3.3复数的几何意义 学案(含答案)
- 格式:doc
- 大小:15.50 KB
- 文档页数:5
3.1数系的扩充数系的扩充【课前自主学习】1.理解复数的基本概念..理解复数的基本概念.2.理解复数相等的充要条件..理解复数相等的充要条件.下列复数中,哪些是实数,哪些是虚数,哪些是纯虚数,其中复数的实部和虚部分别是什么?其中复数的实部和虚部分别是什么?注意:解决此类问题应先将复数化成),(R b a bi a z Î+=的标准形式的标准形式【典型例题】例1请说出复数4,i 32-,0,i i i 6,25,3421++-的实部和虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数哪些是虚数,哪些是纯虚数例2:实数m 取什么值时,复数取什么值时,复数 是:是:是:①实数①实数 ②虚数②虚数②虚数 ③纯虚数③纯虚数③纯虚数两个复数相等的充要条件:两个复数相等的充要条件:问题问题::你认为应该怎样定义两个复数相等?你认为应该怎样定义两个复数相等?(1)定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等(2)充要条件:如果,,,a b c d R Î,那么di c bi a +=+ 复数相等的定义是求复数值,在复数集中解方程的重要依据一般地,两个复数只能说相等或不相等,而不能比较大小一般地,两个复数只能说相等或不相等,而不能比较大小..如35i +与43i +不能比较大小。
现有一个命题:“任何两个复数都不能比较大小”对吗?“任何两个复数都不能比较大小”对吗? (( 不对不对 )如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小只有当两个复数不全是实数时才不能比较大小 例3 已知i y y i x )3()12(--=+-,其中,x,y ÎR ,求x 与y .练习:.),(023)21(2的值求实数已知m R m i mi x i x Î=--++ i 21-32+i 21i 25+-p sin i 2i ()i ×-+257()()i m m m z 11-+-=Û)纯虚数)虚数;(是(为何值时,复数当且练习:已知复数21,)()1(2z m R m i m i m z Î+-+=【课堂检测反馈】1、下列复数中,那些是实数,哪些是虚数,哪些是纯虚数,并指出复数的实部与虚部、下列复数中,那些是实数,哪些是虚数,哪些是纯虚数,并指出复数的实部与虚部2、实数m 取什么值时,复数取什么值时,复数 是:是:是:①实数①实数①实数 ②虚数②虚数②虚数 ③纯虚数③纯虚数③纯虚数3、已知、已知 ,求实数,求实数y x .4、已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}. M ∩P ={3},则实数m 的值为( ) A.-1 B .-1或4 C.6 D.6或-1【课后独立作业】1.下面四个命题.下面四个命题(1) 0比i -大,(2)两个复数互为共轭复数,当且仅当其和为实数当且仅当其和为实数(3) 1x yi i +=+的充要条件为1x y ==(4)如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应,对应,那么实数集与纯虚数集一一对应,其中正确的命题个数是(其中正确的命题个数是( )A .0B .1C .2D .32.13()i i --的虚部为( ) A .8iB .8i -C .8D .8- 3.使复数为实数的充分而不必要条件是由.使复数为实数的充分而不必要条件是由 ( ) A .z z -= B .z z = C .2z 为实数为实数 D .z z -+为实数为实数 4.设456124561212,,z i i i i z i i i i =+++++×××× 则12,z z 的关系是( ) A .12z z = B .12z z =- C .121z z =+ D .无法确定.无法确定5. 如果(,,0)z a bi a b R a =+ι且是虚数,则222,,,,,,,,z z z z z z z z z z -=--×中是中是 虚数的有虚数的有 _______个,是实数的有个,是实数的有 个,相等的有个,相等的有 组. 6. 若复数sin 2(1cos 2)z a i a =--是纯虚数,则a = . 7.设复数z 满足1z =,且(34)i z + 是纯虚数,求z -. 8.已知复数z 满足: 13,z i z =+-求22(1)(34)2i i z ++的值. ,618.0,72i +,72i i 293-(),31-i ()i m m m z )1(12-++=()()ii y x y x 422-=-++3是一一对应关系复数轴叫做虚轴 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数i复数z a bi =+¬¾¾¾®一一对应复平面内的点(,)Z a b 点,有惟一的一个复数和它对应. . 【课堂检测反馈】1.当23<m<1时,复数z=(3m -2)+(m -1)i 在复平面上对应的点位于在复平面上对应的点位于 ( )A .第一象限 B .第二象限 C .第三象限 D .第四象限.第四象限 2.在复平面内,若复数z 满足|z +1|=|iz +1|,则z 在复平面内对应点的轨迹是在复平面内对应点的轨迹是 ( ) A .圆.圆 B .线段.线段 C .直线.直线 D .椭圆.椭圆3.非零复数z 1,z 2满足关系|z 1|=|z 2|=1,且|z 1+z 2|=|z 1-z 2|,则以OZ 1→ ,OZ 2→ 为邻边的四边形是 .4.m 分别为何实数时,复数z=m 2-1+(m 2-3m +2)i (1)表示的点位于第二象限;表示的点位于第二象限;(2)表示的点位于复平面内的直线y=2x 上.上.【课后独立作业】1.已知33(23)i z i -=-,那么复数z 在平面内对应的点位于( ) A .第一象限.第一象限 B . 第二象限第二象限C .第三象限.第三象限D .第四象限.第四象限2.已知12121z z z z ==-=,则12z z +等于( ) A .1B .2C .3D .233.给出下列命题.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆; (3)若2,1m Z i Î=-,则1230;m m m m i i i i ++++++=其中正确命题的序号是( ) A.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是(在复平面上对应点的轨迹是( )A. 一条直线一条直线B. 两条直线两条直线C. 圆D. 椭圆椭圆5. 如果35a <<,复数22(815)(514)z a a a a i =-++--在复平面上的在复平面上的 对应点z 在 象限. 6. 设222log (33)log (3)(),z m m i m m R =--+-Î 若z 对应的点在直线210x y -+=上,则m 的值是的值是 . 7.已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2| 8.复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数. = = ,= 112zz+等于的实部为的实部为 。
《7.1.2 复数的几何意义》教案【教材分析】复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认知,也为进一步学习数学打下基础.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.【教学目标与核心素养】课程目标:1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系;2.掌握实轴、虚轴、模等概念;3.掌握用向量的模来表示复数的模的方法.数学学科素养1.数学抽象:复平面及复数的几何意义的理解;2.逻辑推理:根据平面与向量的关系推出复数与向量的一一对应及复数模公式;3.数学运算:根据复数与复平面的点一一对应求参数和求复数的模;4.数学建模:根据复数的代数形式,数形结合,多方位了解复数的几何意义,提高学生学习数学的兴趣.【教学重点和难点】重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量.难点:根据复数的代数形式描出其对应的点及向量.【教学过程】一、情景导入提问:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本70-72页,思考并完成以下问题1、复平面是如何定义的,复数的模如何求出?2、复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.复平面2.复数的几何意义(1)复数z =a +b i(a ,b ∈R) 复平面内的点Z (a ,b ) .(2)复数z =a +b i (a ,b ∈R )平面向量OZ ―→. [规律总结] 实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.3.复数的模(1)定义:向量OZ ―→的 模 r 叫做复数z =a +b i(a ,b ∈R)的模.(2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R).四、典例分析、举一反三题型一 复数与复平面内的对应关系例1求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R )对应的点Z 满足下列条件:(1)在复平面的第二象限内.(2)在复平面内的x 轴上方.【答案】(1) a <-3. (2)a >5或a <-3.【解析】(1)点Z 在复平面的第二象限内,则⎩⎨⎧ a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎨⎧ a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.解题技巧(利用复数与点的对应的解题步骤)(1)复平面内复数与点的对应关系的实质是:复数的实部就是该点的横坐标,虚部就是该点的纵坐标.(2)已知复数在复平面内对应的点满足的条件求参数取值范围时,可根据复数与点的对应关系,建立复数的实部与虚部满足的条件,通过解方程(组)或不等式(组)求解.跟踪训练一1、实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限; (2)位于直线x -y -3=0上【答案】(1)-3<x <2. (2) x =-2.【解析】因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎨⎧ x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 位于第三象限.(2)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.题型二 复数与平面向量的对应关系例2已知平面直角坐标系中O 是原点,向量OA ―→,OB ―→对应的复数分别为2-3i ,-3+2i ,那么向量BA ―→对应的复数是 ( )A .-5+5iB .5-5iC .5+5iD .-5-5i【答案】B . 【解析】 向量OA ―→,OB ―→对应的复数分别为2-3i ,-3+2i ,根据复数的几何意义,可得向量OA ―→=(2,-3),OB ―→=(-3,2).由向量减法的坐标运算可得向量BA ―→=OA ―→-OB ―→=(2+3,-3-2)=(5,-5),根据复数与复平面内的点一一对应,可得向量BA ―→对应的复数是5-5i.解题技巧: (复数与平面向量对应关系的解题技巧)(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.跟踪训练二1、在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求向量AB ―→,AC ―→,BC ―→对应的复数;(2)若ABCD 为平行四边形,求D 对应的复数.【答案】(1)AB ―→,AC ―→,BC ―→对应的复数分别为1+i ,-2+2i ,-3+i.(2)D 对应的复数为-2+i.【解析】 (1)设O 为坐标原点,由复数的几何意义知:OA ―→=(1,0),OB ―→=(2,1),OC ―→=(-1,2),所以AB ―→=OB ―→-OA ―→=(1,1),AC ―→=OC ―→-OA ―→=(-2,2),BC ―→=OC ―→-OB ―→=(-3,1),所以AB ―→,AC ―→,BC ―→对应的复数分别为1+i ,-2+2i ,-3+i.(2)因为ABCD 为平行四边形,所以AD ―→=BC ―→=(-3,1),OD ―→=OA ―→+AD ―→=(1,0)+(-3,1)=(-2,1).所以D 对应的复数为-2+i.题型三 复数模的计算与应用例3 设复数.(1)在复平面内画出复数对应的点和向量;(2)求复数的模,并比较它们的模的大小.【答案】 (1)图见解析,对应的点分别为,对应的向量分别为,.(2),..【解析】(1)如图,复数对应的点分别为,对应的向量分别为,.(2),.所以.1243,43z i z i =+=-12,z z 12,z z 12,z z 12,Z Z 1OZ 2OZ 15z =25z =12=z z 12,z z 12,Z Z 1OZ 2OZ 1|43|5z i =+==2|43|5z i =-==12=z z例4 设,在复平面内z 对应的点为Z ,那么满足下列条件的点Z 的集合是什么图形?(1);(2).【答案】 (1)以原点O 为圆心,以1为半径的圆.(2)以原点O 为圆心,以1及2为半径的两个圆所夹的圆环,但不包括圆环的边界.【解析】(1)由得,向量的模等于1,所以满足条件的点Z 的集合是以原点O 为圆心,以1为半径的圆.(2)不等式可化为不等式 不等式的解集是圆的内部所有的点组成的集合,不等式的解集是圆外部所有的点组成的集合,这两个集合的交集,就是上述不等式组的解集,也就是满足条件的点Z 的集合.容易看出,所求的集合是以原点O 为圆心,以1及2为半径的两个圆所夹的圆环,但不包括圆环的边界(如图).解题技巧(与复数的模相关的解题技巧)(1)复数的模是非负实数,因此复数的模可以比较大小.(2)根据复数模的计算公式|a +b i|=a 2+b 2可把复数模的问题转化为实数问题解决.(3)根据复数模的定义|z |=|OZ ―→|,可把复数模的问题转化为向量模(即两z C ∈||1z =1||2z <<||1z =OZ ||1z=1||2z <<2,1.z z ⎧<⎪⎨>⎪⎩||2z <||2z =||1z >||1z =1||2z <<点的距离)的问题解决.跟踪训练三1、已知复数z =a +3i(a ∈R)在复平面内对应的点位于第二象限,且|z |=2,则复数z 等于 ( )A .-1+3iB .1+3iC .-1+3i 或1+3iD .-2+3i【答案】A.【解析】由题意得⎩⎨⎧ a 2+3=4,a <0,解得a =-1.故z =-1+3i.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本73页练习,73页习题7.1的剩余题.【教学反思】本节重在研究复数的几何意义,顾名思义就是从平面和向量两方面研究复数,得出其几何意义,内容比较抽象,学生理解起来有一定难度。
