - =6. 若),(11y x A ,),(22y x B ,则=AB即 AB =OB -OA =分析复数的代数形式,因为它是由实部a 和虚部同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标二、合作探究: 1. 复平面:2.在复平面内描出复数14,72,83,6,,20,7,0,03,3i i i i i i i +-+---分别对应的点。
(先建立直角坐标系,标注点时注意纵坐标是b 而不是bi )观察我们所描出的点,从中我们可以得出什么结论?思考:我们所学过的知识当中,与平面内的点一一对应的东西还有哪些?【典例分析】例1. (2007年辽宁卷)若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限例2. 若复数22(34)(56)Z m m m m i =--+--表示的点在虚轴上,求实数a 的取值。
【学法指导】复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 【检测与反馈】1.(A) 分别写出下列各复数所对应的点的坐标。
§一、内容和内容解析内容:复数的几何意义.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第1节第二课时的内容.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.本节课是在学生学习了复数的概念之后,对复数概念的进一步理解和深化,为下一节课复数加法和减法几何意义的学习提供了理论支撑。
因此,本节课具有承上启下的作用。
同时对加深学生对数形结合思想的认识,发展学生的思维能力具有重要意义。
二、目标和目标解析目标:(1)理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.(2)掌握实轴、虚轴、模等概念.(3)掌握用向量的模来表示复数的模的方法.目标解析:(1)复数的几何意义,沟通了复数与平面向量、有序等知识的联系,为解决平面向量、三角函数和平面几何问题提供了一种重要途径,实现了数与形,代数与几何之间的沟通.(2)本节内容突出了复数的几何意义,体现了形与数的融合,此外,本节的知识也蕴含了化归与转化的数学思想,如,某些复数问题可以转化为平面向量问题去解决、某些平面向量问题也可以转化成复数问题去解决等,再有,本节在研究过程中也运用了类比的研究方法,运用好本节的相关知识素材,让学生体会这些数学思想方法,有助于提升他们的直观想象和逻辑推理素养.基于上述分析,本节课的教学重点定为:复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系,掌握用向量的模来表示复数的模的方法.三、教学问题诊断分析教学问题一:在知识储备上,学生已经经历了数系扩充的过程,学习了复数的概念,但研究复数的几何意义,从思维角度看学生还缺乏经验;因此,在研究其几何意义,探究复数a+bi和平面上的点Z(a,b)以及向量OZ一一对应时有一定难度.解决方案:在讲解本节前,可提前布置一些预习作业,让学生为新课的学习做好知识准备,或者在课上先复习平面向量的相关知识,再进行新课的学习和探究,探究时要充分注意复数与平面向量的联系性,这是突破难点的一个重要举措.教学问题二:复数模的几何意义是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:复习初中学过的圆的定义,距离的定义,将模与距离,与向量的模相类比,从而突破这一难点.基于上述情况,本节课的教学难点定为:理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、类比得到复数的几何意义,应该为学生创造积极探究的平台.可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究突出教学重点,突破教学难点.在教学过程中,重视复数几何意义的探究,让学生体会类比推理的基本过程,同时,复数模的几何意义是数形结合的典范.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计与点Z 有什么关系?2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )复平面内的点Z (a ,b ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的模(1)定义:向量OZ →的模叫做复数z =a +b i(a ,b ∈R )的模或绝对值.(2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +b i 是一个实数,它的模就等于|a |(a 的绝对值). 4.共轭复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i.典例分析,举一反三例1.在复平面内,若复数z =(m 2-2m -8)+(m 2+3m -10)i 对应的点:(1)在虚轴上;(2)在第二象限;(3)在第二、四象限;(4)在直线y =x 上,分别求实数m 的取值范围.例2.设O 是原点,向量教师8:完成例1.学生7:复数z =(m 2-2m -8)+(m 2+3m -10)i 的实部为m 2-2m -8,虚部为m 2+3m -10.(1)由题意得m 2-2mm =-2或m =4.(2)由题意,⎩⎪⎨⎪⎧m 2-2m -8<0,m 2+3m -10>0,∴2<m <4.(3)由题意,(m 2-2m -8)(m 2+3m -10)<0, ∴2<m <4或-5<m <-2.(4)由已知得m 2-2m -8=m 2+3m -10,故m =25.教师9:完成例2通过例题进一步巩固复数的几何意义,提高学生的概括问题的能力、解决问题的能力。
《复数的几何意义》教学设计第2课时1.理解复平面、实轴、虚轴、共轭复数等概念.2.掌握复数的几何意义,并能适当应用.3.掌握复数模的定义及求模公式.教学重点:复平面、实轴、虚轴、共轭复数、复数的模等概念.复数的几何意义的简单应用.教学难点:一、问题导入问题1:能怎样建立起复数与几何模型中点的一一对应关系?师生活动:学生先回忆初中实数几何意义等.【想一想】否为复数找一个几何模型呢?设计意图:通过对实数几何意义的回顾,提出复数几何意义的问题,引导学生进行类比思考.引语:要解决这个问题,就需要进一步学习复数的几何意义.(板书:复数的几何意义)【新知探究】1.分析实数几何意义,感知复数几何意义.问题2:实数几何意义是什么?如何定义复数几何意义?复平面如何定义?师生活动:实数几何意义是:对每一个实数,总能在数轴上找到唯一点与之的对应.反之,对数轴上任意一个点,总能确定一个唯一的实数值.一方面根据复数相等的定义,复数Z=a+b i(a,b∈R)被它的实部与虚部唯一确定,即复数Z被有序实数对(a,b)唯一确定;另一方面,有序实数对(a,b)在平面直角坐标系中对应着唯一的点Z (a,b),因此不难发现,可以在复数集与平面直角坐标系的点集之间建立一一对应关系,即复数Z=a+b i 与点Z (a,b)具有一一对应关系.建立了直角坐标系来表示复数的平面,也称为复平面, x 轴上的点对应的都是实数,因此x 轴称为实轴, y 轴上的点除了原点以外,对应的都是纯虚数,为了方便起见,称y 轴为虚轴.