高考数学选择填空压轴题适合一本学生
- 格式:pdf
- 大小:117.59 KB
- 文档页数:12
已知椭圆E :22142x y +=,O 为坐标原点,A 、B 是椭圆E 上两点,且△AOB,则11||||OA OB +的最小值是 . 解法一(利用椭圆参数方程)设(2cos ), (2cos )A B ααββ,因为AOB S ∆=,所以12211||2AOB S x y x y ∆=-=,cos sin sin cos |αβαβ-=|sin()|1βα∴-=, cos()0βα∴-=,()2k k Z πβαπ=++∈,222222||||4cos 2sin 4cos ()2sin ()622OA OB ππαααα∴+=+++++=.下面求11||||OA OB +的最小值,有如下方法: ①均值不等式22||||||||32OA OB OA OB +⋅≤=,11||||3OA OB ∴+≥≥=. ②平方平均大于等于调和平均21111a b a b≥⇒+≥+,11||||OA OB +≥== ③权方和不等式33322211122222221111(11)||||(||)(||)(||+||)OA OB OA OB OA OB ++=+≥==当且仅当||||OA OB ==,等号成立,min 11()||||3OA OB ∴+=. ④权方和不等式+柯西不等式2211423||||||+||3122(||+||)OA OB OA OB OA OB +≥≥==. 点评:本解法利用椭圆的参数方程,得到了一个很重要的中间结论:|sin()|1βα-=. 一般地, 有如下结论:若11(,)A x y ,22(,)B x y 为椭圆2222:1(0)x y E a b a b+=>>上的动点, 且满足2AOB abS ∆=,则有:(1)22212x x a +=, 22212y y b +=;(2)22OA OBb k k a⋅=-. 解法二:(利用柯西不等式)设11(,)A x y ,22(,)B x y ,由12211||22AOB S x y x y ∆=-=得 2222222221221121212128()()()[82()]()x y x y x x y y y y y y =-≤++=-++,(当且仅当12120x x y y +=时等号成立).22212(2)0y y ∴+-=,22122y y ∴+=又221124x y +=,222224x y +=,则22221122228x y x y +++=,22124x x ∴+=, 进而222212126x x y y +++=,221123||||33||||2OA OB OA OB ∴+≥==+ 当且仅当||||3OA OB ==,11||||OA OB +取得最小值233.点评:本解法利用柯西不等式,实现等与不等的相互转化,相当精彩!解法三:(利用仿射变换,椭圆变圆)设伸缩变换2:2x x y τ'=⎧⎪⎨'=⎪⎩,则221x y ''+=,在该变换下,1122(,),(,)A x y B x y 的对应点分别为1122(,),(,)A x y B x y '''''', 而12211||2A OB S x y x y ''∆'''=-,122112211||2|2AOB S x y x y x y x y ∆'''=-=-, 所以12222AOB A OB A OB S S S ''''∆∆∆===,OA OB ''∴⊥,21||||x y ''∴=,21||||y x ''= ,2221x y ''∴=,2221y x ''=,22222222112211||||42426()6OA OB x y x y x y ''''''∴+=+++=+=,33322211122222221111(11)||||3(||)(||)(||+||)OA OB OA OB OA OB +∴+=+≥==当且仅当||||OA OB ==,11||||OA OB +取得最小值3.点评:本解法利用仿射变换,椭圆变圆,关键是发现OA OB ''⊥ .游数玩形,妙在转化!解法四:(齐次化)由12211||2AOB S x y x y ∆=-=及221124x y +=,222224x y +=,得22222122111222()(2)(2)x y x y x y x y -=++.(1)当直线OA 与OB 的斜率都存在时,两边同时除以2212x x ,得2222()(12)(12)OA OB OAOB k k k k -=++, 化简得2(21)0OA OB k k +=,12OA OB k k ∴=-,设:OA y kx =,则1:2OB y x k=-, 由222222244,121224A A y kx k x y k k x y =⎧⇒==⎨+++=⎩,22244||12k OA k +∴=+, 同理(将k 换成12k-),得22228||21k OB k +=+,22|||| 6.OA OB ∴+=(2)当直线OA 或OB 的斜率为0或不存在时,也有22|||| 6.OA OB +=于是11||||3OA OB +≥==,当且仅当||||OA OB ==,等号成立, 因此11||||OA OB +的最小值为3.