第五章 复数§1 复数的概念及其几何意义1.1 复数的概念1.2 复数的几何意义必备知识基础练知识点一 复数的概念与分类1.1-i 的虚部为( )A .iB .-iC .1D .-12.当实数m 取什么值时,复数(m 2-3m +2)+(m 2-4)i :①是实数?②是虚数?③是纯虚数?④在复平面内对应点位于第四象限?知识点二 复数相等3.若复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a =( )A .1B .1或-4C .-4D .0或-44.如果(x +y )i =x -1,则实数x ,y 的值分别为( )A .x =1,y =-1B .x =0,y =-1C .x =1,y =0D .x =0,y =0知识点三 复数的模与几何意义的应用5.已知复数z =1+i ,其中i 为虚数单位,则|z |=( )A .12B .22C .2D .2 6.(多选题)已知复数z =(cos α+sin α)+(cos α-sin α)i ,则下列说法正确的是( )A .当α∈(0,π4)时,复数z 在复平面内对应的点在第一象限内 B .当α∈(π4 ,π2)时,复数z 在复平面内对应的点在第一象限内 C .复数z 的模的最大值为2D .复数z 的模长为定值7.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i关键能力综合练一、选择题1.当m <1时,复数1+(m -1)i 在复平面内对应的点位于( )A .第四象限B .第三象限C .第二象限D .第一象限2.已知i 为虚数单位,m ∈R ,复数z =(-m 2+2m +8)+(m 2-8m )i ,若z 为负实数,则m 的取值集合为( )A .{0}B .{8}C .{x |-2<x <4}D .{x |-4<x <2}3.若复数(m 2-m )+3i 是纯虚数,则实数m =( )A .1B .0或1C .1或2D .1或34.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( )A .a =32 ,b =12B .a =3,b =1C .a =12 ,b =32D .a =1,b =3 5.(易错题)设复数z =(2t 2-5t +3)+(t 2-2t +3)i ,t ∈R ,则以下结论中正确的是( )A .复数z 对应的点在第二象限B .复数z 一定不是纯虚数C .复数z 对应的点在实轴上方D .复数z 一定是实数二、填空题6.若复数z 在复平面内对应的点位于第二象限,且|z |=2,则z =________.(写出一个即可)7.若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.8.若复数z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m -2+(m 2-5m )i ,m 为实数,且z 1>z 2,则实数m 的取值集合为________.三、解答题9.(探究题)(1)若复数z =2a -1a +2+(a 2-a -6)i(a ∈R )是实数,求z 1=(a -1)+(1-2a )i 的模;(2)已知复数z =3+a i(a ∈R ),且|z |<4,求实数a 的取值范围.学科素养升级练1.关于复数,下列说法错误的是( )A .若|z |=1,则z =±1或±iB .复数6+5i 与-3+4i 分别对应向量OA → 与OB → ,则向量AB → 对应的复数为9+iC .若z 是复数,则z 2+1>0D .若复数z 满足1≤|z |<2 ,则复数z 对应的点所构成的图形面积为π2.(学科素养——数学抽象)已知复数z 在复平面内对应的点位于第四象限.(1)若z 的实部与虚部之和为7,且|z |=13,求z ;(2)若|z |=6 ,且z 2+z 的实部不为0,讨论z 2+z 在复平面内对应的点位于第几象限.§1 复数的概念及其几何意义1.1 复数的概念1.2 复数的几何意义必备知识基础练1.答案:D解析:由复数虚部定义可知,1-i 的虚部为-1.故选D.2.解析:设z =(m 2-3m +2)+(m 2-4)i.①要使z 为实数,必须有m 2-4=0,得m =-2或m =2,即m =-2或m =2时,z 为实数.②要使z 为虚数,必有m 2-4≠0,即m ≠-2且m ≠2.故m ≠-2且m ≠2时,z 为虚数.③要使z 为纯虚数,必有⎩⎪⎨⎪⎧m 2-4≠0,m 2-3m +2=0, 所以⎩⎪⎨⎪⎧m ≠-2且m ≠2,m =1或m =2. 所以m =1,故m =1时,z 为纯虚数.④由已知得⎩⎪⎨⎪⎧m 2-3m +2>0,m 2-4<0, 解得-2<m <1. 3.答案:C解析:由复数相等的充要条件得⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,∴a =-4.故选C. 4.答案:A解析:∵(x +y )i =x -1,∴⎩⎪⎨⎪⎧x +y =0,x -1=0, ∴x =1,y =-1.故选A. 5.答案:C解析:因为复数z =1+i ,所以根据复数模的运算公式可得,|z |=12+12 =2 .故选C.6.答案:AD解析:因为cos α+sin α=2 sin (α+π4),cos α-sin α=2 cos (α+π4 ), 所以z =2 [sin (α+π4 )+icos (α+π4)]. 当α∈(0,π4 )时,α+π4 ∈(π4 ,π2), 所以sin (α+π4 )>0,cos (α+π4)>0,所以z 在复平面内对应的点在第一象限,故A 正确;当α∈(π4 ,π2 )时,α+π4 ∈(π2 ,3π4), 所以sin (α+π4 )>0,cos (α+π4)<0,所以z 在复平面内对应的点在第四象限,故B 错误;复数z 的模为2 × sin 2(α+π4)+cos 2(α+π4) =2 ,故C 错误,D 正确.故选AD.7.答案:C解析:由题意知A (6,5),B (-2,3),则AB 中点C (2,4)对应的复数为2+4i.关键能力综合练1.答案:A解析:∵m <1,∴m -1<0,∴复数1+(m -1)i 在复平面内对应的点位于第四象限.故选A.2.答案:B 解析:由题意得-m 2+2m +8<0,m 2-8m =0,解得m =8.即m 的取值集合为{8}.故选B.3.答案:B解析:因为复数(m 2-m )+3i 是纯虚数,所以m 2-m =0,解得:m =0或m =1.故选B.4.答案:A解析:由1+2i =(a -b )+(a +b )i ,得⎩⎪⎨⎪⎧a -b =1,a +b =2, 解得⎩⎪⎨⎪⎧a =32,b =12. 故选A. 5.答案:C解析:∵z 的虚部t 2-2t +3=(t -1)2+2恒为正,∴z 对应的点在实轴上方,且z 一定是虚数,排除D.又z 的实部2t 2-5t +3=(t -1)(2t -3)可为正、为零、为负,∴选项A 、B 不正确.故答案为C.6.答案:-1+3 i(答案不唯一)解析:设z =a +b i ,a ,b ∈R ,因为复数z 在复平面内对应的点在第二象限,所以a <0,b >0,又因为|z |=2,所以a 2+b 2=4,显然当a =-1,b =3 时,符合题意,故答案为-1+3 i(答案不唯一).7.答案:2 ±2解析:两个复数相等,则实部和虚部分别相等,所以⎩⎪⎨⎪⎧n 2-3m -1=-3,n 2-m -6=-4, 解得m =2,n =±2.8.答案:{0}解析:∵z 1>z 2,∴⎩⎪⎨⎪⎧m 3+3m 2+2m =0,m 2-5m =0,m 2+1>4m -2,解得m =0,∴实数m 的取值集合为{0}.9.解析:(1)∵z 为实数,∴a 2-a -6=0,∴a =-2或3.∵a =-2时,z 无意义,∴a =3,∴z 1=2-5i ,∴|z 1|=29 .(2)方法一 ∵z =3+a i(a ∈R ),∴|z |=32+a 2 ,由已知得32+a 2<42,∴a 2<7,∴a ∈(-7 ,7 ).方法二 利用复数的几何意义,由|z |<4知,z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z 的集合.由图可知:-7 <a <7 .学科素养升级练1.答案:ABC解析:取z =12 +32 i ,则|z |=1,故A 错误;AB → =OB → -OA → =-3+4i -(6+5i)=-9-i ,故B 错误;取z =i ,但i 2=-1,z 2+1=0,知C 错误;设复数z =x +y i(x ,y ∈R ),则由1≤|z |<2 可知1≤x 2+y 2<2,故复数z 对应的点所构成的图形面积为π×2-π×1=π,故D 正确.故选ABC.2.解析:(1)依题意可设z =a +b i(a ,b ∈R ,a >0,b <0),因为z 的实部与虚部之和为7,且|z |=13,所以⎩⎨⎧a >0,b <0,a +b =7,a 2+b 2=13, 解得a =12,b =-5,故z =12-5i.(2)依题意可设z =a +b i(a ,b ∈R ),因为z 2+z =a 2-b 2+a +(2ab +b )i(a >0,b <0),所以a 2-b 2+a ≠0,且2ab +b =b (2a +1)<0.因为|z |=6 ,所以a 2+b 2=6,所以a 2-b 2+a =a 2-(6-a 2)+a =2a 2+a -6.当0<a <32时,2a 2+a -6<0,z 2+z 在复平面内对应的点位于第三象限; 当a >32时,2a 2+a -6>0,z 2+z 在复平面内对应的点位于第四象限.。
§3.1.2 复数的几何意义学习目标理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量.学习过程一、课前准备(预习教材,找出疑惑之处)复习1:复数(4)(3)=++-,当,x y取何值时z为实数、虚数、纯虚数?z x y i复习2:若(4)(3)2++-≥呢?)x y i++-=-,试求,x y的值,((4)(3)2x y i i二、新课导学※学习探究探究任务一:复平面问题:我们知道,实数与数轴上的点一一对应,因此,实数可用数轴上的点来表示.类比实数的几何意义,复数的几何意义是什么呢?分析复数的代数形式,因为它是由实部a和虚部b同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标.结论:复数与平面内的点或序实数一一对应.新知:1.复平面:以x轴为实轴,y轴为虚轴建立直角坐标系,得到的平面叫复平面. 复数与复平面内的点一一对应.显然,实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数.1. 复数的几何意义:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b ;复数z a bi =+←−−−→一一对应平面向量OZ ;复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ .注意:人们常将复数z a bi =+说成点Z 或向量OZ ,规定相等的向量表示同一复数.2. 复数的模向量OZ 的模叫做复数z a bi =+的模,记作||z 或||a bi +.如果0b =,那么z a bi =+是一个实数a ,它的模等于||a (就是a 的绝对值),由模的定义知: 22||||(0,)z a bi r a b r r R =+==+≥∈试试:复平面内的原点(0,0)表示 ,实轴上的点(2,0)表示 ,虚轴上的点(0,1)-表示 ,点(2,3)-表示复数反思:复数集C 和复平面内所有的点所成的集合是一一对应的.※ 典型例题例1在复平面内描出复数23i +,84i -,83i +,6,i ,29i --,7i ,0分别对应的点.变式:说出图中复平面内各点所表示的复数(每个小正方格的边长为1).小结:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b .例2已知复数22276(56)()1a a z a a i a R a -+=+--∈-,试求实数a 分别取什么值时,对应的点(1)在实轴上;(2)位于复平面第一象限;(3)在直线0x y +=上;(4)在上半平面(含实轴)变式:若复数22(34)(56)z m m m m i =--+--表示的点(1)在虚轴上,求实数m 的取值;(2)在右半平面呢?小结:复数z a bi =+←−−−→一一对应平面向量OZ .※ 动手试试练1. 在复平面内画出23,42,13,4,30i i i i i +--+--所对应的向量.练2. 在复平面内指出与复数112z i =+,2z =,3z =-,42z i =-+对应的点1Z ,2Z ,3Z ,4Z .试判断这4个点是否在同一个圆上?并证明你的结论.三、总结提升※学习小结1. 复平面的定义;2. 复数的几何意义;3.复数的模.※知识拓展※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列命题(1)复平面内,纵坐标轴上的单位是i(2)任何两个复数都不能比较大小(3)任何数的平方都不小于0(4)虚轴上的点表示的都是纯虚数(5)实数是复数(6)虚数是复数(7)实轴上的点表示的数都是实数.其中正确的个数是()A.3 B.4 C.5 D.62. 对于实数,a b,下列结论正确的是()A.a bi+是虚数+是实数B.a biC.a bia bi+≠+是复数D.03. 复平面上有点A,B其对应的复数分别为3i--,O为原点,那么是-+和13i∆是()AOBA.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形4. 若1z=,则||z=5. 如果P是复平面内表示复数(,)+∈的点,分别指出下列条件下点P的位a bi ab R置:(1)0,0a b<>>>(2)0,0a b(3)0,0=≤(4)0a bb>1.实数取什么值时,复平面内表示复数22z m m m m i=-++--的点(1)(815)(514)位于第四象限?(2)位于第一、三象限?(3)位于直线y x=上?2. 在复平面内,O是原点,向量OA对应的复数是2i+(1)如果点A关于实轴的对称点为点B,求向量OB对应的复数.(2)如果(1)中点B关于虚轴的对称点为点C,求点C对应的复数.。
3.1.2 复数的几何意义1.理解复平面、实轴、虚轴等概念.(易混点)2.掌握复数的几何意义,并能适当应用.(重点、易混点) 3.掌握复数模的定义及求模公式.[基础·初探]教材整理1 复平面与复数的几何意义 阅读教材P 104~P 105的内容,完成下列问题. 1.复平面建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.2.复数的几何意义(1)复数z =a +b i 一一对应←———→复平面内的点Z (a ,b ). (2)复数z =a +b i 一一对应←———→平面向量OZ →.在复平面内,复数z =1-i 对应的点的坐标为( ) A .(1,i) B .(1,-i) C .(1,1)D .(1,-1)【解析】 复数z =1-i 的实部为1,虚部为-1,故其对应的坐标为(1,-1). 【答案】 D教材整理2 复数的模阅读教材P 105“右侧”,完成下列问题. 复数z =a +b i(a ,b ∈R ),对应的向量为OZ→,则向量OZ →的模叫做复数a +b i 的模,记作|z |或|a +b i|.由模的定义可知|z |=|a +b i|=r =a2+b2(r ≥0,r ∈R ).判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( ) (2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( ) (3)复数的模一定是正实数.( ) 【答案】 (1)√ (2)× (3)×[小组合作型]当实数m (1)位于第四象限; (2)位于x 轴负半轴上; (3)在上半平面(含实轴).【精彩点拨】 (1)根据实部大于0,虚部小于0,列不等式组求解 (2)根据实部小于0,虚部等于0求解. (3)根据虚部大于或等于0求解.【自主解答】 (1)要使点位于第四象限,需 ⎩⎨⎧ m2-8m +15>0,m2+3m -28<0,∴⎩⎨⎧m<3或m>5,-7<m<4,解得-7<m <3.∴当-7<m <3时复数z 对应的点在第四象限. (2)要使点位于x 轴负半轴上,需 ⎩⎨⎧m2-8m +15<0,m2+3m -28=0,∴⎩⎨⎧3<m<5,m =-7或m =4,得m =4.∴当m =4时复数z 对应的点在x 轴负半轴上. (3)要使点位于上半平面(含实轴),需 m 2+3m -28≥0, 解得m ≥4或m ≤-7.∴当m ≥4或m ≤-7时,复数z 对应的点在上半平面(含实轴).解答此类问题的一般思路:(1)首先确定复数的实部与虚部,从而确定复数对应点的横、纵坐标. (2)根据已知条件,确定实部与虚部满足的关系.[再练一题]1.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z : (1)位于第三象限;(2)位于第四象限;(3)位于直线x -y -3=0上. 【解】 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数. (1)当实数x 满足⎩⎨⎧ x2+x -6<0,x2-2x -15<0,即-3<x <2时,点Z 位于第三象限. (2)当实数x 满足⎩⎨⎧x2+x -6>0,x2-2x -15<0,即2<x <5时,点Z 位于第四象限,(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.(1)向量OZ1对应的复数是5-4i ,向量OZ 2对应的复数是-5+4i ,则OZ →1+OZ→2对应的复数是()A .-10+8iB .10-8iC .0D .10+8i(2)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是________.【导学号:62952101】【精彩点拨】 (1)先写出向量OZ1→,OZ →2的坐标,再求出OZ →1+OZ →2的坐标. (2)利用AB →=OB →-OA →,求出向量AB →的坐标,从而确定AB →表示的复数.【自主解答】 (1)因为向量OZ1→对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,所以OZ→1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数是0.(2)因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.【答案】 (1)C (2)-6-8i解答此类题目的一般思路是先写出向量或点的坐标,再根据向量的运算求出所求向量的坐标,从而求出向量所表示的复数.[再练一题]2.上例(2)中的条件不变,试求向量-12AB →表示的复数.【解】 由上例(2)的解析知AB →=(-6,-8), ∴-12AB →=(3,4),所以向量-12AB →表示的复数是3+4i.[探究共研型]探1若复数z 满足|z |=2,则复数z 的对应点的集合是什么图形?若|z |≤3,则复数z 的对应点的集合是什么图形.【提示】 若|z |=2,则复数z 的对应点的集合是以原点为圆心,2为半径的圆.若|z |≤3,则复数z 的对应点的集合是以原点为圆心,3为半径的圆及其内部.探究2 若z +|z |=1+2i ,那么如何求复数z .【提示】 设z =x +y i(x ,y ∈R ),则|z |=x2+y2, 从而x +y i +x2+y2=1+2i , ∴⎩⎨⎧x +x2+y2=1,y =2,解得⎩⎨⎧x =-32,y =2,∴z =-32+2i.(1)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A .-3B.3iC .±3iD .±3(2)求复数z 1=6+8i 及z 2=-12-2i 的模,并比较它们模的大小.【精彩点拨】 (1)设出复数z 的虚部,由模的公式建立方程求解. (2)用求模的公式直接计算.【自主解答】 (1)设复数z 的虚部为b ,∵|z |=2,实部为1,∴1+b 2=4,∴b =±3,选D.【答案】 D(2)因为z 1=6+8i ,z 2=-12-2i ,所以|z 1|=62+82=10, |z 2|=错误!=错误!. 因为10>32,所以|z 1|>|z 2|.1.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算. 2.两个复数不能比较大小,但它们的模可以比较大小.[再练一题]3.(1)复数z =x +1+(y -2)i(x ,y ∈R ),且|z |=3,则点Z (x ,y )的轨迹是________. (2)已知复数z =3+a i ,且|z |<4,求实数a 的取值范围.【导学号:62952102】【解析】 (1)∵|z |=3,∴错误!=3,即(x +1)2+(y -2)2=32.故点Z (x ,y )的轨迹是以(-1,2)为圆心,以3为半径的圆. 【答案】 以(-1,2)为圆心,以3为半径的圆 (2)∵z =3+a i(a ∈R ),|z |= 32+a2,由已知得32+a2<4, ∴a 2<7, ∴a ∈(-7,7).1.复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 由-1<0,2 017>0得复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于第二象限.【答案】 B2.已知复数z =2-3i ,则复数的模|z |是( ) A .5 B .8 C .6D.11【解析】 |z |=错误!=错误!. 【答案】 D3.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.【解析】 ∵复数z 在复平面内对应的点在第四象限, ∴⎩⎨⎧x -2>0,3-x <0,解得x >3.【答案】 (3,+∞)4.已知复数z =x -2+y i(x ,y ∈R )的模是22,则点(x ,y )的轨迹方程是________. 【解析】 ∵|z |=22, ∴错误!=2错误!, ∴(x -2)2+y 2=8. 【答案】 (x -2)2+y 2=85.已知复数z 满足z +|z |=2+8i ,求复数z .【解】 设z =a +b i(a ,b ∈R ),则|z |=a2+b2, 代入方程得,a +b i +a2+b2=2+8i , ∴⎩⎨⎧a +a2+b2=2,b =8,解得⎩⎨⎧a =-15,b =8,∴z =-15+8i.。