追问:联系向量,复数还可以有什么几何意义?预设的答案:因为平面直角坐标系中的点 Z (a ,b )能唯一确定一个以原点O 为始点, Z 为终点的向量OZ ,所以复数也可以用向量OZ 来表示,这样以来也就能在复数集与平面直角坐标系中以O 为始点的向量组成集合之间建立一一对应关系,即复数Z a bi =+↔向量OZ = (a ,b )设计意图:类比实数几何意义,感知复数几何意义,发展学生逻辑推理和直观想象的核心素养.2.在实例感知的基础上,总结出共轭复数的概念.问题3:两个复数的实部相等,而虚部互为相反数,它们有什么关系?师生活动:一般地,如果两个复数的实部相等,而虚部互为相反数,则称这两个复数互为共轭复数,复数Z 的共轭复数用OZ 表示,因此,当(,)Z a bi a b R =+∈时,有OZ =a -b i追问:一般地,当a ,b ∈ R 时,复数a +b i 与a -b i 在复平面内对应的点有什么位置关系?预设的答案:在复平面内,表示两个共轭复数的点关于实轴对称;反之,如果表示两个复数的点在复平面内关于实轴对称,则这两个复数互为共轭复数.设计意图:培养学生分析和归纳的能力.问题4:自主阅读教材,回答:复数的模如何定义?师生活动:一般的向量的长度称为复数的模(或绝对值),复数的模用表示,因此. 可以看出,当b =0时, 说明复数的模是实数绝对值概念的推广. 追问:两个共轭复数的模什么关系?预设的答案:一般地两个共轭复数的模相等,即.设计意图:通过联系向量知识,体会复数与向量的对应关系,进而提出模长的概念.发展学生数学抽象、数学运算、逻辑推理、直观想象的核心素养. 【巩固练习】 例1. 设复数134=+z i 在复平面内对应的点为1Z ,对应的向量为1OZ ;复数2z 在复平面内对应的点为2Z ,对应的向量为2OZ .已知1Z 与2Z 关于虚轴对称,求2z 并判断1OZ 与2OZ 的大小关系.师生活动:学生分析解题思路,给出答案.预设的答案:由题意可知1(3,4)Z ,又因为1Z 与2Z 关于虚轴对称,所以2(3,4)-Z . 从而有234=-+z i .因此222(3)45=-+=z . 又因为2211||345==+=OZ z ,225==OZ z . 所以12||||=OZ OZ . 设计意图:通过典例解析,加深对复数几何意义的理解,提高学生的数学抽象、数学运算及逻辑推理、直观想象的核心素养.例2. 若复数z 1=(x -3)+(x +2y+1)i 与z 2=2y +i(x ,y ∈R )互为共轭复数,求x 与y.师生活动:学生分析解题思路,给出答案.预设的答案:z 2=2y +i(x ,y ∈R )的共轭复数=2y -i(x ,y ∈R ) 根据复数相等的定义,得3221()-=⎧⎨++=-++⎩x y x y x y z . 解这个方程组,得39,77==-x y . 设计意图:通过典例解析,加深对共轭复数的理解,提高学生的数学抽象、数学运算及逻辑推理、直观想象的核心素养.例3. 设复数z 在复平面内对应的点为Z ,说明当z 分别满足下列条件时,点Z 组成的集合是什么图形,并作图表示.(1)||2=z ;(2)1||3<≤z . 师生活动:学生分析解题思路,给出答案. 预设的答案:(1)由||2=z 可知向量OZ 的长度等于2,,即点Z 到原点的距离始终等于2,因此点Z 组成的集合是圆心在原点、半径为2的圆.如图(1)所示.(2)不等式1||3<≤z 等价于不等式组31⎧≤⎪⎨>⎪⎩z z .又因为满足||3≤z 的点Z 的集合,是圆心在原点、半径为3的圆及其内部. 而满足||1>z 的点Z 的集合,是圆心在原点、半径为1的圆的外部.所以满足条件的点Z 组成的集合是一个圆环(包括外边界但不包括内边界).如图(2)所示.设计意图:通过典例解析,加深对复数模的理解,提高学生的数学抽象、数学运算及逻辑推理、直观想象的核心素养.【课堂小结】问题:(1)复数的几何意义包含哪两种情况?(2)如何理解复数的模? 互为共轭复数的两个复数的模是什么关系?师生活动:学生尝试总结,老师适当补充.预设的答案:1.复数的几何意义包含两种情况:(1)复数与复平面内点的对应:复数的实、虚部是该点的横、纵坐标,利用这一点,可把复数问题转化为平面内点的坐标问题.(2)复数与复平面内向量的对应:复数的实、虚部是对应向量的坐标,利用这一点,可把复数问题转化为向量问题.(3)根据复数与复平面内的点一一对应,复数与向量一一对应,可知复数z =a +b i 、复平面内的点Z (a ,b )和平面向量OZ 之间的关系可用下图表示:2.复数的模(1)复数z=a+b i(a,b∈R)的模|z|=a2+b2;(2)从几何意义上理解,复数z的模表示复数z对应的点Z和原点间的距离.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算.(3)互为共轭复数的两个复数的模相等且在复平面内对应的点关于实轴对称.(4)两个复数不能比较大小,但它们的模可以比较大小.设计意图:通过梳理本节课的内容,能让学生更加明确集合的有关知识.布置作业:【目标检测】1.判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.()(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.()(3)复数的模一定是正实数.( )设计意图:巩固理解复数的几何意义.2.在复平面内,复数z=1-i对应的点的坐标为()A.(1,i)B.(1,-i) C.(1,1) D.(1,-1)设计意图:3.已知复数z=3+2i,则z=________;|z|=________.设计意图:巩固理解复数的几何意义.4.已知复数z=x+y i(x,y∈R)的模是22,则点(x,y)表示的图形是________.设计意图:巩固理解复数的模及几何意义.5.实数x取什么值时,复平面内表示复数z=x2+x-6+(x2-2x-15)i的点Z:(1)位于第三象限;(2)位于第四象限;(3)位于直线x-y-3=0上.设计意图:巩固理解复数的几何意义.参考答案:1. (1)√ (2)× (3)×2.复数z =1-i 的实部为1,虚部为-1,故其对应的坐标为(1,-1).故选D . 3.∵z =3+2i ,∴z =3-2i ,|z |=32+22=13.4.∵|z |=22,∴x 2+y 2=22,∴x 2+y 2=8.则点(x ,y )表示以原点为圆心,以22为半径的圆.5.因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎪⎨⎪⎧ x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 位于第三象限. (2)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6>0,x 2-2x -15<0,即2<x <5时,点Z 位于第四象限. (3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时. 点Z 位于直线x -y -3=0上.。