点评:本解法利用齐次化,得出OA 与OB 的斜率关系,接下来便顺理成章了.解法五:常规思路当直线OA 与OB 的斜率都存在时,设直线1:OA y k x =,直线1:OB y k x =,1122(,),(,)A x y B x y ,由221142x y y k x⎧+=⎪⎨⎪=⎩解得2121412x k =+,同理2222412x k =+.点B 到直线OA 的距离1222122211|||()|11k x y x k k d k k --==++, 因为2AOB S ∆=,所以221211121221|()|1111|||()|2221AOB x k k S OA d k x x x k k k ∆-=⋅=+⋅=-+,即122212122||221212k k k k -=++,即2212122||(12)(12)k k k k -=++, 所以212(21)0k k +=,即1212k k =-. 下同解法四.点评:与上述方法相比,本解法相对复杂一些,熟悉以下二级结论的话,过程会大大简化.【结论】椭圆2222:1(0)x y C a b a b+=>>,A ,B 为椭圆C 上的动点,11(,)A x y ,22(,)B x y ,且满足22OA OBb k k a⋅=-,则有: (1)22212x x a +=,22212y y b +=,2222||||OA OB a b +=+;(2)2AOB ab S ∆=; (3)若M 为椭圆上一点,且OM OA OB λμ=+,则221λμ+=.相似题1(2011年山东卷理22题)已知动直线l 与椭圆22:132x y C +=交于11(,)P x y 、22(,)Q x y 两不同点,且OPQ △的面积2OPQS ∆=,其中O 为坐标原点.(Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅰ)(Ⅰ)略.答案:22123x x +=,22122y y +=.相似题2已知椭圆E :2212412x y +=,O 为坐标原点,A 、B 是椭圆E 上两点,OA ,OB 的斜率存在并分别记为,OA OB k k ,且12OA OB k k ⋅=-,则11||||OA OB +的最小值是( )A.6B.13C.3D.2答案:C.相似题3已知A ,B 是椭圆C :221259x y +=上关于原点对称的两个点,P 、M 、N 是椭圆上异于AB 的点,且//AP OM ,//BP ON ,则MON ∆的面积为( )A.32 B. 32 C. 152 D.252答案:C.相似题4:如图所示,12,A A 分别是椭圆2212x y +=,的长轴的左右端点,O 为坐标原点,,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则22||||OS OT +等于( )A. 4B. 3C.32 D.52答案:B.相似题5:在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>,其焦点到相应准线的距离为3,离心率为12.(1)求椭圆C 的标准方程;(2)如图所示,A ,B 是椭圆C 上两点,且射线OA ,OB 的斜率满足34OA OB k k =-,延长OA 到M ,使得OM =3OA ,且MB 交椭圆C 于Q ,设OQ OA OB λμ=+,求证:①221λμ+=;②BMBQ 为定值.答案:5.。
专题02函数概念与基本初等函数Ι(选填压轴题)一、单选题1.(2021·全国)已知函数222,1()11,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,若对任意x ∈R ,()|2||1|0f x x k x ----≤恒成立,则实数k 的取值范围是()A.1,[1,)2⎛⎤-∞+∞ ⎥⎝⎦ B.11,,42⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭C.11,,84⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭D.(,1][2,)-∞+∞ 2.(2021·全国高三专题练习)设min{,}m n 表示,m n 二者中较小的一个,已知函数2()814f x x x =++,()221,log 42()min x g x x -⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭=(0x >),若1[5,](4)x a a ∀∈-≥-,2(0,)x ∃∈+∞,使得12()()f x g x =成立,则a 的最大值为A.-4B.-3C.-2D.03.(2021·和平·天津一中)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A.[]2,3B.[]1,3C.[]1,4D.[]2,44.(2021·河北·天津二中)已知函数01,()1,1.x f x x x ⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤ ⎥⎝⎦C.59,{1}44⎛⎤⎝⎦ D.59,{1}44⎡⎤⎢⎥⎣⎦5.