3.3复数的几何意义(2)【典型例题】例1. 在复平面上,设点A 、B 、C ,对应的复数分别为,1,42i i +。
过A 、B 、C 做平行四边形ABCD ,求此平行四边形的对角线BD 的长。
例2设,C z ∈满足下列条件的复数z 所对应的点z 的集合表示什么图形 .12141log 21->--+-z z例3.已知复数21,z z ,21z z +在复平面上分别对应点O C B A ,,,为复平面的原点.(1)若i z 21231+=,向量OA 逆时针旋转90°,模变为原来的2倍后与向量OC 重合,求2z ;(2)若(221i z z =-)21z z +,试判断四边形OACB 的形状.★基础训练★ 1.已知向量AB 对应的复数为i +1,若A 点的坐标为(1,3),则B 点的坐标为_________.2、在复平面内,若复数z 满足|1|||z z i +=-,则z 所对应的点的集合构成的图形是 。
3.已知复数)()3(2)()1(223R a i a i a i z ∈--+=,且32=z ,则a =___________.4.已知方程0222=+-m x x的两个虚根为βα,,且3=-βα,则实数m 的值为____.5.当复数21,z z 满足212-=i z z ,而1z 在复平面内的对应点在曲线1022=++-z z 上运动,则2z 在平面内的对应点的轨迹方程式是________________(用普通方程表示).6.设z 为复数,则“1=z ”是“R zz ∈+1”的 ( ) (A)充分非必要条件 (B)必要非充分条件(C)充要条件 (D)既不充分又不必要条件7.设C z ∈,由复数222,,,,,,,z z z z z z z z z 所构成的集合中最多有几个元素(A)4个 (B)5个 (C)6个 (D)7个 ( )8.已知{}622=-++=z z z M ,{}11=+=z z N ,则N M ,的关系是( ) (A)N M ⊂ (B) N M ⊃ (C) M N M =⋃ (D) ∅=⋂N M二解答题:9.求虚数z ,使R z z∈+4,且22=-z .10.设βα,是关于x 的方程)(022R m m x x∈=++的两个根,求βα+的值.11、(11分)已知复数z 满足|4||4|,z z i -=-且141z z z -+-为实数,求z 。
复数一、考点、热点回顾1.复数的有关概念 (1)复数①定义:形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. ②表示方法:复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),这一表示形式叫做复数的代数形式.a 叫做复数z 的实部,b 叫做复数z 的虚部.注意:复数m +n i 的实部、虚部不一定是m 、n ,只有当m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部. (2)复数集①定义:全体复数所成的集合叫做复数集. ②表示:通常用大写字母C 表示.2.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0非纯虚数a ≠0(2)复数集、实数集、虚数集、纯虚数集之间的关系3.复数相等的充要条件设a 、b 、c 、d 都是实数,则a +b i =c +d i ⇔a =c 且b =d ,a +b i =0⇔a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为z =a +b i (a ,b ∈R )的形式,即分离实部和虚部.(2)只有当a =c 且b =d 的时候才有a +b i =c +d i ,a =c 和b =d 有一个不成立时,就有a +b i ≠c +d i. (3)由a +b i =0,a ,b ∈R ,可得a =0且b =0.4.复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.5.复数的两种几何意义 (1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R )←――→一一对应平面向量OZ →.6.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |= a 2+b 2.注意:复数a +b i (a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以比较大小.二、典型例题考点一、复数的概念 例1、下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集.其中正确的是( )A.①B.②C.③D.④ 【解析】 对于复数a +b i (a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误.两个虚数不能比较大小,则②错误.对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,则③错误.显然,④正确.故选D.【答案】 D变式训练1、1.对于复数a +b i (a ,b ∈R ),下列说法正确的是( )A.若a =0,则a +b i 为纯虚数B.若a +(b -1)i =3-2i ,则a =3,b =-2C.若b =0,则a +b i 为实数D.i 的平方等于1解析:选C.对于A ,当a =0时,a +b i 也可能为实数; 对于B ,若a +(b -1)i =3-2i ,则a =3,b =-1; 对于D ,i 的平方为-1.故选C.2.若4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A.1 B.1或-4 C.-4 D.0或-4解析:选C.易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.考点二、复数的分类例2、已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?【解】 (1)要使z 为实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 为虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,m 需满足m (m +2)m -1=0,且m 2+2m -3≠0,解得m =0或-2.变式训练2、当实数m 为何值时,复数lg (m 2-2m -7)+(m 2+5m +6)i 是(1)纯虚数;(2)实数.解:(1)复数lg (m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧lg (m 2-2m -7)=0,m 2+5m +6≠0,解得m =4.(2)复数lg (m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m =-3.考点三、复数相等 例3、(1)若(x +y )+y i =(x +1)i ,求实数x ,y 的值;(2)已知a 2+(m +2i )a +2+m i =0(m ∈R )成立,求实数a 的值;(3)若关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.【解】 (1)由复数相等的充要条件,得⎩⎪⎨⎪⎧x +y =0,y =x +1,解得⎩⎨⎧x =-12,y =12.(2)因为a ,m ∈R ,所以由a 2+am +2+(2a +m )i =0,可得⎩⎪⎨⎪⎧a 2+am +2=0,2a +m =0,解得⎩⎨⎧a =2,m =-22或⎩⎨⎧a =-2,m =22,所以a =±2.(3)设方程的实根为x =m ,则原方程可变为3m 2-a2m -1=(10-m -2m 2)i ,所以⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或-715.变式训练3、已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0, 即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1, 所以a =-1.考点四、复数与复平面内的点例4、已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.【解】 (1)若对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎪⎨⎪⎧a 2-1<0,2a -1<0.解得-1<a <12.故a 的取值范围是⎝⎛⎭⎫-1,12. 变式训练4、求实数a 取什么值时,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点(1)位于第二象限; (2)位于直线y =x 上.解:根据复数的几何意义可知,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点就是点Z (a 2+a -2,a 2-3a +2).(1)由点Z 位于第二象限,得 ⎩⎪⎨⎪⎧a 2+a -2<0,a 2-3a +2>0,解得-2<a <1. 故满足条件的实数a 的取值范围为(-2,1). (2)由点Z 位于直线y =x 上,得 a 2+a -2=a 2-3a +2,解得a =1. 故满足条件的实数a 的值为1.考点五、复数与复平面内的向量例5、(1)已知M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出OM →,ON →,OP →,OQ →所表示的复数;(2)已知复数1,-1+2i ,-3i ,6-7i ,在复平面内画出这些复数对应的向量;(3)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i ,3+2i ,-2-3i ,求点D 对应的复数.【解】 (1)OM →表示的复数为1+3i ;ON →表示的复数为4-i ;OP →表示的复数为2i ; OQ →表示的复数为-4.(2)复数1对应的向量为OA →,其中A (1,0);复数-1+2i 对应的向量为OB →,其中B (-1,2);复数-3i 对应的向量为OC →,其中C (0,-3);复数6-7i 对应的向量为OD →,其中D (6,-7). 如图所示.(3)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3).设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5).由题知,AD →=BC →,所以⎩⎪⎨⎪⎧x -2=-5,y -3=-5,即⎩⎪⎨⎪⎧x =-3,y =-2,故点D 对应的复数为-3-2i.变式训练5、在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是_____________.解析:3-3i 对应向量为(3,-3),与x 轴正半轴夹角为30°,顺时针旋转60°后所得向量终点在y 轴负半轴上,且模为2 3.故所得向量对应的复数是-23i.答案:-23i考点六、复数的模 例6、(1)设(1+i )x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A.1B. 2C. 3D.2 (2)已知复数z 满足z +|z |=2+8i ,求复数z .【解】 (1)选B.因为x +x i =1+y i ,所以x =y =1, 所以|x +y i|=|1+i|=12+12= 2. (2)法一:设z =a +b i (a ,b ∈R ), 则|z |=a 2+b 2,代入原方程得a +b i +a 2+b 2=2+8i ,根据复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.所以z =-15+8i.法二:由原方程得z =2-|z |+8i (*). 因为|z |∈R ,所以2-|z |为z 的实部, 故|z |=(2-|z |)2+82,即|z |2=4-4|z |+|z |2+64,得|z |=17. 将|z |=17代入(*)式得z =-15+8i.变式训练6、已知复数z =3+a i (a ∈R ),且|z |<4,求实数a 的取值范围.解:法一:因为z =3+a i (a ∈R ),所以|z |=32+a 2, 由已知得32+a 2<42,所以a 2<7,所以a ∈(-7,7).法二:由|z |<4知z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z (3,a )的集合, 由图可知-7<a <7.三、课后练习1.若(x+y)i=x-1(x,y∈R),则2x+y的值为()A. B.2 C.0 D.1解析:由复数相等的充要条件知,x+y=0,x-1=0故x+y=0.故2x+y=20=1.答案:D2.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={-1,3},且M∩N={3},则实数m的值为()A.4B.-1C.-1或4D.-1或6解析:由于M∩N={3},故3∈M,必有m2-3m-1+(m2-5m-6)i=3,所以得m=-1.答案:B3.给出下列复数:①-2i,②3+,③8i2,④isinπ,⑤4+i;其中表示实数的有(填上序号) ____________.解析:②为实数;③8i2=-8为实数;④i·sinπ=0·i=0为实数,其余为虚数.答案:②③④4.下列复数模大于3,且对应的点位于第三象限的为()A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i解析:A中|z|=<3;B中对应点(2,-3)在第四象限;C中对应点(3,2)在第一象限;D中对应点(-3,-2)在第三象限,|z|=>3.答案:D5.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹为()A.一个圆B.线段C.两点D.两个圆解析:∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0,∴|z|=3,表示一个圆,故选A.答案:A6.已知在△ABC中,对应的复数分别为-1+2i,-2-3i,则对应的复数为____________.解析:因为对应的复数分别为-1+2i,-2-3i,所以=(-1,2),=(-2,-3).又=(-2,-3)-(-1,2)=(-1,-5),所以对应的复数为-1-5i.答案:-1-5i7.在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i的对应点,(1)在虚轴上,求复数z;(2)在实轴负半轴上,求复数z.答案:(1)若复数z的对应点在虚轴上,则m2-m-2=0,所以m=-1或m=2.此时z=6i或z=0.(2)若复数z的对应点在实轴负半轴上,则m2-3m+2=0,m2-m-2<0,∴m=1能力提升8.若复数z=cosθ+(m-sinθ-cosθ)i为虚数,则实数m的取值范围是____________.解析:∵z为虚数,∴m-sinθ-cosθ≠0,即m≠sinθ+cosθ.∵sinθ+cosθ∈[],∴m∈(-∞,)∪,+∞).答案:(-∞,)∪,+∞)9.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则a的取值范围是____________.解析:若复数为纯虚数,则有a2-a-2=0,|a-1|-1≠0即a=-1.故复数不是纯虚数时a≠-1.答案:{a|a≠-1}10.已知向量与实轴正向夹角为135°,向量对应复数z的模为1,则z=____________. 解析:依题意知Z点在第二象限且在直线y=-x上,设z=-a+ai(a>0).∵|z|=1,∴a2=12.而a>0,∴∴z=+答案:z=+11.已知复数z满足z+|z|=2+8i,则复数z=____________.解析:设z=a+bi(a,b∈R),则代入方程得,2+8i,∴解得a=-15∴z=-15+8i.答案:-15+8i12.已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.解析:M∪P=P,∴M⊆P,即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.由(m2-2m)+(m2+m-2)i=-1,得解得m=1;由(m2-2m)+(m2+m-2)i=4i,解得m=2.综上可知m=1或m=2.答案:m=1或m=213.已知复数z=2+cosθ+(1+sinθ)i(θ∈R),试确定复数z在复平面内对应的点的轨迹是什么曲线. 解析:设复数z=2+cosθ+(1+sinθ)i对应的点为Z(x,y),则x=2+cosθ,y=1+sinθ即cosθ=x-2,sinθ=y-1所以(x-2)2+(y-1)2=1.所以复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆. 答案:复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆.14. 已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R ). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围. 答案: (1)∵z 为实数,∴m 2+2m -3=0,解得m =-3或m =1.(2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧m (m -1)=0,m 2+2m -3≠0.解得m =0.(3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0.解得-3<m <0.。