§3.1.2复数的几何意义教学目标:知识与技能:理解复数与从原点出发的向量的对应关系过程与方法:了解复数的几何意义情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用教学重点:复数与从原点出发的向量的对应关系.教学难点:复数的几何意义。
教具准备:多媒体、实物投影仪。
教学设想:复数z=a+bi(a 、b ∈R)与有序实数对(a ,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a 、b ∈R),由复数相等的定义可知,可以由一个有序实数对(a ,b)惟一确定.教学过程:学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲授新课:复平面、实轴、虚轴:复数z=a+bi(a 、b ∈R)与有序实数对(a ,b)是b Z(a ,b)a o yx这是因为对于任何一个复数z=a+bi(a 、b ∈R),由复数相等的定义可知,可以由一个有序实数对(a ,b)惟一确定,如z=3+2i 可以由有序实数对(3,2)确定,又如z=-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z=a+bi(a 、b ∈R)可用点Z(a ,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z=-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 例1.(2020年辽宁卷)若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解:选B . 例2.(2020上海理科、文科)已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值.[解] |)sin (cos cos sin 1|||21i z z θθθθ-++=⋅.2sin 412cos sin 2)sin (cos )cos sin 1(22222θθθθθθθ+=+=-++= 故||21z z ⋅的最大值为,23最小值为2. 例3.(2020北京理科)满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A. 一条直线B. 两条直线C. 圆D. 椭圆解:选C.巩固练习:课后作业:课本第106页 习题3. 1 A 组4,5,6 B 组1,2教学反思:复数集C 和复平面内所有的点所成的集合是一一对应关系,即 复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.1.(2000广东,全国文科、理科,江西、天津理科)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是:( B ) (A )23 (B )i 32- (C )3i 3- (D )3+i 32. (1992全国理科、文科)已知复数z 的模为2,则│z -i│的最大值为:( D )(A)1 (B)2 (C) (D)33.(2020北京理科)若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( B )A .2B .3C .4D .54.(2020年上海卷)若,a b 为非零实数,则下列四个命题都成立:①10a a+≠ ②()2222a b a ab b +=++ ③若a b =,则a b =± ④若2a ab =,则a b =则对于任意非零复数,a b ,上述命题仍然成立的序号是_____。
复数的几何意义教案2、复数的几何意义复数a+bi,即点Z(a,b)(亚数的几何形式)、即向量57(复数的向量形式。
以。
为始点的向量,规定:相等的向量表示同一个免数。
)三者的关系如下:[巩固练习](1)、在复平面内,分别用点和向量表示下列复数:4,2+i,-l+3i,3-2i,-i⑵、“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的((八)必要不充分条件(B)充分不必要条件(C)充要条件(D)既不充分也不必要条件(3)、复平面内,表示一对共聊复数的两个点具有怎样的位置关系?变式:其次象限的点表示的复数有何特征?问题4:实数可以比较大小,随意两个复数可以比较大小吗?认为可以者,请拿出进行比较的方法;认为不行以者,请说明理由。
(学生探讨,回答,订正错误,形成共识)面对全体学生(属基本题型),巩固概念,体会数形结合思想,重视一题多变,较全面地理解复数、复平面内的点、始点为原点的向量三者的关系。
阐明复数与实数的联系和区分,实数能比较大小,虚数不能比较大小,是实数的复数能比较大小,能比较大小的复数只能是实数。
复数可看作是向量OZ,向量不能比较大小,但向量的模可以比较大小,从而引出复数的模(或肯定值)。
通过学问的分层练习,使学生明确复数的模(或肯定值),即点Z 到复平面原点的距离,会求3、复数的模(或肯定值)向量。
Z的模叫做复数Z=a+bi的模(或肯定值),记作团或|。
+例。
假如b=0, 那么Z=a+bi就是实数a,它的模等于同(即实数a的肯定值)。
∖z∖=∖a+bi[=y∣a2^b2复数的模。
(3)(4)中利用计算机动画,体会数形结合思想,加深数与形的相互转化。
[巩固练习](1)、己知复数Z∣=3+4i,Z2=-l+5i,试比较它们模的大小。
(2)、若复数Z=3a-4ai(a<0),则其模长为°拓展与延长:(3)满意|z|=5(z£R)的Z值有几个?满意∣z∣=5(zWC)的Z值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?(4)设Z∈C,满意2<Z≤3的点Z的集合是什么图形?(结果动画演示)问题5:既然复数可以用复平面内过原点的向量来表示,那么,复数的加法、减法有什么几何意义呢?它能像向量加法、减法一样,用作图的方法得到吗?y0(学生探讨,动手实践,回答;后用寸算机作图并用平面几何理论证明)4、复数加法、减法的几何意义设向量0Z∣,QZ2分别与复数a+bi,c+di对应,且,0Z2不共线,以OZ1,。
复数的几何意义一、教学分析《复数的几何意义》是高中数学人教A版选修2-2第三章《数系的扩充与复数的引入》的第一节第二课时,是学生在学习数系的扩充与复数的概念后的一节课,它的学习能帮助学生进一步认识复数和理解复数概念,是研究复数的运算、性质和应用主要基础,它在本章节学习内容中起着承上启下的关键作用。
二、学情分析教学对象是高二的学生,学生已经学过代数、解析几何的相关知识,本节课要求学生通过类比实数的几何意义自己探索复数的几何意义,由于学生已经学过平面向量及其几何表示、坐标表示,得到用平面向量来表示复数就比较容易了三、教学目标依据教材特点、新课标的教学要求和学生的认知水平,确定教学目标如下:1理解复数的几何意义;根据复数的几何意义,在复平面内能描出复数的点;会运用复数的几何意义判断复数所在的象限及求复数的模2通过类比实数的几何意义学习复数的几何意义,类比向量求模来学习求复数的模,培养学生的逻辑思维能力3通过复数的几何意义的学习,培养学生类比,转化和数形结合的数学思想,从而激发学生学习数学的兴趣四、教学重点和难点根据新课标要求和教材定位以及学情分析确定本节课:教学重点:复数的几何意义以及复数的模;教学难点:复数的几何意义及模的综合应用五、教学与学法教法:本节主要让学生类比实数的几何意义,探究出复数的几何意义;类比求向量的模公式探究出求复数模的公式学法:建议学生通过已学内容大胆探索复数的几何意义、复数的模的定义及公式六、教学支持条件主要教学支持条件:三角板、多媒体等七、教学过程设计(一)复习回顾问题1 在几何上,我们用什么来表示实数问题2 复数的代数形式是什么?一个复数可由什么确定?问题3 类比实数的表示,在几何上可以用什么来表示复数设计意图:创设问题情境,使学生明确这里要解决什么问题,联系旧知识,了解解决问题的大致方向。