(2021·全国高二课时练习)函数()()2,,x x a k a x a f x e x a a x ⎧----≤⎪=⎨>⎪-⎩,若(]0,x a ∃∈-∞,使得()1,x a ∀∈+∞都有()()10f x f x ≤,则实数k 的取值范围是A.(),1-∞B.[)1,+∞C.(],2-∞D.[)2,+∞6.(2021·奉新县第一中学)已知函数()()f x g x 、是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()22f x g x ax x +=++,若对于任意1212x x <<<,都有()()12122g x g x x x ->--,则实数a 的取值范围是()A.1(,[0,)2-∞-⋃+∞B.(0,)+∞C.1[,)2-+∞D.1[,0)2-7.(2021·全国高一专题练习)函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00=f ;②()11()f x f x -=-;③1()32x f f x ⎛⎫=⋅ ⎪⎝⎭,则12019f ⎛⎫ ⎪⎝⎭等于()A.116B.132C.164D.11288.(2021·全国高一专题练习)我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是()A.若()f x 为“Ω函数”,则(0)0f =不一定成立B.若()f x 为“Ω函数”,则()f x 在[0,)+∞上一定是增函数C.函数0,,()1,x Q g x x Q ∈⎧=⎨∉⎩在[0,)+∞上是“Ω函数”D.函数2()g x x x =+在[0,)+∞上是“Ω函数”9.(2021·全国)已知函数()y f x =,若给定非零实数a ,对于任意实数x M ∈,总存在非零常数T ,使得()()af x f x T =+恒成立,则称函数()y f x =是M 上的a 级T 类周期函数,若函数()y f x =是[0,)+∞上的2级2类周期函数,且当[0,2]x ∈时()2101()212x x f x f x x ⎧-≤≤⎪=⎨-<<⎪⎩,,,又函数21()2ln 2g x x x x m =-+++.若1[6,8]x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是()A.(﹣∞,112]B.(﹣∞,132]C.[112+∞,)D.[132+∞,)10.(2021·安徽省怀宁县第二中学高三月考(理))已知()'f x 是奇函数()()f x x R ∈的导函数,当(,0]x ∈-∞时,()1f x '>,则不等式(21)(2)3f x f x x --+≥-的解集为A.(3,)+∞B.[3,)+∞C.(,3]-∞D.(,3)-∞11.(2021·重庆北碚·西南大学附中高三月考)已知3142342,3,log 4,log 5a b c d ====,则a b c d,,,的大小关系为()A.b a d c>>>B.b c a d>>>C.b a c d>>>D.a b d c>>>12.(2021·全国高一专题练习)已知函数32()log (31x f x x =+-+,若()()22122f a f a -+-≤-,则实数a 的取值范围是()A.[]3,1-B.[]2,1-C.(]0,1D.[]0,113.(2021·黔西南州同源中学(文))设2log 3a =,3log 4b =,5log 8c =,则A.a b c>>B.a c b>>C.c a b>>D.c b a>>14.(2021·绥德中学高一月考)定义在R 上的函数()f x 满足()()121f x f x +=+,当[)0,1x ∈时,()()()2122x xf x --=,若()f x 在[),1n n +上的最小值为23,则n =A.4B.5C.6D.715.(2021·新密市第一高级中学高二期末(文))已知函数()12019ln 112019x x a xf x a x -+=+-+-,若定义在R 上的奇函数()g x 满足()()11g x g x -=+,且()()211log 255g f f ⎛⎫=+ ⎪⎝⎭,则()2019g =A.2B.0C.1-D.2-二、多选题16.(2021·江苏鼓楼·高二期末)已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A.105f ⎛⎫= ⎪⎝⎭B.m Z ∀∈,()30mf =C.函数()f x 的值域为[)0,+∞D.n Z ∃∈,()512019nf +=17.(2021·湖南岳阳·高三模拟预测)已知函数3()13xxf x =+,设(1,2,3)i x i =为实数,且1230x x x ++=.下列结论正确的是()A.函数()f x 的图象关于点10,2⎛⎫⎪⎝⎭对称B.不等式1(1)2f x ->的解集为{}1x x >C.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++<D.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++>18.