第五章复数1复数的概念及其几何意义........................................................................................ - 1 - 2复数的四则运算...................................................................................................... - 14 - 3复数的三角表示...................................................................................................... - 29 -1复数的概念及其几何意义1.1复数的概念学习任务核心素养1.了解引进虚数单位i的必要性,了解数集的扩充过程.(重点)2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.(重点、难点) 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.(重点)1.通过对复数的相关概念的学习,培养学生数学抽象素养.2.借助复数的分类、复数的相等的相关运算,培养学生数学运算素养.五百年前意大利的卡尔丹遇到这样一个问题,将10分成两个部分,使它们的乘积等于40,则x(10-x)=40即(x-5)2=-15,该方程无实数解,那么他遇到了什么问题呢?他想:负数为什么不能开方?他是怎样解决的呢?形如a+b i(其中a,b∈R)的数叫作复数,通常用字母z表示,即z=a+b i(a,b∈R).其中a称为复数z的实部,记作Re z, b称为复数z的虚部,记作Im z.知识点2复数的分类根据复数中a,b的取值不同,复数可以有以下的分类:复数a +b i(a ,b ∈R )⎩⎨⎧实数(b =0);虚数(b ≠0)⎩⎨⎧纯虚数(a =0),非纯虚数(a ≠0).1.在2+7,27i, 8+5i ,(1-3)i, 0.68这几个数中,纯虚数的个数为( ) A .0 B .1 C .2 D .3C [27i, (1-3)i 是纯虚数,故选C.]知识点3 复数集全体复数构成的集合称为复数集,记作C .显然RC .知识点4 复数相等两个复数a +b i 与c +d i(a ,b ,c ,d ∈R )相等定义为:它们的实部相等且虚部相等,即a +b i =c +d i 当且仅当a =c 且b =d . 1.两个复数一定能比较大小吗?提示:当两个复数为实数时,能够比较大小;否则不能比较大小.2.若复数a +2i =3+b i(a ,b ∈R ),则a +b 的值是什么?提示:因为a +2i =3+b i ,所以a =3,b =2,所以a +b =5.2.思考辨析(正确的画“√”,错误的画“×”)(1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z =b i 是纯虚数. ( ) (3)若两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( )[提示] (1)错误.若b =0,则复数z =a +b i 是实数.(2)错误.若b =0,则复数z =b i =0是实数.(3)正确.若两个复数的实部的差和虚部的差都等于0,则这两个复数的实部和虚部分别相等,所以两个复数相等.[答案] (1)× (2)× (3)√类型1 复数的概念【例1】 (1)给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1的虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A .0B .1C .2D .3(2)已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是________.(1)B (2)±2 5 [(1)对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.(2)由题意知⎩⎨⎧a 2=2,b -2=3,∴a =±2,b =5.](1)复数的代数形式:若z =a +b i ,只有当a ,b ∈R 时,a 才是z 的实部,b 才是z 的虚部,且注意虚部不是b i ,而是b .(2)不要将复数与虚数的概念混淆,实数也是复数,实数和虚数是复数的两大构成部分.(3)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这类题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.[跟进训练]1.下列命题:①若a ∈R ,则(a +1)i 是纯虚数;②若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2;③实数集是复数集的真子集.其中正确说法的个数是( )A .0B .1C .2D .3B [对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,故①错误.对于②,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,故②错误.显然,③正确.故选B.]类型2 复数相等【例2】 (1)(教材北师版P 165例2改编)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎨⎧x 2-y 2=0,2xy =2, 解得⎩⎨⎧x =1,y =1或⎩⎨⎧x =-1,y =-1. (2)设方程的实数根为x =m ,则3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解.(2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.[跟进训练]2.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________.5 [因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎨⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5.] 类型3 复数的分类【例3】 当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i. (1)是虚数;(2)是纯虚数.1. 复数z =a +b i (a ,b ∈R )何时为虚数?[提示] b ≠0.2.复数z =a +b i (a ,b ∈R )何时为纯虚数?[提示] a =0,b ≠0. 3.(1)复数z 是虚数→令虚部不等于0→解方程组可得m 的值(2)复数z 是纯虚数→令虚部不等于0且实部等于0→解方程组可得m 的值[解] (1)当⎩⎨⎧m +3≠0,m 2-2m -15≠0,即m ≠5且m ≠-3时,z 是虚数. (2)当⎩⎨⎧m 2-m -6m +3=0,m 2-2m -15≠0,即m =3或m =-2时,z 是纯虚数.1.例3的条件不变,当m 为何值时,z 为实数?[解] 当⎩⎨⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数. 2.例3的条件不变,当m 为何值时,z >0.[解] 因为z >0,所以z 为实数,需满足⎩⎨⎧m 2-m -6m +3>0,m 2-2m -15=0,解得m =5. 3.已知z =log 2(1+m )+ilog 12(3-m )(m ∈R ),若z 是虚数,求m 的取值范围. [解] ∵z 是虚数,∴log 12(3-m )≠0,且1+m >0, 即⎩⎨⎧3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R )时应先转化形式.(2)注意分清复数分类中的条件,设复数z =a +b i(a ,b ∈R ),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0且b =0.当堂达标1.若x i -i 2=y +2i ,x ,y ∈R ,则复数x +y i 等于( )A .-2+iB .2+iC .1-2iD .1+2iB [由i 2=-1,得x i -i 2=1+x i ,则由题意得1+x i =y +2i ,根据复数相等的充要条件得x =2,y =1,故x +y i =2+i.]2.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( )A .3-3iB .3+iC .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A.]3.已知复数z 1=a +2i ,z 2=3+(a 2-7)i ,a ∈R ,若z 1=z 2,则a =( )A .2B .3C .-3D .9 B [因为z 1=a +2i ,z 2=3+(a 2-7)i ,且z 1=z 2,所以有⎩⎨⎧a =3,a 2-7=2,解得a =3.故选B.]4.已知复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为________. -1或2 [因为复数z =m 2-1+(m 2-m -2)i 为实数,所以m 2-m -2=0,解得m =-1或m =2.]5.设m ∈R ,复数z =-1-m +(2m -3)i.(1)若z 为实数,则m =________;(2)若z 为纯虚数,则m =________.(1)32(2)-1[(1)若复数z=-1-m+(2m-3)i为实数,则2m-3=0,所以m=32;(2)若z为纯虚数,则-1-m=0,所以m=-1.]回顾本节内容,自我完成以下问题:1.如何正确理解复数的概念?[提示](1)对于复数z=a+b i(a,b∈R),可以限制a,b的值得到复数z的不同情况.(2)当两个复数不全是实数时,不能比较大小,只可判断相等或不相等,但两个复数都是实数时,可以比较大小.2.如何解决复数相等问题?[提示]两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.1.2复数的几何意义学习任务核心素养1.理解用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.(难点)2.掌握实轴、虚轴、模、共轭复数等概念.(重点、难点)3.掌握用向量的模来表示复数的模的方法.(重点)1.通过学习复数的几何意义,培养学生直观想象素养.2.借助于复数的模和共轭复数的计算,培养学生数学运算素养.18世纪,瑞士人阿甘达注意到负数是正数的一个扩充,它是将方向和大小结合得出来的,他给出了负数的一些几何解释.而在使人们接受复数方面,高斯的工作更为有效,他不仅将复数z=a+b i表示为复平面的一点Z(a,b),而且阐述了复数的几何加法和乘法,这也和向量运算是一致的,使人们对复数不再有种神秘的印象.阅读教材,结合上述情境回答下列问题.问题1:上述材料中,复平面是如何定义的?问题2:复数与复平面内的点及向量的关系如何?问题3:复数的模是实数还是虚数?问题4:复数z=a+b i的共轭复数是什么?知识点1复平面通过建立平面直角坐标系来表示复数的平面称为复平面,x轴称为实轴,y轴称为虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.1.虚轴上的点都对应着唯一的纯虚数吗?提示:不是.除了原点外,虚轴上的点都表示纯虚数.知识点2复数的几何意义2.象限内的点与复数有何对应关系?提示:第一象限的复数特点:实部为正,且虚部为正;第二象限的复数特点:实部为负,且虚部为正;第三象限的复数特点:实部为负,且虚部为负;第四象限的复数特点:实部为正,且虚部为负.1.在复平面内,复数z=i+2i2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限B [∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限.]知识点3 复数的模向量OZ →的模称为复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|. 由向量模的定义可知,|z |=|a +b i|=a 2+b 2.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|z |=a 2+b 2=a 2=|a |(a 的绝对值).2.已知复数z 的实部为-1,虚部为2,则|z |=________.5 [|z |=(-1)2+22= 5.]知识点4 共轭复数(1)定义:若两个复数的实部相等,而虚部互为相反数,则称这两个复数互为共轭复数,复数z 的共轭复数用z 表示.当z =a +b i(a ,b ∈R )时,z =a -b i .(2)几何意义:在复平面内,表示两个共轭复数的点关于实轴对称,并且它们的模相等.另外,当复数z =a +b i 的虚部b =0时,有z =z .也就是说,任意一个实数的共轭复数仍是它本身,反之亦然.3.复数z =-1+i 的共轭复数对应的点位于第________象限.三 [z =-1+i 的共轭复数为z =-1-i ,位于第三象限.]类型1 复数与平面内的点的关系【例1】 (教材北师版P 167练习第2题改编)实数x 分别取什么值时,复数z =(x 2+x -6)+(x 2-2x -15)i 对应的点Z 在:(1)第三象限;(2)直线x -y -3=0上.[解] 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎨⎧x 2+x -6<0,x 2-2x -15<0,即当-3<x <2时,点Z 在第三象限. (2)z =x 2+x -6+(x 2-2x -15)i 对应点Z (x 2+x -6,x 2-2x -15),当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即当x =-2时,点Z 在直线x -y -3=0上.按照复数和复平面内所有点组成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值. [跟进训练]1.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R )的对应点在虚轴上和实轴负半轴上,分别求复数z .[解] 若复数z 的对应点在虚轴上,则m 2-m -2=0,所以m =-1或m =2,所以z =6i 或z =0.若复数z 的对应点在实轴负半轴上,则⎩⎨⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.类型2 复数的模的几何意义【例2】 (教材北师版P 166例3改编)设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形.(1)|z |=3; (2)1≤|z |≤2.[解] (1)|z |=3说明向量OZ →的长度等于3,即复数z 在复平面内对应的点Z 到原点的距离为3,这样的点Z 的集合是以原点O 为圆心,3为半径的圆.(2)不等式1≤|z |≤2可以转化为不等式组⎩⎨⎧|z |≤2|z |≥1.不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z |≥1的解集是圆|z |=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z |≤2的点的集合.如图中的阴影部分,所求点的集合是以O 为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.