提出问题,激发学生学习兴趣。
师生活动:教师提出问题,学生思考回答,教师再评价、引导。
3.1.2复数的几何意义【教学目标】1. 理解复数与复平面的点之间的一一对应关系2.理解复数的几何意义并掌握复数模的计算方法3、理解共轭复数的概念,了解共轭复数的简单性质【教学重难点】复数与从原点出发的向量的对应关系【教学过程】一、复习回顾(1)复数集是实数集与虚数集的(2)实数集与纯虚数集的交集是(3)纯虚数集是虚数集的(4)设复数集C 为全集,那么实数集的补集是(5)a ,b .c .d ∈R ,a+bi=c+di ⇔(6)a=0是z=a+bi(a ,b ∈R)为纯虚数的 条件二、学生活动1、阅读 课本相关内容,并完成下面题目(1)、复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是 的(2)、 叫做复平面, x 轴叫做 ,y 轴叫做实轴上的点都表示 虚轴上的点除原点外,虚轴上的点都表示(3)、复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数 ←−−−→一一对应复平面内的点 ←−−−→一一对应平面向量 (4)、共轭复数(5)、复数z =a +bi (a 、b ∈R )的模 2、学生分组讨论(1)复数与从原点出发的向量的是如何对应的?(2)复数的几何意义你是怎样理解的?(3)复数的模与向量的模有什么联系?(4)你能从几何的角度得出共轭复数的性质吗?3、练习(1)、在复平面内,分别用点和向量表示下列复数:4,3+i ,-1+4i ,-3-2i ,-i(2)、已知复数1Z =3-4i ,2Z =i 2321+,试比较它们模的大小。
(3)、若复数Z=4a+3ai(a<0),则其模长为(4)满足|z|=1(z ∈R)的z 值有几个?满足|z|=1(z ∈C)的z 值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?三、归纳总结、提升拓展例1.(2007年辽宁卷)若35ππ44θ⎛⎫∈ ⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限例2 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个平行四边形的三个顶点,求这个平行四边形的第四个顶点对应的复数.例3.设Z 为纯虚数,且11z i -=-+,求复数Z例2图四、反馈训练、巩固落实1、判断正误(1) 实轴上的点都表示实数,虚轴上的点都表示纯虚数(2) 若|z 1|=|z 2|,则z 1=z 2(3) 若|z 1|= z 1,则z 1>02、()12m z i =当<时,复数+m-1在复平面上对应的点位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、已知a ,判断z=i a a a a )22()42(22+--+-所对应的点在第几象限4、设Z 为纯虚数,且|z+2|=|4-3 i |,求复数Z。
河北省唐山市开滦第二中学高中数学 3.1.2复数的几何意义学案 新人教A 版选修1-2【学习目标】理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量.【学习过程】一.自我阅读:(课本第104页至第105页)完成知识点的提炼 探究任务一:复平面问题:我们知道,实数与数轴上的点一一对应,因此,实数可用数轴上的点来表示.类比实数的几何意义,复数的几何意义是什么呢?分析复数的代数形式,因为它是由实部a 和虚部b 同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标.结论:复数与平面内的点或序实数一一对应.新知:1.复平面:以x 轴为实轴, y 轴为虚轴建立直角坐标系,得到的平面叫复平面. 复数与复平面内的点一一对应.显然,实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数. 1. 复数的几何意义:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b ;复数z a bi =+←−−−→一一对应平面向量OZ ; 复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ .注意:人们常将复数z a bi =+说成点Z 或向量OZ ,规定相等的向量表示同一复数.2. 复数的模向量OZ 的模叫做复数z a bi =+的模,记作||z 或||a bi +.如果0b =,那么z a bi =+是一个实数a ,它的模等于||a (就是a 的绝对值),由模的定义知:22||||(0,)z a bi r a b r r R =+==+≥∈3.共轭复数: 试试:求下列复数的模以及共轭复数的模: (1)z = -5i (2)z = -3+4i (3)z =1+mi(m ∈R)※ 典型例题例1在复平面内描出复数23i +,84i -,83i +,6,i ,29i --,7i ,0分别对应的点.变式:说出图中复平面内各点所表示的复数(每个小正方格的边长为1).小结:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b .例2已知复数22276(56)()1a a z a a i a R a -+=+--∈-,试求实数a 分别取什么值时,对应的点(1)在实轴上;(2)位于复平面第一象限;(3)在直线0x y +=上;(4)在上半平面(含实轴)变式:若复数22(34)(56)z m m m m i =--+--表示的点(1)在虚轴上,求实数m 的取值;(2)在右半平面呢?小结:复数z a bi =+←−−−→一一对应平面向量OZ .【课堂小结与反思】(体会本节课所学知识、题型、方法)用自已的语言来概述本节课题的内容如下:【课堂自我检测】1. 下列命题(1)复平面内,纵坐标轴上的单位是i (2)任何两个复数都不能比较大小(3)任何数的平方都不小于0(4)虚轴上的点表示的都是纯虚数(5)实数是复数(6)虚数是复数(7)实轴上的点表示的数都是实数.其中正确的个数是( ) A .3 B .4 C .5 D .62. 对于实数,a b ,下列结论正确的是( ) A .a bi +是实数 B .a bi +是虚数 C .a bi +是复数 D .0a bi +≠3. 复平面上有点A ,B 其对应的复数分别为3i -+和13i --,O 为原点,那么是AOB ∆是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形4.若1z =,则||z =5. 如果P 是复平面内表示复数(,)a bi a b R +∈的点,分别指出下列条件下点P 的位置: (1)0,0a b >> (2)0,0a b <>(3)0,0a b =≤ (4)0b >【课后作业】1.下列命题中的假命题是( )(A)在复平面内,对应于实数的点都在实轴上; (B)在复平面内,对应于纯虚数的点都在虚轴上; (C)在复平面内,实轴上的点所对应的复数都是实数; (D)在复平面内,虚轴上的点所对应的复数都是纯虚数。