(2021·全国)1837年,德国数学家狄利克雷(P.G.Dirichlet,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x QD x x Q ∈⎧=⎨∈⎩ð(Q 表示有理数集合),关于此函数,下列说法正确的是()A.()D x 是偶函数B.,(())1x R D D x ∀∈=C.对于任意的有理数t ,都有()()D x t D x +=D.存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC ∆为正三角形19.(2021·湖南华容·)设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有()A.()1.10.9f -=B.函数()f x 为奇函数C.()()11f x f x +=+D.函数()f x 的值域为[)0,120.(2021·浙江)定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间[],a b 的“复区间长度”为()2b a -,已知函数()21f x x =-,则()A.[]0,1是()f x 的一个“完美区间”B.1122⎡+⎢⎥⎣⎦是()f x 的一个“完美区间”C.()f x的所有“完美区间”的“复区间长度”的和为3D.()f x的所有“完美区间”的“复区间长度”的和为3+21.(2021·岳麓·湖南师大附中高二月考)德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为A.函数()f x 是偶函数B.1x ∀,2R x C Q ∈,()()()1212f x x f x f x +=+恒成立C.任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立D.不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形22.(2021·汕头市第一中学)已知函数f (x )满足:当30x -≤<时,|2|()32x f x +=-,下列命题正确的是()A.若f (x )是偶函数,则当03x <≤时,|2|()32x f x +=-B.若(3)(3)f x f x --=-,则()()1g x f x =-在(6,0)x ∈-上有3个零点C.若f (x )是奇函数,则()()1212,[3,3],14x x f x f x ∀∈--<D.若(3)()f x f x +=,方程2[()](2)()20f x k f x k -++=在[3,3]x ∈-上有6个不同的根,则k 的范围为11k -<<三、填空题23.(2021·全国高三专题练习)定义域为集合{1,2,3,,12}⋅⋅⋅上的函数()f x 满足:①(1)1f =;②|(1)()|1f x f x +-=(1,2,,11x =⋅⋅⋅);③(1)f 、(6)f 、(12)f 成等比数列;这样的不同函数()f x 的个数为________24.(2021·全国高三专题练习)已知函数1(31)0()2ln 0x x f x x x ⎧++≤⎪=⎨⎪>⎩,,,,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是____.25.(2021·江西上高二中高二月考(文))定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--,则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是______________.26.(2021·上海徐汇·位育中学)设()1f x x =-,4()g x x =-,若存在121,,,[,4]4n x x x ⋅⋅⋅∈,使得12()()f x f x ++⋅⋅⋅+1121()()()()()()n n n n f x g x g x g x g x f x --+=++⋅⋅⋅++成立,则正整数n 的最大值为________27.(2021·广东潮阳·)函数())22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.28.(2021·全国高一专题练习)下列说法中正确的是______.①函数32y x -=的定义域是{}0x x ≠;②方程()230x a x a +-+=的有一个正实根,一个负实根,则0a <;③函数1lg1xy x-=+在定义域上为奇函数;④函数()log 252a y x =--(0a >,且1a ≠)恒过定点()3,2-;⑤若33x x--=,则33x x -+的值为2.。