解决复数的模的几何意义问题解决复数的模的几何意义的问题,应把握两个关键点:一是|z |表示点Z 到原点的距离,可依据|z |满足的条件判断点Z 的集合表示的图形;二是利用复数的模的概念,把模的问题转化为几何问题来解决. [跟进训练] 2.若复数z 满足|z |≤2,则z 在复平面所对应的图形的面积为________. 2π [满足|z |≤2的点Z 的集合是以原点O 为圆心,以2为半径的圆及其内部所有的点构成的集合,∴所求图形的面积为S =2π.故填2π.]类型3 复数、共轭复数与复平面内的向量的关系【例3】 (1)向量OZ 1对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,则OZ →1+OZ →2对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i(2)设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA→对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i1.复数z =a +b i (a ,b ∈R )在复平面内对应的向量OZ →和点Z 分别是什么?[提示] 向量OZ →=(a ,b ),点Z 的坐标为(a ,b ).2.设复数z =a +b i (a ,b ∈R )的共轭复数为z ,z 和z 在复平面内对应的点分别为A ,B ,则点A ,B 有什么关系?[提示] 点A ,B 关于x 轴对称.(1)C (2)D [(1)由复数的几何意义,可得OZ →1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数为0.(2)由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.] 1.在例3(2)中若BA →对应的复数是z ,求z .[解] 由例3(2)的解析可知BA →对应的复数是5-5i ,即z =5-5i ,所以z =5+5i.2.在例3(2)中,若点A 关于实轴的对称点为点C ,求向量OC →对应的复数.[解] 复数2-3i 表示的点A (2,-3)关于实轴对称的点为C (2,3),∴向量OC→对应的复数为2+3i.(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.[跟进训练]3.已知O 为坐标原点,OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i(a ∈R ),若OZ 1与OZ 2共线,求a 的值.[解] ∵OZ 1对应的复数为-3+4i ,OZ 2对应的复数为2a +i ,∴OZ 1=(-3,4),OZ 2=(2a ,1).又∵OZ 1与OZ 2共线,∴(-3)×1-4×2a =0,解之得a =-38.当堂达标1.若OZ →=(0,-3),则OZ →对应的复数为( )A .0B .-3C .-3iD .3C [OZ →对应的复数为-3i.]2.已知复数z 1=m +2i ,z 2=1+i ,若z 1+z 2为纯虚数,则实数m 的值为( )A .-1B .1C .4D .-4A [z 1+z 2=m +1+3i 为纯虚数,故m +1=0,m =-1,故选A.]3.已知z =m -1+(m +2)i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-1,2)B .(-2,1)C .(1,+∞)D .(-∞,-2)B [∵z =m -1+(m +2)i 在复平面内对应的点在第二象限,∴m -1<0,m +2>0,解得-2<m <1,则实数m 的取值范围是(-2,1).]4.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( )A .a ≠2或a ≠1B .a ≠2或a ≠-1C .a =2或a =0D .a =0C [由题知a 2-2a =0解得a =0或a =2,故选C.]5.已知复数z =1+2i ,则|z |=________.5 [∵z =1+2i ,∴|z |= 5.]回顾本节内容,自我完成以下问题:复数的模的几何意义是什么?提示:(1)复数z在复平面内对应的点为Z,复数z0在复平面内对应的点为Z0,r表示一个大于0的常数,则:①满足条件|z|=r的点Z的轨迹为以原点为圆心,r为半径的圆,|z|<r表示圆的内部,|z|>r表示圆的外部;②满足条件|z-z0|=r的点Z的轨迹为以Z0为圆心,r为半径的圆,|z-z0|<r 表示圆的内部,|z-z0|>r表示圆的外部.(2)复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.如图所示:2复数的四则运算2.1复数的加法与减法学习任务核心素养1.掌握复数代数形式的加法和减法运算.(重点、难点)2.理解复数加法和减法所满足的交换律和结合律.(重点、难点)1.通过学习复数的加法和减法运算,培养学生数学运算素养.2.通过学习复数加法和减法运算所满足的运算律,培养学生数学抽象素养.随着生产发展的需要,我们将数的范围扩展到了复数.运算是“数”的主要功能,复数不同于实数,它是由实部、虚部两部分复合构造而成的整体.阅读教材,回答下列问题问题1:复数如何进行加、减运算呢?问题2:类比多项式的加、减运算,想一想复数又如何进行加、减法运算?问题3:两个复数的和或差得到的结果是什么?问题4:复数的加法法则可以推广吗?知识点1复数的加法与减法(1)复数加法的运算法则两个复数的和仍是一个复数,两个复数的和的实部是它们的实部的和,两个复数的和的虚部是它们的虚部的和,也就是(a+b i)+(c+d i)=(a+c)+(b+d)i.(2)复数减法的运算法则两个复数的差仍是一个复数,两个复数的差的实部是它们的实部的差,两个复数的差的虚部是它们的虚部的差,也就是(a+b i)-(c+d i)=(a-c)+(b-d)i.(3)复数的加法运算的运算律:结合律:(z1+z2)+z3=z1+(z2+z3);交换律:z1+z2=z2+z1.1.两个复数的和是个什么数,它的值唯一确定吗?[提示]是复数,唯一确定.1.已知复数z1=3+4i,z2=3-4i,则z1+z2等于()A.8i B.6 C.6+8i D.6-8iB[z1+z2=3+4i+3-4i=(3+3)+(4-4)i=6.]知识点2复数加法的几何意义如图,z1=a+b i,z2=c+d i(a,b,c,d∈R)分别与向量OZ1=(a,b),OZ2=(c,d)对应,根据平面向量的坐标运算,得OZ1+OZ2=(a+c,b+d),这说明两个向量OZ1,OZ2的和就是与复数(a+c)+(b+d)i对应的向量.因此,复数的加法可以按照向量的加法来进行,这是复数加法的几何意义.2.若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2?提示:不能,例如可取z 1=3+2i ,z 2=2i.2.计算(3+i)-(2+i)的结果为________.1 [(3+i)-(2+i)=3+i -2-i =1.]类型1 复数的加法和减法【例1】 (教材北师版P 169例1改编)(1)计算:⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i . (2)已知复数z 满足z +1-3i =5-2i ,求z .(3)已知复数z 满足|z |+z =1+3i ,求z .[解] (1)⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i =⎝ ⎛⎭⎪⎫13+2-43+⎝ ⎛⎭⎪⎫12-1+32i =1+i. (2)法一:设z =x +y i(x ,y ∈R ),因为z +1-3i =5-2i ,所以x +y i +(1-3i)=5-2i ,即x +1=5且y -3=-2, 解得x =4,y =1,所以z =4+i.法二:因为z +1-3i =5-2i ,所以z =(5-2i)-(1-3i)=4+i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2,∴|z |+z =(x 2+y 2+x )+y i =1+3i ,∴⎩⎨⎧x 2+y 2+x =1,y =3,解得⎩⎨⎧x =-4,y =3,∴z =-4+3i.复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [跟进训练] 1.(1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(1)6-2i (2)-a +(4b -3)i [(1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i =(a -2a )+(b +3b -3)i =-a +(4b -3)i.]类型2 复数加、减法的几何意义【例2】 (教材北师版P 170例4改编)如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0, 3+2i ,-2+4i.求:(1)AO →表示的复数;(2)对角线CA →表示的复数;(3)对角线OB →表示的复数.确定向量对应的复数→进行向量的运算→确定向量对应的复数[解] (1)因为AO →=-OA →,所以AO →表示的复数为-3-2i.(2)因为CA →=OA →-OC →,所以对角线CA →表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB →=OA →+OC →,所以对角线OB →表示的复数为(3+2i)+(-2+4i)=1+6i.例2的条件不变,求向量AB →表示的复数.[解] 因为AB →=AO →+OB →,由例2的解析可知,AO →表示的复数为-3-2i ,OB→表示的复数为1+6i ,所以向量AB →表示的复数为(-3-2i)+(1+6i)=-2+4i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R )是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[跟进训练]2.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心A [由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.]当堂达标1.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [原式=1-i -2-i +3i =-1+i.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4B [z =1-(3-4i)=-2+4i ,故选B.]3.在复平面内,复数1+i 与1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|等于( )A . 2B .2C .10D .4B [向量AB →对应的复数为(1+3i)-(1+i)=2i ,所以AB →=(0,2),故|AB →|=2.]4.(5-i)-(3-i)-5i =________.2-5i [(5-i)-(3-i)-5i =2-5i.]5.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i , ∴⎩⎨⎧x +3=5,2-y =-6,解得⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i , ∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.]回顾本节内容,自我完成以下问题:1.复数代数形式的加减运算之间有怎样的关系?[提示] 复数代数形式的加法满足交换律、结合律,复数的减法是加法的逆运算.2.复数加减法的几何意义是什么?[提示] 复数加法的几何意义就是向量加法的平行四边形法则.复数减法的几何意义就是向量减法的三角形法则.2.2 复数的乘法与除法*2.3 复数乘法几何意义初探学习任务核心素养1.掌握复数代数形式的乘法和除法运算.(重点、难点)2.理解复数乘法的交换律、结合律和乘法对加法的分配律.(难点)3.了解复数乘法的几何意义.1.通过学习复数的乘法和除法,培养学生数学运算素养.2.通过学习复数乘法运算所满足的运算律,培养学生数学抽象素养.在研究复数的加、减法运算时,我们注意到复数的形式就像一个二项式,类比二项式乘二项式的法则,我们可以得到复数乘法的法则,让第一项与第二项的各项分别相乘,再合并“同类项”,即得到乘法的结果.阅读教材,回答下列问题.问题1:复数的乘法和除法运算法则各是什么?问题2:复数乘法的运算律有哪些?问题3:如何在复数范围内求方程的解?(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·_(z2·z3)乘法对加法的分配律z1·(z2+z3)=z1·z2+z1·z3(3)对复数z,z1,z2和正整数m,n,有z m·z n=z m+n,(z m)n=z mn,(z1·z2)n=z n1·z n2.(4)虚数单位i乘方的周期性对于任意自然数n,有i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1.(5)共轭复数的性质:互为共轭复数的两个复数的乘积是实数,等于这个复数(或其共轭复数)模的平方.即若z =a +b i(a ,b ∈R ),则z ·z =|z |2=|z |2=a 2+b 2.(6)复数乘法的几何意义设复数z 1=a +b i(a ,b ∈R )所对应的向量为OZ 1.①z 2=(a +b i)·c (c >0)所对应的向量为OZ 2,则OZ 2是OZ 1与c 的数乘,即OZ 2是将OZ 1沿原方向拉伸或压缩c 倍得到的.②z 3=(a +b i)·i 所对应的向量为OZ 3,则OZ 3是由OZ 1逆时针旋转π2得到的.1.复数乘法的多项式运算与实数的多项式运算法则是否相似? [提示] 相似,但是运算的结果要把i 2写成-1.1.复数(1+i)(1-i)=________. 2 [(1+i)(1-i)=1-i 2=2.] 知识点2 复数的除法 (1)复数的除法:对任意的复数z 1=a +b i(a ,b ∈R )和非零复数z 2=c +d i(c ,d ∈R ),规定复数的除法:z 1z 2=z 1·1z 2.即除以一个复数等于乘这个复数的倒数.因此z 1z 2=a +b i c +d i =(a +b i)⎝ ⎛⎭⎪⎫cc 2+d 2-d c 2+d 2i =ac +bd c 2+d 2-ad -bc c 2+d 2i . (2)复数除法的运算: 在实际计算a +b ic +d i时,通常把分子和分母同乘分母c +d i 的共轭复数c -d i ,化简后就得到上面的结果:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2-ad -bcc 2+d 2i .由此可见,在进行复数除法运算时,实际上是将分母“实数化”.2.类比根式除法的分母有理化,比如1+33-2=(1+3)(3+2)(3-2)(3+2),你能写出复数的除法法则吗?提示:设z 1=a +b i ,z 2=c +d i(c +d i ≠0),则z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -adc 2+d 2i.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( ) A .-i B .i C .-1 D .1A [z =1i =-i.]类型1 复数的乘法及其几何意义【例1】 (1)(教材北师版P 171例5改编)计算:①(2+i)(2-i);②(1+2i)2. (2)设O 是坐标原点,在矩形OABC (点O ,A ,B ,C 按逆时针排列)中,OA =3OC ,若A 对应的复数是3+4i ,求点B ,C 所对应的复数.[解] (1)①(2+i)(2-i)=4-i 2=4-(-1)=5; ②(1+2i)2=1+4i +(2i)2=1+4i +4i 2=-3+4i.(2)因为在矩形OABC 中,OA =3OC ,且A 对应的复数是3+4i , 所以点C 对应的复数为(3+4i)·13i =-43+i ,因为OA →=(3,4),OC →=⎝ ⎛⎭⎪⎫-43,1,所以OB →=OA →+OC →=⎝ ⎛⎭⎪⎫53,5,所以点B 对应的复数为53+5i.1.两个复数代数形式乘法的运算步骤 (1)首先按多项式的乘法展开; (2)再将i 2换成-1;(3)然后再进行复数的加、减运算,化简为复数的代数形式. 2.常用公式(1)(a +b i)2=a 2-b 2+2ab i(a ,b ∈R ); (2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R ); (3)(1±i)2=±2i.[跟进训练]1.(1)计算:(1-i)2-(2-3i)(2+3i)=( ) A .2-13i B .13+2i C .13-13iD .-13-2i(2)复数(1-i)2(2-3i)的值为( )A .6-4iB .-6-4iC .6+4iD .-6+4i(3)设复数2+i 对应的向量为OZ →,把OZ →沿原方向拉伸3倍所得到的向量对应的复数是( )A .-1+2iB .6+3iC .6+iD .-6-3i(1)D (2)B (3)B [(1)(1-i)2-(2-3i)(2+3i)=1-2i +i 2-(4-9i 2)=-13-2i.(2)(1-i)2(2-3i)=(-2i)(2-3i)=-6-4i.(3)把OZ →沿原方向拉伸3倍所得到的向量对应的复数是(2+i)·3=6+3i.] 类型2 复数的除法【例2】 (1)已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i的点是( )A .MB .NC .PD .Q(2)设复数z =1+2i ,则z 2+3z -1=( )A .2iB .