§3.1.2复数的几何意义一、教学目标:理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式得出其对应的点及向量。
二、教学重点:理解复数的几何意义,根据复数的代数形式得出其对应的点及向量。
三、教学难点:根据复数的代数形式得出其对应的点及向量。
四、教学过程:(一)复习引入:1.复习复数的定义、代数形式、相等和分类。
2. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。
14,72,83,6,,20,7,0,03,3i i i i i i i +-+---。
3.复数(4)(3)z x y i =++-,当,x y 取何值时为实数、虚数、纯虚数?4. 若(4)(3)2x y i i ++-=-,试求,x y 的值。
(二)推进新课1、讨论:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?分析:根据复数的代数形式和复数相等的定义,可知复数z =a +bi (a 、b ∈R ) 它是由实部a 和虚部b 同时确定,即由有顺序的两个实数,也就是有序实数 对(a ,b )确定的。
由于有序实数对与平面直角坐标系中的点一一对应,因 此复数与平面内的点可以建立一一对应。
如图,点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数。
除原点外,虚轴上的点都表示纯虚数。
例如,在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1) 表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i 。
2、复数的一种几何意义复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←−−−→一一对应复平面内的点Z(a ,b)例1:在复平面内描出复数14,72,83,6,,20,7,0,03,3i i i i i i i +-+---分别对应的点。
3.1.2 复数的几何意义整体设计教材分析教材通过一个思考问题引入,运用类比的方法,即类比实数的几何意义和向量的几何意义得出了复数的几何意义,也就是复数的几何表示和向量表示,并借助于向量的模定义了复数的模.本节课是学习复数概念的继续,是从“形”的角度研究复数特征的,也是数学中数形结合重要思想的又一体现.复数的几何意义是进一步学习复数的加法、减法几何意义的基础,所以理解掌握复数的几何意义具有承上启下的重要作用.课时分配1课时.教学目标1.知识与技能目标能准确用点和向量表示一个复数,理解复平面及其相关的概念以及复平面内的点、向量与复数对应的特点.掌握复数的代数形式表示、点表示和向量表示以及它们之间的联系.2.过程与方法目标通过类比实数可用数轴上的点来表示,认识复数用点和向量表示的合理性,体会数形结合思想在理解复数中的作用.3.情感、态度和价值观通过创设问题情景,让学生体验数学活动中充满了探索性和创造性,感悟数学的奇妙及魅力,并通过交流培养学生敢于发表自己的观点,勇于探索的精神.重点难点教学重点:复数与复平面内点的对应关系.教学难点:复数的几何意义.教学过程引入新课提出问题:复数a+b i与复数b+a i相等吗?复数z=a+b i(a,b∈R)由什么唯一确定?活动设计:学生举例验证,师生讨论交流.活动结果:不一定相等.只有a=b时,才有a+b i=b+a i,如3+2i≠2+3i,1-i≠-1+i等.复数a+b i由实部a、虚部b确定,即由有序数对(a,b)唯一确定.设计意图回忆旧知,吸引学生的注意力;让学生进一步认识复数代数形式的特征,揭示确定一个复数的条件,为探究新知作铺垫.提出问题:在初中我们学习过实数,知道所有实数与数轴上的所有点是一一对应的,因此实数可用数轴上的点来表示,那么复数是不是也能用点来表示?用什么样的点来表示才准确呢?活动设计:学生猜测,讨论,形成一些共识.活动成果:复数z=a+b i(a、b∈R)与有序实数对(a,b)是一一对应关系.这是因为对于任何一个复数z=a+b i(a、b∈R),由复数相等的定义可知,由一个有序实数对(a,b)唯一确定,如复数z=3+2i由有序实数对(3,2)确定,复数z=-2+i由有序实数对(-2,1)来确定.因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2),它与平面直角坐标系中横坐标为3,纵坐标为2的点A建立了一一对应的关系,由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.设计意图以学生熟悉的知识为载体,采用类比的方法,引导学生对比、思考,调动学生的积极性和主动性,活跃课堂气氛,拓展思维宽度,从而使新课更加顺理成章地展开.探究新知提出问题:在坐标平面内描出复数1+4i,3-2i,-2+i,6,i,-1+i,5i,0,-i 分别对应的点,观察所描出的点,从中可以得出什么结论?活动设计:让一名学生在黑板上描点演示,教师点评引入复平面,实轴,虚轴概念.活动成果:点Z的横坐标是a,纵坐标是b,复数z=a+b i(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数.按照这种表示方法,每一个复数,在复平面内都有唯一的点和它对应;反过来,复平面内的每一个点,也都有唯一的复数和它对应.由此可知,复数集C 和复平面内所有点构成的集合是一一对应关系,即复数z =a +b i 复平面内的点Z (a ,b )这是复数的一种几何意义,也是复数的另一种表示方法,即几何表示方法.设计意图通过具体问题情境,激发学生的思维,让学生体验任意一个复数都可以用复平面内唯一的点来表示的合理性,促使认知结构的正向迁移,自然引出复数的几何意义.提出问题:(1)我们所学过的知识当中,与平面内的点一一对应的知识还有哪些?(2)复数能用平面向量来表示吗?活动设计:学生思考,联想平面向量的几何意义,讨论用向量表示复数的合理性,教师总结.活动成果:在平面直角坐标系中,可以将平面向量的起点移至坐标原点O ,所以平面内任意一向量OA →,都与坐标平面上的点A 一一对应,且向量OA →的坐标就是其终点A 的坐标.由于复数与复平面内的点一一对应,所以复数也可以用向量表示.如图,设复平面内的点Z 表示复数z =a +b i ,连接OZ ,显然向量OZ →由点Z 唯一确定;反过来,点Z (相对于原点来说)也可以由向量OZ →唯一确定.因此,复数集C 与复平面内的向量所构成的集合也是一一对应的(实数0与零向量对应),即复数z =a +b i 平面向量OZ →这是复数的另一种几何意义,即复数的向量表示法.所以,复数z =a +b i 可以用点Z (a ,b )(复数的几何形式)表示,也可以用向量OZ →(复数的向量形式)表示.规定:相等的向量表示同一个复数.