2023年新高考数学选填压轴题好题汇编(一)一、单选题1.(2022·广东·广州市真光中学高三开学考试)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为4π3时,该裹蒸粽的高的最小值为( )A.4B.6C.8D.102.(2022·广东惠州·高三阶段练习)甲罐中有5个红球,3个白球,乙罐中有4个红球,2个白球.整个取球过程分两步,先从甲罐中随机取出一球放入乙罐,分别用A1、A2表示由甲罐取出的球是红球、白球的事件;再从乙罐中随机取出两球,分别用B、C表示第二步由乙罐取出的球是“两球都为红球”、“两球为一红一白”的事件,则下列结论中不正确的是( )A.P B A1=1021 B.P C A2=47 C.P B =1942 D.P C =43843.(2022·广东·鹤山市鹤华中学高三开学考试)已知直线ax-2by+14=0平分圆C:x2+y2-4x-2y-11= 0的面积,过圆外一点P a,b向圆做切线,切点为Q,则PQ的最小值为( )A.4B.5C.6D.74.(2022·广东广州·高三开学考试)设a=ln1.1,b=e0.1-1,c=tan0.1,d=0.4π,则( )A.a<b<c<dB.a<c<b<dC.a<b<d<cD.a<c<d<b5.(2022·广东广州·高三开学考试)若空间中经过定点O的三个平面α,β,γ两两垂直,过另一定点A作直线l与这三个平面的夹角都相等,过定点A作平面δ和这三个平面所夹的锐二面角都相等.记所作直线l的条数为m,所作平面δ的个数为n,则m+n=( )A.4B.8C.12D.166.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则( )A.a >b >cB.c >b >aC.b >a >cD.a >c >b7.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,∠F 1PF 2的平分线与x 轴交于Q ,若OQ=14OF 2 ,则双曲线的离心率范围为( )A.1,2B.1,4C.2,2D.2,48.(2022·广东·高三阶段练习)设a =4-ln4e2,b =ln22,c =1e ,则( )A.a <c <bB.a <b <cC.b <a <cD.b <c <a9.(2022·广东·高三阶段练习)定义在R 上的函数f x 满足f (-x )+f (x )=0,f (x )=f (2-x );且当x ∈[0,1]时,f (x )=x 3-x 2+x .则方程7f (x )-x +2=0所有的根之和为( )A.14B.12C.10D.810.(2022·广东·高三开学考试)设a =12e,b =ln 2,c =4-ln4e 2,则( )A.a <b <cB.c <b <aC.a <c <bD.b <c <a11.(2022·广东·高三开学考试)已知f (x )=2x 2,数列a n 满足a 1=2,且对一切n ∈N *,有a n +1=f a n ,则( )A.a n 是等差数列 B.a n 是等比数列C.log 2a n 是等比数列D.log 2a n +1 是等比数列12.(2022·广东·中山一中高三阶段练习)已知a =log 1.10.9,b =0.91.1,c =1.10.9,则a ,b ,c 的大小关系为( )A.a <b <cB.a <c <bC.b <a <cD.b <c <a13.(2022·广东·中山一中高三阶段练习)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =()A.-12B.13C.12D.114.(2022·广东·高三阶段练习)已知平面向量a ,b ,c 满足a =b =a ⋅b=2,且b -c ⋅3b -c =0,则c -a最小值为( )A.22+1B.33-3C.7-1D.23-215.(2022·湖南·邵阳市第二中学高三阶段练习)已知f (x )是定义在R 上的函数,且对任意x ∈R 都有f (x +2)=f (2-x )+4f (2),若函数y =f (x +1)的图象关于点(-1,0)对称,且f (1)=3,则f (2021)=( )A.6B.3C.0D.-316.(2022·湖南·邵阳市第二中学高三阶段练习)对于定义在R 上的函数f x ,若存在正常数a 、b ,使得f x +a≤f x +b 对一切x ∈R 均成立,则称f x 是“控制增长函数”.在以下四个函数中:①f x =e x ;②f x试卷第1页,共50页=x ;③f x =sin x 2;④f x =x ⋅sin x .是“控制增长函数”的有( )个A.1 B.2 C.3 D.417.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ⎳底面ABCD ,四边形ABFE ,CDEF 为两个全等的等腰梯形,EF =12AB =2,AE =23,则该刍甍的外接球的体积为( )A.642π3 B.32πC.643π3 D.642π18.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)若3x -3y >5-x -5-y ,则( )A.1x >1yB.x 3>y 3C.x >yD.ln x 2+1 >ln y 2+1二、多选题19.(2022·广东·广州市真光中学高三开学考试)已知抛物线C :y 2=2px p >0 的焦点为F ,抛物线C 上的点M 1,m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( )A.m =±2B.