-2iC .2D .-2(3)设复数z 满足1+z1-z=i ,则|z |等于( ) A .1 B . 2 C . 3D .2(1)D (2)C (3)A [(1)由图可知z =3+i ,所以复数z1+i =3+i 1+i=(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i ,表示的点是Q (2,-1).故选D.(2)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(3)由1+z 1-z =i ,得z =-1+i 1+i=(-1+i )(1-i )2=2i2=i ,所以|z |=|i|=1.故选A.]两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式.[跟进训练] 2.(1)3+i1+i=( ) A .1+2i B .1-2i C .2+iD .2-i(2)已知i 为虚数单位,则1+i3-i =( )A .2-i5 B .2+i 5 C .1-2i5 D .1+2i 5(1)D (2)D [(1)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5.] 类型3 复数几何意义的综合应用【例3】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)1. 复数z =-2+i 在复平面内对应的点在第几象限?[提示] 因为复数z =-2+i 在复平面内对应的点为(-2,1),它在第二象限. 2.若复数z =a +b i (a ,b ∈R )在复平面内对应的点在第四象限,则实数a ,b 应满足什么条件?[提示] a >0,b <0.3.(1)计算z 1z 2→求复数z 1z 2在复平面内对应的点→判断其所在的象限(2)计算(1-i )(a +i )→求复数(1-i )(a +i )在复平面内对应的点→构建方程组并求解(1)D (2)B [(1)由题可得,z 1z 2=1+i1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)因为z =(1-i)(a +i)=a +1+(1-a )i ,所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎨⎧a +1<0,1-a >0,解得a <-1.]1.把例3(1)中的复数“z 1z 2”换为“11+i ”,答案是哪个?[解]11+i =1-i (1+i )(1-i )=12-12i ,对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.2.把例3(2)中的复数“(1-i)(a +i)”换为“1-2ia +i”,其余条件不变, 求实数a 的取值范围.[解] 因为1-2i a +i =(1-2i )(a -i )(a +i )(a -i )=a -2a 2+1-2a +1a 2+1i ,由题意可得⎩⎪⎨⎪⎧a -2a 2+1<0-2a +1a 2+1>0,解得a <-12.(1)复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解法更加直观.[跟进训练]3.已知复数z 满足(1+2i)z =4+3i(i 为虚数单位),求z 及z z .[解] ∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=2-i , ∴z =2+i ,∴zz =2-i 2+i =(2-i )2(2+i )(2-i )=3-4i 5=35-45i. 当堂达标1.复数(1+i)2(2+3i)的值为( ) A .6-4i B .-6-4i C .6+4iD .-6+4iD [(1+i)2(2+3i)=2i(2+3i)=-6+4i.]2.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2iB .2iC .-2D .2A [∵z i =1+i ,∴z =1+i i =1i +1=1-i. ∴z 2=(1-i)2=1+i 2-2i =-2i.] 3. 在复平面内,复数11-i的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限D [11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.]4.计算:(1-i)(1+i)+(-1+i)=________. 1+i [(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i.] 5.设复数z =1+2i ,则z 2-2z =________.-3 [ ∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3.]回顾本节内容,自我完成以下问题: 1.如何进行复数代数形式的乘除运算?[提示] (1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.2.解决复数问题的基本思想是什么?[提示] 复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z =a +b i(a ,b ∈R ),利用复数相等的充要条件转化.利用复数产生分形图以前我们学过的函数,定义域都是实数集的子集.但函数概念还可以推广:定义域是复数集的子集的函数称为复变函数.类似地,我们还可以得到多项式复变函数的概念.例如,f(z)=z2就是一个多项式复变函数,此时f(i)=i2=-1,f(1+i)=(1+i)2=2i.给定多项式复变函数f(z)之后,对任意一个复数z0,通过计算公式z n+1=f(z n),n∈N可以得到一列值z0,z1,z2,…,z n,….如果存在一个正数M,使得|z n|<M对任意n∈N都成立,则称z n为f(z)的收敛点;否则,称z n为f(z)的发散点.f(z)的所有收敛点组成的集合称为f(z)的充满茹利亚集.例如,当f(z)=z2时,如果z n=i,则得到的一列值是i,-1,1,1,…,1,…;如果z n=1+i,则算出的一列值是1+i,2i,-4,…,22n-1,….显然,对于f(z)=z2来说,i为收敛点,1+i为发散点.事实上,利用|z2|=|z|2可以证明,f(z)=z2的充满茹利亚集是一个单位圆盘(即由满足|z|≤1的所有z组成的集合).让人惊讶的是,当f(z)=z2+c时,对于某些复数c来说,f(z)的充满茹利亚集是非常复杂的.如果利用计算机对不同形态的收敛点和发散点进行不同的着色,就可以得到分形图.而且,如果按照一定的规则对c进行分类,并进行着色,可以得到如图所示的芒德布罗分形图.。
§一、内容和内容解析内容:复数的几何意义.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第1节第二课时的内容.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.本节课是在学生学习了复数的概念之后,对复数概念的进一步理解和深化,为下一节课复数加法和减法几何意义的学习提供了理论支撑。
因此,本节课具有承上启下的作用。
同时对加深学生对数形结合思想的认识,发展学生的思维能力具有重要意义。
二、目标和目标解析目标:(1)理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.(2)掌握实轴、虚轴、模等概念.(3)掌握用向量的模来表示复数的模的方法.目标解析:(1)复数的几何意义,沟通了复数与平面向量、有序等知识的联系,为解决平面向量、三角函数和平面几何问题提供了一种重要途径,实现了数与形,代数与几何之间的沟通.(2)本节内容突出了复数的几何意义,体现了形与数的融合,此外,本节的知识也蕴含了化归与转化的数学思想,如,某些复数问题可以转化为平面向量问题去解决、某些平面向量问题也可以转化成复数问题去解决等,再有,本节在研究过程中也运用了类比的研究方法,运用好本节的相关知识素材,让学生体会这些数学思想方法,有助于提升他们的直观想象和逻辑推理素养.基于上述分析,本节课的教学重点定为:复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系,掌握用向量的模来表示复数的模的方法.三、教学问题诊断分析教学问题一:在知识储备上,学生已经经历了数系扩充的过程,学习了复数的概念,但研究复数的几何意义,从思维角度看学生还缺乏经验;因此,在研究其几何意义,探究复数a+bi和平面上的点Z(a,b)以及向量OZ一一对应时有一定难度.解决方案:在讲解本节前,可提前布置一些预习作业,让学生为新课的学习做好知识准备,或者在课上先复习平面向量的相关知识,再进行新课的学习和探究,探究时要充分注意复数与平面向量的联系性,这是突破难点的一个重要举措.教学问题二:复数模的几何意义是本节课的第二个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:复习初中学过的圆的定义,距离的定义,将模与距离,与向量的模相类比,从而突破这一难点.基于上述情况,本节课的教学难点定为:理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、类比得到复数的几何意义,应该为学生创造积极探究的平台.可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究突出教学重点,突破教学难点.在教学过程中,重视复数几何意义的探究,让学生体会类比推理的基本过程,同时,复数模的几何意义是数形结合的典范.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计与点Z 有什么关系?2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )复平面内的点Z (a ,b ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的模(1)定义:向量OZ →的模叫做复数z =a +b i(a ,b ∈R )的模或绝对值.(2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +b i 是一个实数,它的模就等于|a |(a 的绝对值). 4.共轭复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i.典例分析,举一反三例1.在复平面内,若复数z =(m 2-2m -8)+(m 2+3m -10)i 对应的点:(1)在虚轴上;(2)在第二象限;(3)在第二、四象限;(4)在直线y =x 上,分别求实数m 的取值范围.例2.设O 是原点,向量教师8:完成例1.学生7:复数z =(m 2-2m -8)+(m 2+3m -10)i 的实部为m 2-2m -8,虚部为m 2+3m -10.(1)由题意得m 2-2mm =-2或m =4.(2)由题意,⎩⎪⎨⎪⎧m 2-2m -8<0,m 2+3m -10>0,∴2<m <4.(3)由题意,(m 2-2m -8)(m 2+3m -10)<0, ∴2<m <4或-5<m <-2.(4)由已知得m 2-2m -8=m 2+3m -10,故m =25.教师9:完成例2通过例题进一步巩固复数的几何意义,提高学生的概括问题的能力、解决问题的能力。
3.3复数的几何意义[对应学生用书P43]复平面的定义问题1:平面向量可以用坐标表示,试想复数能用坐标表示吗?提示:可以.问题2:试说明理由.提示:因复数z=a+b i(a,b∈R)与有序实数对(a,b)惟一确定,由(a,b)与平面直角坐标系点一一对应,从而复数集与平面直角坐标系中的点集之间一一对应.建立直角坐标系来表示复数的平面叫做复平面.x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数.已知复数z =a +b i(a ,b ∈R ).问题1:在复平面内作出复数z 所对应的点Z . 提示:如图所示.问题2:向量OZ u u u r和点Z 有何关系?提示:有一一对应关系.问题3:复数z =a +b i 与OZ u u u r有何关系?提示:也是一一对应.1.复数与点,向量间的对应关系2.复数的模复数z =a +b i(a ,b ∈R )对应的向量为OZ u u u r ,则OZ u u u r的模叫做复数z 的模(或绝对值),记作|z |,且|z |=|a +b i|=a 2+b 2.复数加减法的几何意义如图1OZ u u u r 、2OZ u u u u r分别与复数a +b i ,c +d i 对应.问题1:试写出1OZ u u u r 、2OZ u u u u r 及1OZ u u u r +2OZ u u u u r 、1OZ u u u r -2OZ u u u u r的坐标. 提示:1OZ u u u r =(a ,b ),2OZ u u u u r=(c ,d ),1OZ u u u r +2OZ u u u u r =(a +c ,b +d ),1OZ u u u r -2OZ u u u u r=(a -c ,b -d ). 问题2:向量1OZ u u u r +2OZ u u u u r 及1OZ u u u r -2OZ u u u u r所对应的复数分别是什么?提示:(a +c )+(b +d )i 及(a -c )+(b -d )i.1.复数加法的几何意义设向量1OZ u u u r ,2OZ u u u u r 分别与复数z 1=a +b i ,z 2=c +d i 对应,且1OZ u u u r 和2OZ u u u u r不共线.如图,以1OZ u u u r ,2OZ u u u u r为邻边画平行四边形OZ 1ZZ 2,则其对角线OZ所表示的向量OZ u u u r OZ u u u r就是复数(a +c )+(b +d )i 对应的向量.2.复数减法的几何意义复数的减法是加法的逆运算,设1OZ u u u r ,2OZ u u u u r 分别与复数a +b i ,c +d i 相对应,且1OZ u u u r,2OZ u u u u r不共线,如图.则这两个复数的差z 1-z 2与向量1OZ u u u r -2OZ u u u u r (等于21Z Z u u u u r)对应,这就是复数减法的几何意义.3.设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则|z 1-z 2|=(a -c )2+(b -d )2,即两个复数的差的模就是复平面内与这两个复数对应的两点间的距离.1.复平面上点的横坐标表示复数的实部,点的纵坐标表示复数的虚部.2.表示实数的点都在实轴上,实轴上的点都表示实数,它们是一一对应的;表示纯虚数的点都在虚轴上,但虚轴上的点不都表示纯虚数,如原点表示实数0.3.在平面向量中,向量的加法、减法的几何解释同复数加法、减法的几何解释是相同的.[对应学生用书P44]复数的几何意义[例1] 实数x 分别取什么值时,复数z =x 2+x -6+(x 2-2x -15)i 对应的点Z 在下列位置?(1)第三象限;(2)第四象限;(3)直线x -y -3=0上?[思路点拨] 利用复数与复平面内点之间的对应关系求解.若已知复数z =a +b i(a ,b ∈R ),则当a <0且b <0时,复数z 对应的点在第三象限;当a >0且b <0时,复数z 对应的点在第四象限;当a -b -3=0时,复数z 对应的点在直线x -y -3=0上.[精解详析] 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数. 若已知复数z =a +b i ,则当a <0,且b <0时,复数z 对应的点在第三象限; 当a >0,且b <0时,复数z 对应的点在第四象限; 当a -b -3=0时,复数z 对应的点在直线x -y -3=0上.(1)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 在第三象限.(2)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6>0,x 2-2x -15<0,即2<x <5时,点Z 在第四象限.(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0, 即x =-2时,点Z 在直线x -y -3=0上.[一点通] 按照复数集和复平面内所有的点组成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数的实部、虚部的取值.1.(湖北高考改编)在复平面内,复数 z =2i1+i (i 为虚数单位)的共轭复数对应点位于第________象限.解析:z =2i1+i =2i (1-i )(1+i )(1-i )=2i (1-i )2=i +1的共轭复数为1-i ,对应的点为(1,-1)在第四象限.答案:四2.求当实数m 为何值时,复数z =(m 2-8m +15)+(m 2+3m -28)i 在复平面内的对应点分别满足下列条件:(1)位于第四象限; (2)位于x 轴的负半轴上.解:(1)由题意,知⎩⎪⎨⎪⎧m 2-8m +15>0,m 2+3m -28<0,解得⎩⎪⎨⎪⎧m <3或m >5,-7<m <4.即-7<m <3.故当-7<m <3时,复数z 的对应点位于第四象限.(2)由题意,知⎩⎪⎨⎪⎧m 2-8m +15<0 ①m 2+3m -28=0 ②由②得m =-7或m =4. 因m =-7不适合不等式①, m =4适合不等式①, 所以m =4.故当m =4时,复数z 的对应点位于x 轴的负半轴上.复数模及其几何意义的应用[例2] 已知复数z 1=3-i 及z 2=-12+32i.(1)求|z 1|及|z 2|的值并比较它们的大小;(2)设z ∈C ,满足|z 2|≤|z |≤|z 1|的点z 的集合是什么图形.