三者的关系如下:设计意图通过类比、联想,发现复平面内的点、向量与复数三者之间的联系,探究出复数的向量表示,同时,让学生感知复数与平面解析几何的关系,进而激发学习复数的热情.提出问题:任何实数都有绝对值,任何向量都有模(绝对值),类比它们,可以给出复数z =a +b i 的模的概念吗?它有什么几何意义?活动设计:请学生讨论后发言,教师点评,并引入复数的模的概念,导出复数模的公式. 活动结果:由于复数可以用向量表示,因此可以类比向量模的定义,给出复数模的定义.即向量OZ →的模r 叫做复数z =a +b i 的模(或绝对值),记作|z |或|a +bi |.如果b =0,那么z =a +b i 就是实数a ,它的模等于|a |(即实数a 的绝对值).由模的定义可知,复数的模表示复平面上复数对应的点Z 到原点的距离,因此|z |=|a +b i|=a 2+b 2.设计意图运用类比思想,与向量模的定义类比,引出复数模的定义,进而引出复数模的公式,复数模的几何意义.理解新知提出问题:判断下列命题的真假:①在复平面内,对应于实数的点都在实轴上.( )②在复平面内,对应于纯虚数的点都在虚轴上.( )③在复平面内,实轴上的点所对应的复数都是实数.( )④在复平面内,虚轴上的点所对应的复数都是纯虚数.()⑤在复平面内,对应于非纯虚数的点都分布在四个象限.()活动设计:小组讨论,小组代表发言,相互交流,达成共识.活动成果:根据实轴的定义,x轴叫实轴,实轴上的点都表示实数,反过来,实数对应的点都在实轴上,如实轴上的点(2,0)表示实数2,因此①③是真命题;根据虚轴的定义,y 轴叫虚轴,显然所有纯虚数对应的点都在虚轴上,如纯虚数5i对应点(0,5),但虚轴上的点却不都是纯虚数,这是因为原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0表示的是实数,故除了原点外,虚轴上的点都表示纯虚数,所以④是假命题;对于非纯虚数数z=a+b i,由于a≠0,所以它对应的点Z(a,b)不会落在虚轴上,但当b=0时,z所对应的点在实轴上,故⑤是假命题.设计意图通过具体问题的是非判断,让学生明确实轴和虚轴的特点,理解复数与复平面内点的对应关系.巩固练习设z=a+b i和复平面内的点Z(a,b)对应,(1)若点Z位于实轴上,则a、b应满足______;(2)若点Z位于虚轴上(原点除外),则a、b应满足______;(3)若点Z位于实轴的上方,则a、b应满足__________;(4)若点Z位于虚轴的左方,则a、b应满足__________.【答案】(1)a∈R,b=0;(2)a=0,b≠0;(3)a∈R,b>0;(4)a<0,b∈R.提出问题:(1)复数的模能否比较大小?(2)满足|z|=5(z∈R)的z值有几个?(3)满足|z|=5(z∈C)的z值有几个?这些复数z对应的点在复平面上构成怎样的图形?活动设计:教师提出问题,学生思考,小组交流讨论,教师点拨.学情预测:对问题(1)、(2)容易回答,问题(3)可能考虑不全,教师引导完善.由于复数的模是一非负实数,因此两个复数的模可以比较大小,如|1+i|=2,|1-2i|=5,由于5>2,所以|1-2i|>|1+i|.若z∈R,根据实数绝对值的意义知,满足|z|=5的z 值有2个,即z=±5;若z∈C,由复数模的几何意义知,|z|=5表示复平面内复数z对应的点Z到原点O的距离等于5,显然满足|z|=5(z∈C)的z值有无数个,根据圆的定义可知,这些复数z对应的点Z形成了一个以原点为圆心,以5为半径的圆.运用新知例1 已知复数z =(m 2+m -6)+(m 2+m -2)i 在复平面内所对应的点位于第二象限,求实数m 的取值范围.思路分析:先确定复数z 对应点的坐标,然后依据第二象限内点的坐标的符号,列出关于m 的不等式组,即可求出实数m 的取值范围.解:复数z 对应点的坐标是(m 2+m -6,m 2+m -2),若复数z 对应的点在第二象限,则 ⎩⎪⎨⎪⎧m 2+m -6<0,m 2+m -2>0,解得-3<m <-2或1<m <2. 所以实数m 的取值范围是(-3,-2)∪(1,2).点评:本题主要考查复数的几何意义,即复数与复平面内的点一一对应.若复数对应的点在第二象限,则点的横坐标小于零,且纵坐标大于零.解决此类问题的关键是先确定复数对应点的坐标,然后根据点所满足的条件列出相应的不等式或等式,求出相应参数的值或取值范围.设计意图训练学生对复数几何意义的理解,渗透数形结合思想,培养学生严谨的思维.变式练习:(1)当23<m <1时,复数z =(m -1)+(3m -2)i 在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限(2)证明复数z =(m 2+m -6)+(m 2+m -2)i 对应的点不可能位于第四象限.(1)【答案】B【解析】若23<m <1,则-13<m -1<0,0<3m -2<1, 所以复数z =(m -1)+(3m -2)i 在复平面上对应的点位于第二象限,故选B.(2)证明:反证法:假设复数对应的点在第四象限,则⎩⎪⎨⎪⎧m 2+m -6>0,m 2+m -2<0,此不等式组无解,所以假设不成立,因此复数对应的点不可能在第四象限.例2 若z =a +3i(a ∈R ),且|z |=2,则a =________.【解析】因为z =a +3i(a ∈R ),且|z |=2,则a 2+3=2,解得a =±1.【答案】±1点评:有关复数模的问题,基本解法是根据模的公式求解.本题也可以利用复数的几何意义求解.对于本题,即求圆x 2+y 2=4与直线y =3交点的横坐标.变式训练:已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( )A .(1,5)B .(1,3)C .(1,5)D .(1,3)【答案】C变练演编1.已知复数z =(m 2-m -6)+(m +2)i ,(1)添加条件________,可以求实数m 的值.(2)添加条件________,可以求数m 的取值范围.【答案】本题属于开放式题,添加条件不唯一.(1)可以添加条件“所对应的点在直线y =x 上”,由于复数z 对应的点的坐标是(m 2-m -6,m +2),则m 2-m -6=m +2,即m 2-2m -8=0,解得m =4或m =-2.也可以添加条件:对应的点在虚轴上,此时,应有m 2-m -6=0,解得m =3或m =-2.还可以添加条件:对应的点在实轴上,对应的点位于抛物线y 2=x 上等等.(2)可以添加条件:对应点位于第一象限,此时⎩⎪⎨⎪⎧m 2-m -6>0,m +2>0,解得m >3. 还可以添加条件:对应点位于虚轴的右侧等.2.已知复数z =cos θ+isin θ,θ∈R ,你能求解哪些问题?写出两个,并尝试解决. 提示:可以解决如下问题:(1)若复数对应的点在实轴上,则θ=______;(2)若复数对应的点在直线y =3x 上,则θ=______;(3)复数z 的模|z |=__________;(4)在复平面上复数z 对应的点Z 构成什么图形.等等.【解析】(1)由sin θ=0,得θ=k π(k ∈Z );(2)由sin θ=3cos θ,得tan θ=3,所以θ=k π+π3(k ∈Z ); (3)|z |=cos 2θ+sin 2θ=1;(4)由|z |=1知,复数z 对应的点在复平面上的图形是以原点为圆心的单位圆.