[思路点拨] 由复数的模长公式求出|z 1|及|z 2|,然后比较大小;(2)根据点数模的几何意义画出图形.[精解详析] (1)|z 1|=|3-i|=(3)2+(-1)2=2, |z 2|=⎪⎪⎪⎪-12+32i =⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|z 1|>|z 2|.(2)由(1)知1≤|z |≤2,因为不等式|z |≥1的解集是圆|z |=1上和该圆外部所有点组成的集合,不等式|z |≤2的解集是圆|z |=2上和该圆内部所有点组成的集合,所以满足条件1≤|z |≤2的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆所夹的圆环,并包括圆环的边界,如图所示.[一点通] (1)计算复数的模时,应先找出复数的实部和虚部,然后再利用模的公式进行计算,两个虚数不能比较大小,但它们的模可以比较大小.(2)复数的模表示该复数在复平面内对应点到原点的距离.3.(辽宁高考改编)复数z =1i -1的模为________. 解析:∵z =1-1+i =-1-i (-1+i )(-1-i )=-1-i2=-12-12i ,∴|z |= ⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=22. 答案:224.已知z =3+a i ,且|z -2|<2,则实数a 的取值范围是________. 解析:∵z =3+a i ,∴z -2=1+a i , ∴|z -2|=1+a 2<2,即1+a 2<4,∴a 2<3,即-3<a < 3. 答案:(-3,3)5.设z ∈C ,则满足条件|z |=|3+4i|的复数z 在复平面上对应的点Z 的集合是什么图形? 解:法一:由|z |=|3+4i|得|z |=5.这表明向量OZ u u u r的长度等于5,即点Z 到原点的距离等于5.因此满足条件的点Z 的集合是以原点O 为圆心,以5为半径的圆. 法二:设z =x +y i(x ,y ∈R ),则|z |2=x 2+y 2. ∵|3+4i|=5,∴由|z |=|3+4i|得x 2+y 2=25,∴点Z 的集合是以原点为圆心,以5为半径的圆.[例3] 已知▱OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i ,试求:(1) AO u u u r 表示的复数;(2) CA u u r表示的复数;(3)点B 对应的复数.[思路点拨] 点O ,A ,C 对应的复数――――――→向量的坐标表示AO u u u r ,CA u u r ,OBu u u r的坐标形式――――――→复数在复平面上与向量一一对应AO u u u r ,CA u u r ,OBu u u r 对应的复数[精解详析] (1)AO u u u r =-OA u u r ,故AO u u u r表示的复数为-(3+2i),即-3-2i. (2)CA u u r =OA u u r -OC u u u r ,故CA u u r表示的复数为(3+2i)-(-2+4i)=5-2i. (3)OB u u u r =OA u u r +AB u u u r =OA u u r +OC u u ur ,故OB u u u r 表示的复数为(3+2i)+(-2+4i)=1+6i ,即点B 对应的复数为1+6i.[一点通] (1)根据复数的两种几何意义可知:复数的加、减运算可以转化为点的坐标运算或向量运算.(2)复数的加、减运算用向量进行时,同样满足平行四边形法则和三角形法则. (3)复数及其加、减运算的几何意义为数形结合思想在复数中的应用提供了可能.6.已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB u u u r对应的复数z ,z 在平面内对应的点在第几象限?解:z =z 2-z 1=(1+2i)-(2+i)=-1+i , ∵z 的实部-1<0,虚部1>0,∴复数z 在复平面内对应的点在第二象限内.7.在复平面内,点A 、B 、C 分别对应复数z 1=1+i ,z 2=5+i ,z 3=3+3i.以AB 、AC 为邻边作一个平行四边形ABDC ,求D 点对应的复数z 4及AD 的长.解:如图,由复数加减法的几何意义, AD u u u r =AB u u u r +AC u u ur ,即z 4-z 1=(z 2-z 1)+(z 3-z 1). 所以z 4=z 2+z 3-z 1=7+3i.|AD |=|z 4-z 1|=|(7+3i)-(1+i)|=|6+2i|=210.1.复数模的几何意义复数模的几何意义架起了复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决(即数形结合法),增加了解决复数问题的途径. (1)复数z =a +b i(a ,b ∈R )的对应点的坐标为(a ,b ),而不是(a ,b i);(2)复数z =a +b i(a ,b ∈R )的对应向量OZ u u u r是以原点O 为起点的,否则就谈不上一一对应,因为复平面上与OZ u u u r相等的向量有无数个.2.复数的模(1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2;(2)从几何意义上理解,表示点Z 和原点间的距离,类比向量的模可进一步引申:|z 1-z 2|表示点Z 1和点Z 2之间的距离.[对应学生用书P45]一、填空题1.若OA u u r 、OB u u u r 对应的复数分别是7+i,3-2i ,则|AB u u u r|=________.解析:∵OA u u r =(7,1),OB u u u r=(3,-2), ∴AB u u u r =OB u uu r -OA u u r =(-4,-3),∴|AB u u u r|=5.答案:52.(重庆高考改编)复平面内表示复数i(1-2i)的点位于第________象限. 解析:i(1-2i)=2+i 对应的点为(2,1),位于第一象限. 答案:一3.若z +|z |=2+8i ,则z =________. 解析:法一:设z =a +b i(a ,b ∈R ), 则|z |=a 2+b 2,代入方程得a +b i +a 2+b 2=2+8i.所以⎩⎪⎨⎪⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8,所以z =-15+8i.法二:原式可化为z =2-|z |+8i , ∵|z |∈R ,∴2-|z |是z 的实部. 于是|z |=(2-|z |)2+82,即|z |2=68-4|z |+|z |2,∴|z |=17.代入z =2-|z |+8i ,得z =-15+8i. 答案:-15+8i4.已知z 1=2+i ,z 2=3+a i(a ∈R ),若z 1+z 2所对应的点在实轴上,则a =________. 解析:z 1+z 2=2+i +3+a i =5+(a +1)i ,由z 1+z 2所对应的点在实轴上可知a +1=0,即a =-1. 答案:-15.(新课标全国卷Ⅰ改编)设z =11+i +i ,则|z |=________.解析:11+i +i =1-i(1+i )·(1-i )+i =1-i 2+i =12+12i ,则|z |=⎝⎛⎭⎫122+⎝⎛⎭⎫122=22. 答案:22二、解答题6.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R )的共轭复数z 对应的点在第一象限,求实数m 的集合.解:由题意得z =(m 2+m -2)-(4m 2-8m +3)i ,z 对应的点位于第一象限,所以有⎩⎪⎨⎪⎧ m 2+m -2>0,-(4m 2-8m +3)>0,所以⎩⎪⎨⎪⎧m 2+m -2>0,4m 2-8m +3<0,所以⎩⎪⎨⎪⎧m <-2或m >1,12<m <32,即1<m <32,故所求m 的集合为⎩⎨⎧m ⎪⎪⎭⎬⎫1<m <32. 7.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i. (1)求AB u u u r ,BC u u ur ,AC u u u r 对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.解:(1)AB u u u r对应的复数为z B -z A =(2+i)-1=1+i. BC u u u r对应的复数为z C -z B =(-1+2i)-(2+i)=-3+i.AC u u u r对应的复数为z C -z A =(-1+2i)-1=-2+2i.(2)由(1)知|AB u u u r|=|1+i|=2,|BC u u u r |=|-3+i|=10,|AC u u u r |=|-2+2i|=22, ∴|AB u u u r|2+|AC u u u r |2=|BC u u u r |2.故△ABC 为直角三角形.(3)S △ABC =12|AB u uu r |·|AC u u u r |=12×2×22=2.8.若z ∈C 且|z +2-2i|=1,求|z -2-2i|的最小值.解:已知|z-(-2+2i)|=1中,z的对应点轨迹是以(-2,2)为圆心,1为半径的圆,|z-(2+2i)|表示圆上的点与点(2,2)之间的距离,最小值为圆心与点(2,2)的距离减去半径,易得值为3.。
§5.5复数考试要求1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.知识梳理1.复数的有关概念(1)复数的定义:一般地,当a 与b 都是实数时,称a +b i 为复数.其中i 称为虚数单位,满足i 2=-1.(2)复数的分类:复数z =a +b i(a ,b ∈R )(b =0),(b ≠0)(当a =0时为纯虚数).(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(4)共轭复数:a +b i 与c +d i 互为共轭复数⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)复数的模:向量OZ →的长度称为复数z =a +b i 的模(或绝对值),记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义(1)复数z =a +b i(a ,b ∈R )一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i(a ,b ∈R )一一对应平面向量OZ →.3.复数的四则运算(1)复数的加、减、乘、除运算法则:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ;②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ;③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2c +d i ≠0).(2)几何意义:复数加、减法可按向量的平行四边形法则或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加、减法的几何意义,即OZ →=OZ 1—→+OZ 2—→,Z 1Z 2—→=OZ 2—→-OZ 1—→.常用结论1.(1±i)2=±2i ;1+i 1-i =i ;1-i1+i =-i.2.-b +a i =i(a +b i)(a ,b ∈R ).3.i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ).4.i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N ).5.复数z 的方程在复平面上表示的图形(1)a ≤|z |≤b 表示以原点O 为圆心,以a 和b 为半径的两圆所夹的圆环;(2)|z -(a +b i)|=r (r >0)表示以(a ,b )为圆心,r 为半径的圆.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)复数z =a -b i(a ,b ∈R )中,虚部为b .(×)(2)复数可以比较大小.(×)(3)已知z =a +b i(a ,b ∈R ),当a =0时,复数z 为纯虚数.(×)(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)教材改编题1.已知复数z 满足z (1+i)=2+3i ,则在复平面内z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限答案A解析因为复数z 满足z (1+i)=2+3i ,所以z =2+3i 1+i =(2+3i )(1-i )(1+i )(1-i )=5+i 2=52+12i ,所以在复平面内z 对应的点位于第一象限.2.若z =(m 2+m -6)+(m -2)i 为纯虚数,则实数m 的值为________.答案-33.已知复数z 满足(3+4i)·z =5(1-i),则z 的虚部是________.答案-75解析因为(3+4i)·z =5(1-i),所以z =5(1-i )3+4i =5(1-i )(3-4i )(3+4i )(3-4i )=5(3-7i +4i 2)32-(4i )2=5(-1-7i )25=-15-75i.所以z 的虚部为-75.题型一复数的概念例1(1)(多选)(2023·潍坊模拟)已知复数z 满足|z |=|z -1|=1,且复数z 对应的点在第一象限,则下列结论正确的是()A .复数z 的虚部为32B .1z =12-32iC .z 2=z +1D .复数z 的共轭复数为-12+32i答案AB解析设复数z =a +b i(a ,b ∈R ).因为|z |=|z -1|=1,且复数z 对应的点在第一象限,2+b 2=1,a -1)2+b 2=1,>0,b >0,=12,=32,即z =12+32i.对于A ,复数z 的虚部为32,故A 正确;对于B ,1z 1-3i=12-32i ,故B 正确;对于C ,因为z 2=-12+32i ≠z +1,故C 错误;对于D ,复数z 的共轭复数为12-32i ,故D 错误.(2)(2022·北京)若复数z 满足i·z =3-4i ,则|z |等于()A .1B .5C .7D .25答案B 解析方法一依题意可得z =3-4i i =(3-4i )ii2=-4-3i ,所以|z |=(-4)2+(-3)2=5,故选B.方法二依题意可得i 2·z =(3-4i)i ,所以z =-4-3i ,则|z |=(-4)2+(-3)2=5,故选B.(3)(2022·泰安模拟)已知复数z 满足z +iz=i ,则z =________.答案12+12i 解析由z +i z=i ,得z +i =z i ,∴z =-i 1-i =-i (1+i )(1-i )(1+i )=1-i 2=12-i 2.则z =12+12i.思维升华解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.跟踪训练1(1)(2023·淄博模拟)若复数z =2+ia +i的实部与虚部相等,则实数a 的值为()A .-3B .-1C .1D .3答案A解析z =2+i a +i =(2+i )(a -i )(a +i )(a -i )=2a +1+(a -2)i a 2+1,因为复数z =2+ia +i的实部与虚部相等,所以2a +1=a -2,解得a =-3,故实数a 的值为-3.(2)(2022·全国甲卷)若z =1+i ,则|i z +3z |等于()A .45B .42C .25D .22答案D解析因为z =1+i ,所以i z +3z =i(1+i)+3(1-i)=i -1+3-3i =2-2i ,所以|i z +3z |=|2-2i|=22+(-2)2=2 2.故选D.(3)(2022·新高考全国Ⅰ)若i(1-z )=1,则z +z 等于()A .-2B .-1C .1D .2答案D 解析因为i(1-z )=1,所以z =1-1i=1+i ,所以z =1-i ,所以z +z =(1+i)+(1-i)=2.故选D.题型二复数的四则运算例2(1)(2022·全国甲卷)若z =-1+3i ,则zz z -1等于()A .-1+3iB .-1-3iC .-13+33iD .-13-33答案C 解析zz z -1=-1+3i (-1+3i )(-1-3i )-1=-1+3i 3=-13+33i ,故选C.(2)(多选)(2022·福州模拟)设复数z 1,z 2,z 3满足z 3≠0,且|z 1|=|z 2|,则下列结论错误的是()A .z 1=±z 2B .z 21=z 22C .z 1·z 3=z 2·z 3D .|z 1·z 3|=|z 2·z 3|答案ABC解析取z 1=1-i ,z 2=1+i ,显然满足|z 1|=|z 2|=2,但z 1≠z 2,z 1≠-z 2,故A 错误;因为z 21=-2i ,z 22=2i ,故B 错误;再取z 3=1,显然C 错误.思维升华(1)复数的乘法:复数乘法类似于多项式的乘法运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.跟踪训练2(1)(2022·新高考全国Ⅱ)(2+2i)(1-2i)等于()A .-2+4iB .-2-4iC .6+2iD .6-2i答案D解析(2+2i)(1-2i)=2-4i +2i +4=6-2i ,故选D.(2)(2023·济宁模拟)已知复数z 满足z ·i 3=1-2i ,则z 的虚部为()A .1B .-1C .2D .-2答案B解析∵z ·i 3=1-2i ,∴-z i =1-2i ,∴z =1-2i -i =(1-2i )i -i 2=2+i ,∴z =2-i ,∴z 的虚部为-1.