【答案】(1)k π(k ∈Z );(2)k π+π3(k ∈Z ); (3)1;(4)由|z |=1知,复数z 对应的点在复平面上的图形是以原点为圆心的单位圆.达标检测1.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( )A .a ≠2或a ≠1B .a ≠2且a ≠1C .a =0D .a =2或a =02.复数z 满足条件|z |=2,那么z 对应的点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线3.若复数z =cos θ-sin θi 所对应的点在第四象限,则θ为第________象限角.4.已知z =3+a i(a ∈R ),则|z |的取值范围是__________.【答案】1.D 2.A 3.一 4.[3,+∞)课堂小结可以先给学生1~2分钟的时间默写本节的主要基础知识、方法,例题、题目类型、解题规律等;然后用精练的、精确的语言概括本节的知识脉络、思想方法、解题规律等.1.内容知识:2.解题规律方法:3.思想方法:布置作业教材习题3.1 A 组4,5,6题,B 组1,2题.补充练习基础练习1.若θ∈(3π4,5π4),则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.复数z =icos θ,θ∈[0,2π)的几何表示是( )A .虚轴B .虚轴除去原点C .线段PQ ,点P ,Q 的坐标分别为(0,1),(0,-1)D .C 中线段PQ ,但应除去原点3.满足条件|z -i|=|3+4i|的复数z 在复平面上对应点的轨迹是( )A .一条直线B .两条直线C .圆D .椭圆4.已知复数z 1=a +b i ,z 2=-1+a i(a ,b ∈R ),若|z 1|<|z 2|,则( )A .b <-1或b >1B .-1<b <1C .b >1D .b >05.若复数z 1=1-i ,z 2=3-5i ,则复平面上与z 1,z 2对应的点Z 1与Z 2的距离为________.【答案】1.B 2.C 3.C 4.B 5.25拓展练习6.已知复数(x -2)+y i(x ,y ∈R )的模为3,求y x的最大值. 解:∵|x -2+y i|=3,∴(x -2)2+y 2=3,故(x ,y )在以C (2,0)为圆心,3为半径的圆上,y x表示圆上的点(x ,y )与原点连线的斜率.如图,由平面几何知识,易知y x 的最大值为 3. 设计说明本节课的设计主要以问题为主线,通过类比、讨论、总结的方法进行的,着重突出主体性教学的原则,突出复习旧知、探求新知、以数定形、以形助数、数形结合的教学模式.尽量做到让学生来发现复数的几何表示.在理解应用环节,通过问题强化思维和理解,加深复数几何意义的认识.在设计理念上符合以下原则:(1)微观与宏观:每一节数学课,一方面需要完成具体数学知识、方法等微观教学任务;另一方面,作为整个数学学科教学的一个有机组成部分,同时也肩负着培养学生数学思想,形成数学观,整体认识数学学科等的宏观教学任务.(2)探索与指导:人类对客观世界的认识离不开探索,但所有知识都通过探索去获得是没有必要的,也是不可能的.本课的设计中,在教师的指导下做小范围、必要的教学探索活动,使整个教学更有序、更有效.(3)兴趣与毅力:兴趣是学习良好的开端,毅力是学习的保证.在本课的设计中一方面要安排一些有趣、直观、易于理解的内容,另一方面也需要有一定难度的思维训练,因为数学学习不可能是一件十分轻松的事情.。
3.1.2 复数的几何意义学习目标1.了解复平面、实轴、虚轴等概念(重点).2.了解复数的几何意义,并能简单应用(重点).3.了解复数的模的概念,会求复数的模(重点、难点). 知识提炼1.复平面:建立了直角坐标系来表示复数的平面叫作复平面,x 轴叫作实轴,y 轴叫作虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. 2.复数的几何意义: (1)复数z =a +b i(a ,b ∈R )复平面内的点Z (a ,b );(2)复数z =a +b i(a ,b ∈R )平面向量OZ →=(a ,b ).温馨提示 注意表示纯虚数的点都在虚轴上,虚轴上的点除了原点都表示纯虚数. 3.复数的模:(1)定义:向量OZ →的模r 叫作复数z =a +b i(a ,b ∈R )的模; (2)记法:复数z =a +b i 的模记为|z |或|a +b i|; (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ). 思考尝试1.思考判断(正确的打“√”,错误的打“×”).(1)在复平面内,虚轴上的点对应的复数都是纯虚数.( ) (2)在复平面内,对应于实数的点都在实轴上.( ) (3)复数的模一定是正实数.( )(4)两个复数的模相等,则这两个复数也相等.( ) 2.向量a =(1,-2)所对应的复数是 ( ) A .z =1+2i B .z =1-2i C .z =-1+2iD .z =-2+i3.复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.已知复数z =1-3i ,则复数的模|z |是________.5.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________. 核心突破类型1 复数与复平面上的点(自主研析) 典例1 (1)复数z =-1+2i 所对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)已知复数z =x +1+(y -1)i 在复平面内的对应点位于第二象限,则点(x ,y )所表示的平面区域是( )(3)复数z 1=1+3i 和z 2=1-3i 在复平面内的对应点关于( ) A .实轴对称B .一、三象限的角平分线对称C .虚轴对称D .二、四象限的角平分线对称 归纳升华解答此类问题的一般思路:(1)首先确定复数的实部与虚部,从而确定复数在复平面内对应点的横、纵坐标; (2)根据已知条件,确定实部与虚部满足的关系.变式训练 已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞)D .(-∞,-3)类型2 复数与平面向量典例2 设O 是坐标原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( ) A .-5+5i B .-5-5i C .5+5iD .5-5i归纳升华解答此类题目的一般思路是先写出向量或点的坐标,再根据向量的运算求出所求向量的坐标,从而求出向量所表示的复数.变式训练 在复平面内,O 是坐标原点,向量OA →对应的复数为2+i.(1)如果点A 关于实轴的对称点为B ,则向量OB →对应的复数为________; (2)如果(1)的点B 关于虚轴的对称点为C ,则点C 对应的复数为________. 类型3 复数的模(互动探究)典例3 (1)已知复数z 满足z +|z |=2+8i ,求复数z . (2)已知复数z =3+a i(a 为实数),且|z |<4,求a 的取值范围. 归纳升华(1)复数的模表示复数在复平面内对应的点到原点的距离.(2)计算复数的模时,应先找出复数的实部与虚部,然后利用模的计算公式进行计算.复数的模是一个非负实数,可以比较大小.(3)利用复数模的几何意义解题,体现了数形结合的思想 方法.变式训练 (1)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. (2)复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是( ) A .-1<a <1 B .a >1 C .a >0D .a <-1或a >1课堂小结1.复数的两种几何意义.复数的几何意义架起了复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决,增加了解决复数问题的途径,这正是数形结合的数学思想的体现.2.复数的模.(1)复数a +b i(a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模可以比较大小.(2)复数的模从几何意义上理解为:表示复数的点Z到原点的距离.|z1-z2|表示复数z1,z2对应点之间的距离.参考答案思考尝试1.【答案】(1)×(2)√(3)×(4)×【解析】(1)错,虚轴上的点除原点外对应的复数是纯虚数. (2)对.(3)错,复数的模是正实数或零.(4)错,两个复数的模相等,这两个复数不一定相等. 2.【答案】B【解析】因为a =(1,-2),所以复平面内对应的点Z (1,-2), 所以a 对应的复数为z =1-2i. 3.【答案】B【解析】由-1<0,2 017>0得复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于第二象限. 4.【答案】10【解析】|z |=12+(-3)2=10. 5.【答案】(3,+∞)【解析】因为复数z 在复平面内对应的点在第四象限,所以⎩⎪⎨⎪⎧x -2>0,3-x <0,解得x >3.核心突破类型1 复数与复平面上的点(自主研析) 典例1 【答案】(1)B (2)A (3)A【解析】(1)由复数的几何意义知z =-1+2i 对应的复平面中的点为(-1,2),而(-1,2)是第二象限中的点,故选B.(2)由题意,得⎩⎪⎨⎪⎧x +1<0,y -1>0,即⎩⎪⎨⎪⎧x <-1,y >1,故点(x ,y )所表示的平面区域为A 项中的阴影部分.(3)复数z 1=1+3i 在复平面内的对应点为Z 1(1,3). 复数z 2=1-3i 在复平面内的对应点为Z 2(1,-3). 点Z 1与Z 2关于实轴对称,故选A. 变式训练 【答案】A【解析】由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).类型2 复数与平面向量 典例2 【答案】D【解析】向量OA →,OB →对应的复数分别为2-3i ,-3+2i , 所以复平面内点的坐标分别是A (2,-3),B (-3,2),所以BA →=(5,-5),所以向量BA →对应的复数是5-5i. 变式训练 【答案】2-i -2-i【解析】(1)设向量OB →对应的复数为z 1=x 1+y 1i(x 1,y 1∈R ),则点B 的坐标为(x 1,y 1), 由题意可知,点A (2,1),根据对称性可知x 1=2,y 1=-1,所以z 1=2-i. (2)设点C 对应的复数为z 2=x 2+y 2i(x 2,y 2∈R ), 则点C 的坐标为(x 2,y 2), 由对称性可知x 2=-2,y 2=-1, 所以z 2=-2-i.类型3 复数的模(互动探究)典例3 解:(1)法一 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2, 代入方程得a +b i +a 2+b 2=2+8i ,所以⎩⎨⎧a + a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8,所以z =-15+8i.法二 原式可化为z =2-|z |+8i.所以|z |=(2-|z |)2+82,即|z |2=68-4|z |+|z |2, 所以|z |=17.代入z =2-|z |+8i ,得z =-15+8i. (2)因为z =3+a i(a ∈R ),所以|z |=32+a 2, 由已知得32+a 2<42,所以a 2<7,所以a ∈(-7,7). 变式训练 【答案】(1)5 (2)A【解析】(1)设z =a +b i(a ,b ∈R ),则z 2=a 2-b 2+2ab i ,由复数相等的充要条件得⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4,解得⎩⎪⎨⎪⎧a =2,b =1,或⎩⎪⎨⎪⎧a =-2,b =-1,从而|z |=a 2+b 2= 5. (2)由题意得a 2+22<(-2)2+12,即a 2+4<5(a ∈R ),所以-1<a <1.。
第三章数系的扩充与复数的引入
【课题】:3.1.2 复数的几何意义
【学情分析】:
教学对象是高二的学生,学生已经学过代数、解析几何的相关知识,所以本节课要求学生通过类比实数的几何意义自己探索复数的几何意义,由于学生已经学过平面向量及其几何表示、坐标表示,得到用平面向量来表示复数就比较容易了.
【教学目标】:
(1)知识与技能:
了解复数的几何意义,会用复平面的点和向量来表示复数;
(2)过程与方法:
在解决问题中,通过数形结合的思想方法,加深对复数几何意义的理解;
(3)情感态度与价值观:
培养学生用联系的观点分析、解决问题的能力。
【教学重点】:
复数的代数形式和复数的向量表示.
【教学难点】:
复数的向量表示.
【课前准备】:
powerpoint课件
六、 作业
1、在复平面内,复数
2)31(1i i
i
+++对应的点位于 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、复数,111-++-=
i
i
z 在复平面内,z 所对应的点在 ( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、 在复平面内指出与复数i z i z i z i z +-=-=+=
+=2,23,32,214321 对应的点
4321,,,Z Z Z Z .试判断这四个点是否在同一个圆上?并证明你的结论.
解:因为
︱1z ︱=52122=
+,︱2z ︱=5,︱3z ︱=5,︱4z ︱=5,
所以,4321,,,Z Z Z Z 这四个点都在以圆点为圆心,半径为5的圆上.
4、如果P 是复平面内表示表示复数a +bi (a ,b ∈R )的点,分别指出在下列条件下点P 的位置: (!)a >0,b>0; (2) a <0,b>o; (3)a =0,b ≤0; (4)b<0.
解:(1)第一象限 (2)第二象限 (3)位于原点或虚轴的下半轴上 (4)位于实轴下方
5、如果复数z 的实部为正数,虚部为3,那么在复平面内,复数z 对应的点应位于怎样的图形上? 解:平面直角坐标系中以(0,3)为端点的一条射线,但不包括端点(0,3)
6、已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求该复数z . 解:由已知,设)(3R a i a z ∈+
=
则.432
2=+
a 解得 ±=a 1.
所以 .31i z +±=。