题型三复数的几何意义例3(1)(2023·文昌模拟)棣莫弗公式(cos x +isin x )n =cos nx +isin nx (其中i 为虚数单位)是由法国数学家棣莫弗(1667-1754年)发现的,根据棣莫弗公式可知,复数π6+isin 在复平面内所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析由已知得π6+isin =cos 7π6+isin 7π6=cos π6-isin π6=-32-12i ,∴复数π6+isin -32,-(2)在复平面内,O 为坐标原点,复数z 1=i(-4+3i),z 2=7+i 对应的点分别为Z 1,Z 2,则∠Z 1OZ 2的大小为()A.π3B.2π3C.3π4D.5π6答案C解析∵z 1=i(-4+3i)=-3-4i ,z 2=7+i ,∴OZ 1—→=(-3,-4),OZ 2—→=(7,1),∴OZ 1—→·OZ 2—→=-21-4=-25,∴cos ∠Z 1OZ 2=OZ 1—→·OZ 2—→|OZ 1—→||OZ 2—→|=-255×52=-22又∠Z 1OZ 2∈[0,π],∴∠Z 1OZ 2=3π4.(3)设复数z 在复平面内对应的点为Z ,原点为O ,i 为虚数单位,则下列说法正确的是()A .若|z |=1,则z =±1或z =±iB .若|z +1|=1,则点Z 的集合为以(1,0)为圆心,1为半径的圆C .若1≤|z |≤2,则点Z 的集合所构成的图形的面积为πD.若|z-1|=|z+i|,则点Z的集合中有且只有两个元素答案C解析若|z|=1,则点Z的集合为以原点为圆心,1为半径的圆,有无数个圆上的点与复数z 对应,故A错误;若|z+1|=1,则点Z的集合为以(-1,0)为圆心,1为半径的圆,故B错误;若1≤|z|≤2,则点Z的集合为以原点为圆心,分别以1和2为半径的两圆所夹的圆环,所以点Z的集合所构成的图形的面积为π×(2)2-π×12=π,故C正确;若|z-1|=|z+i|,则点Z的集合是以点(1,0),(0,-1)为端点的线段的垂直平分线,集合中有无数个元素,故D错误.思维升华由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.跟踪训练3(1)设复数z满足(1-i)z=2i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析由z=2i1-i=2i(1+i)(1-i)(1+i)=-1+i,故z在复平面内对应的点为(-1,1),所以z在复平面内对应的点位于第二象限.(2)设复数z满足|z-1|=2,z在复平面内对应的点为(x,y),则()A.(x-1)2+y2=4B.(x+1)2+y2=4C.x2+(y-1)2=4D.x2+(y+1)2=4答案A解析z在复平面内对应的点为(x,y),则复数z=x+y i(x,y∈R),则|z-1|=|(x-1)+y i|=2,由复数的模长公式可得(x-1)2+y2=4.(3)已知复数z满足|z+i|=|z-i|,则|z+1+2i|的最小值为()A.1B.2 C.3 D.5答案B解析设复数z在复平面内对应的点为Z,因为复数z满足|z+i|=|z-i|,所以由复数的几何意义可知,点Z到点(0,-1)和(0,1)的距离相等,所以在复平面内点Z的轨迹为x轴,又|z+1+2i|表示点Z到点(-1,-2)的距离,所以问题转化为x轴上的动点Z到定点(-1,-2)距离的最小值,所以|z+1+2i|的最小值为2.课时精练1.(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则() A.a=1,b=-3B.a=-1,b=3C.a=-1,b=-3D.a=1,b=3答案B解析(b+i)i=-1+b i,则由a+3i=-1+b i,得a=-1,b=3,故选B. 2.(2022·济南模拟)复数z=2i+1(i为虚数单位)的虚部是()A.-1B.1C.-i D.i答案A解析因为z=2i+1=2(1-i)(i+1)(1-i)=2(1-i)2=1-i.所以复数z的虚部为-1.3.(2023·烟台模拟)若复数z满足(1+2i)z=4+3i,则z等于() A.-2+i B.-2-iC.2+i D.2-i答案C解析由(1+2i)z=4+3i⇒z=4+3i1+2i=(4+3i)(1-2i)(1+2i)(1-2i)=2-i,所以z=2+i.4.(2023·焦作模拟)复数z=-i2+i-i5在复平面内对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限答案C解析因为z=-i2+i i5=-i(2-i)(2+i)(2-i)-i=-1-2i5-i=-15-75i,所以z -1 5,-5.(2022·西安模拟)已知复数z满足(1-i)2z=2-4i,其中i为虚数单位,则复数z的虚部为()A.1B.-1C.i D.-i答案B解析由题意,化简得z =2-4i (1-i )2=2-4i -2i=2i +42=2+i ,则z =2-i ,所以复数z 的虚部为-1.6.(2022·临沂模拟)已知复数z =2+6i1-i i 为虚数单位,则|z |等于()A .22B .23C .25D .26答案C解析z =(2+6i )(1+i )(1-i )(1+i )=(2+6i )(1+i )2=(1+3i)(1+i)=-2+4i ,|z |=4+16=2 5.7.(2023·蚌埠模拟)非零复数z 满足z =-z i ,则复数z 在复平面内对应的点位于()A .实轴B .虚轴C .第一或第三象限D .第二或第四象限答案C解析由题意,设z =a +b i(a ,b ∈R ),故z =-z i ⇔a -b i =-(a +b i)i =-a i +b ,故a =b ,-b =-a ,即复数z =a +a i ,在复平面内对应的点位于第一或第三象限的角平分线上.8.(2022·文昌模拟)已知复数z =a +2ii(a ∈R ,i 是虚数单位)的虚部是-3,则复数z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限答案D解析由题意,z =a +2i i =a i +2i 2i2=2-a i 的虚部是-3,所以z 在复平面内对应的点的坐标为(2,-3),在第四象限.9.i 是虚数单位,设(1+i)x =1+y i ,其中x ,y 是实数,则xy =________,|x +y i|=________.答案12解析因为(1+i)x =1+y i ,所以x +x i =1+y i =1,=y ,所以x =y =1,所以xy =1,|x +y i|=|1+i|=12+12= 2.10.(2022·潍坊模拟)若复数z 满足z ·i =2-i ,则|z |=________.答案5解析由z ·i =2-i ,得z =2-i i =(2-i )(-i )-i 2=-1-2i ,∴|z |=(-1)2+(-2)2= 5.11.欧拉公式e i θ=cos θ+isin θ(其中e =2.718…,i 为虚数单位)是由瑞士著名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,下列结论中正确的是()A .e iπ的实部为0B .e 2i 在复平面内对应的点在第一象限C .|e i θ|=1D .e iπ的共轭复数为1答案C解析对于A ,e iπ=cos π+isin π=-1,则实部为-1,A 错误;对于B ,e 2i =cos 2+isin 2在复平面内对应的点为(cos 2,sin 2),∵cos 2<0,sin 2>0,∴e 2i 在复平面内对应的点位于第二象限,B 错误;对于C ,|e i θ|=|cos θ+isin θ|=cos 2θ+sin 2θ=1,C 正确;对于D ,e iπ=cos π+isin π,则其共轭复数为cos π-isin π=-1,D 错误.12.(多选)(2022·济宁模拟)已知复数z 1=-2+i(i 为虚数单位),复数z 2满足|z 2-1+2i|=2,z 2在复平面内对应的点为M (x ,y ),则下列说法正确的是()A .复数z 1在复平面内对应的点位于第二象限B.1z 1=-25-15i C .(x +1)2+(y -2)2=4D .|z 2-z 1|的最大值为32+2答案ABD解析对于A ,复数z 1在复平面内对应的点的坐标为(-2,1),该点位于第二象限,故A 正确;对于B ,1z 1=1-2+i =-2-i (-2+i )(-2-i )=-25-15i ,故B 正确;对于C ,z 2-1+2i =(x -1)+(y +2)i ,∵|z 2-1+2i|=2,∴(x -1)2+(y +2)2=4,故C 错误;对于D ,z 1-1+2i =-3+3i ,则|z 1-1+2i|=(-3)2+32=3 2.|z 2-z 1|=|(z 2-1+2i)-(z 1-1+2i)|≤|z 2-1+2i|+|z 1-1+2i|=2+32,故D 正确.13.若复数(x -3)+y i(x ,y ∈R )的模为2,则y x的最大值为()A.255 B.52 C.53 D.23答案A解析因为复数(x -3)+y i(x ,y ∈R )的模为2,所以(x -3)2+y 2=4,表示以(3,0)为圆心,2为半径的圆,如图所示,y x 表示过原点和圆上的点(x ,y )的直线的斜率,由图可知,当直线与圆相切时,y x取得最值,设切线方程为y =kx ,则|3k |k 2+1=2,解得k =±255,所以y x 的最大值为255.14.在数学中,记表达式ad -bc 为由|a b c d |所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当|z 1z 2z 3z 4|=12-i 时,z 4的虚部为________.答案-2解析依题意知,|z 1z 2z 3z 4|=z 1z 4-z 2z 3,因为z 3=z 2,且z 2=2+i 1-i=(2+i )(1+i )2=1+3i 2,所以z 2z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i ,故z 4=3-i 1+i=(3-i )(1-i )2=1-2i.所以z 4的虚部是-2.15.方程z2-4|z|+3=0在复数集内解的个数为()A.4B.5C.6D.8答案C解析令z=a+b i(a,b∈R),则a2-b2+2ab i-4a2+b2+3=0,2ab=0,a2-b2-4a2+b2+3=0.当b=0时,a2-4|a|+3=0,a=±1或a=±3;当a=0时,b2+4|b|-3=0,|b|=-2+7或|b|=-2-7(舍),即b=±(7-2).综上共有6个解,z=±1,z=±3,z=±(7-2)i.16.投掷两颗六个面上分别刻有1到6的点数的均匀的骰子,得到其向上的点数分别为m和n,则复数m+n in+m i为虚数的概率为________.答案5 6解析∵复数m+n in+m i=(m+n i)(n-m i)(n+m i)(n-m i)=2mn+(n2-m2)im2+n2,故复数m+n in+m i为虚数需满足n2-m2≠0,即m≠n,故有6×6-6=30(种)情况,∴复数m+n in+m i为虚数的概率为306×6=56.。
3.3复数的几何意义学案(含答案)
3.3复数的几何意义学习目标
1.了解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.
2.掌握实轴.虚轴.模等概念.
3.理解向量加法.减法的几何意义,能用几何意义解决一些简单问题知识点一复平面思考实数可用数轴上的点来表示,平面向量可以用坐标表示,类比一下,复数怎样来表示呢答案任何一个复数zabi,都和一个有序实数对a,b一一对应,因此,复数集与平面直角坐标系中的点集之间可以建立一一对应关系梳理建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数知识点二复数的几何意义1复数与点.向量间的对应关系2复数的模复数zabia,bR,对应的向量为,则向量的模叫做复数zabi的模或绝对值,记作|z|或|abi|.由模的定义可知|z||abi|.知识点三复数加.减法的几何意义思考1复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗答案如图,设,分别与复数abi,cdi对应,且,不共线,则a,b,c,d,由平面向量的坐标运算,得ac,bd,所以与复数acbdi 对应,复数的加法可以按照向量的加法来进行思考2怎样作出与复数z1z2对应的向量答案z1z2可以看作z1z2因为复数的加法可以按照向量的加法来进行所以可以按照平行四边形法则或三角形
法则作出与z1z2对应的向量如图图中对应复数z1,对应复数
z2,则对应复数z1z
2.梳理1复数加减法的几何意义复数加法的几何意义复数
z1z2是以,为邻边的平行四边形的对角线所对应的复数复数减法的几何意义复数z1z2是从向量的终点指向向量的终点的向量所对应的复数2设z1abi,z2cdia,b,c,dR,则|z1z2|,即两个复数的差的模就是复平面内与这两个复数对应的两点间的距离1原点是实轴和虚轴的交点2在复平面内,对应于实数的点都在实轴上3在复平面内,虚轴上的点构对应的复数都是纯虚数4复数的模一定是正实数类型一复数的几何意义例1实数x分别取什么值时,复数zx2x6x22x15i对应的点Z在1
第三象限;2直线xy30上解因为x是实数,所以x2x6,
x22x15也是实数1当实数x满足即当3x2时,点Z在第三象限
2zx2x6x22x15i对应点的坐标为Zx2x6,x22x15,当实数x满足
x2x6x22x1530,即当x2时,点Z在直线xy30上引申探究若本例中的条件不变,其对应的点在1虚轴上;2
第四象限解1当实数x满足x2x60,即当x3或2时,点Z在虚轴上2当实数x满足即当2x5时,点Z在第四象限反思与感悟按照复数和复平面内所有点构成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部.虚部的取
值跟踪训练1求当实数m为何值时,复数zm28m15m23m28i在复平面内的对应点分别满足下列条件1位于
第四象限;2位于x轴的负半轴上解1由题意,知解得即7m
3.故当7m3时,复数z的对应点位于第四象限2由题意,知由得m7或m
4.因为m7不适合不等式,m4适合不等式,所以m
4.故当m4时,复数z的对应点位于x轴的负半轴上类型二复数模及其几何意义的应用例2已知复数z1i及z2i.1求|z1|及
|z2|的值;2设zC,满足|z2||z||z1|的点z的集合是什么图形解1|z1||i|2,|z2|
1.2由1知1|z|2,因为不等式|z|1的解集是圆|z|1上和该圆外部所有点组成的集合,不等式|z|2的解集是圆|z|2上和该圆内部所有点组成的集合,所以满足条件1|z|2的点Z的集合是以原点O为圆心,以1和2为半径的两圆所夹的圆环,并包括圆环的边界,如图所示反思与感悟1
在计算复数的模时,应先找出复数的实部和虚部,然后再利用模的公式进行计算,两个虚数不能比较大小,但它们的模可以比较大小2复数的模表示该复数在复平面内对应的点到原点的距离跟踪训练2设z为复数,且|z||z1|1,求|z1|的值考点复数的模的定义与应用题点利用定义求复数的模解设zabia,bRz1a1bi,且|z||z1|1,即即解得|z1||abi1|.类型三复数加.减法的几何意义例3如图所示,平行四边形OABC的顶点O,A,C分别对应的复
数为0,32i,24i.求1表示的复数;2表示的复数;3表示的复数解因为A,C对应的复数分别为32i,24i,由复数的几何意义,知与表示的复数分别为32i,24i.1因为,所以表示的复数为32i.2因为,所以表示的复数为32i24i52i.3,所以表示的复数为
32i24i16i.反思与感悟1
常用技巧形转化为数利用几何意义可以把几何图形的变换转化成复数运算去处理数转化为形对于一些复数运算也可以给予几何解释,使复数作为工具运用于几何之中2常见结论在复平面内,z1,z2对应的点分别为A,B,z1z2对应的点为C,O为坐标原点,则四边形OACB为平行四边形若|z1z2||z1z2|,则四边形OACB为矩形若|z1||z2|,则四边形OACB为菱形若|z1||z2|且
|z1z2||z1z2|,则四边形OACB为正方形跟踪训练31已知复平面内的平面向量,表示的复数分别是2i,32i,则||________.2若
z12i,z23ai,复数z2z1所对应的点在第四象限上,则实数a的取值范围是__________答案12,1解析1,表示的复数为
2i32i13i,||.2z2z11a1i,由题意知a10,即a
1.1若0,3,则对应的复数为________答案3i解析0,3,
Z0,3,复数z03i3i.2在复平面内表示复数zm32i的点在直线yx 上,则实数m________.答案9解析zm32i表示的点在直线yx上,m32,解得m
9.3已知34ixyix,yR,则|15i|,|xyi|,|y2i|的大小关系为________________答案|15i||xyi||y2i|解析34ixyi,x3,y
4.则|15i|,|xyi||34i|5,|y2i||42i|2,
|15i||xyi||y2i|.4设z134i,z223i,则z1z2在复平面内对应的点位于第________象限答案四解析z1z257i,z1z2在复平面内对应的点为5,7,其位于第四象限5设平行四边形ABCD在复平面内,A为原点,B,D两点对应的复数分别是32i和24i,则点C对应的复数是__________答案52i解析设AC与BD的交点为E,则E 点坐标为,设点C坐标为x,y,则x5,y2,故点C对应的复数为52i.1复数模的几何意义复数模的几何意义架起了复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决即数形结合法,增加了解决复数问题的途径1复数zabia,bR的对应点的坐标为a,b,而不是a,bi2复数zabia,bR的对应向量是以原点O为起点的,否则就谈不上一一对应,因为复平面上与相等的向量有无数个2复数的模1复数zabia,bR的模|z|.2从几何意义上理解,表示点Z和原点间的距离,类比向量的模可进一步引申|z1z2|表示点Z1和点Z2之间的距离。