若直线AB 过点F ,则OA ⋅OB=-3C.若直线AB 过点F ,则PA PB =FAFB D.若直线AB 过点P ,则AF +BF >2PF20.(2022·广东·广州市真光中学高三开学考试)若函数f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈(0,1]时,f x =ln x ,则( )A.f x 为偶函数B.f e =1C.f 4-1e=-1D.当x ∈[1,2)时,f (x )=-ln (2-x )21.(2022·广东惠州·高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为1322.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :x 216+y 29=1的左,右焦点为F 1,F 2,点P 为椭圆C上的动点(P 不在x 轴上),则( )A.椭圆C 的焦点在x 轴上B.△PF 1F 2的周长为8+27C.|PF 1|的取值范围为94,4 D.tan ∠F 1PF 2的最大值为3723.(2022·广东广州·高三开学考试)若f x =sin x +cos x ,则下列说法正确的有( )A.f x 的最小正周期是πB.方程x =-π2是f x 的一条对称轴C.f x 的值域为1,2D.∃a ,b >0,对∀x ∈R 都满足f x +a +f a -x =2b ,(a ,b 是实常数)24.(2022·广东广州·高三开学考试)已知抛物线y 2=2px 上的四点A 2,2 ,B ,C ,P ,直线AB ,AC 是圆M :x -22+y 2=1的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A.当劣弧QR 的弧长最短时,cos ∠QPR =-13B.当劣弧QR 的弧长最短时,cos ∠QPR =13C.直线BC 的方程为x +2y +1=0D.直线BC 的方程为3x +6y +4=025.(2022·广东广州·高三开学考试)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x ⋅f y ,则下列说法正确的有( )A.f 0 =1 B.f x 必为奇函数C.f x +f 0 ≥0D.若f 1 =12,则2023n =1f n =12 26.(2022·广东·深圳外国语学校高三阶段练习)已知函数f (x )=cos2πxx 2-2x +3,则下列说法正确的是( )A.f (x )是周期函数B.f (x )满足f (2-x )=f (x )C.f (x )>-12D.f (x )≥k 在R 上有解,则k 的最大值是1227.(2022·广东·深圳外国语学校高三阶段练习)如图,梯形ABCD 中,AB ∥CD ,AB =2DC =23,BC =2,AB ⊥BC ,M ,P ,N ,Q 分别是边AB ,BC ,CD ,DA 的中点,将△ACD 以AC 为轴旋转一周,则在此旋转过程中,下列说法正确的是( )A.MN 和BC 不可能平行B.AB 和CD 有可能垂直C.若AB 和CD 所成角是60∘,则PQ =32D.若面ACD ⊥面ABC ,则三棱锥D -ABC 的外接球的表面积是28π试卷第1页,共50页28.(2022·广东·高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >b >0 的左,右顶点分别为A 1,A 2,点P ,Q 是双曲线C 上关于原点对称的两点(异于顶点),直线PA 1,PA 2,QA 1的斜率分别为k PA 1,k PA 2,k QA 1,若k PA 1⋅k PA 2=34,则下列说法正确的是( )A.双曲线C 的渐近线方程为y =±34xB.双曲线C 的离心率为72C.k PA 1⋅k QA 1为定值D.tan ∠A 1PA 2的取值范围为0,+∞ 29.(2022·广东·高三阶段练习)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点P 为正方形A1B 1C 1D 1上的动点,则( )A.满足MP ⎳平面BDA 1的点P 的轨迹长度为2B.满足MP ⊥AM 的点P 的轨迹长度为223C.不存在点P ,使得平面AMP 经过点BD.存在点P 满足PA +PM =530.(2022·广东·高三开学考试)直六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中,底面是边长为2的正六边形,侧棱AA 1=2,点O 是底面ABCDEF 的中心,则( )A.OF 1⎳平面A 1CD 1B.OF 1与BC 所成角的余弦值为24C.BO ⊥平面AA 1D 1DD.B 1F 与平面CC 1F 1F 所成角的正弦值为3431.(2022·广东·高三开学考试)已知直线l :y =ax -1,曲线C 1:f (x )=e x +1+1,曲线C 1关于直线y =x +1对称的曲线C 2所对应的函数为y =g (x ),则以下说法正确的是( )A.不论a 为何值,直线l 恒过定点(0,-1);B.g (x )=ln x -1;C.若直线l 与曲线C 2相切,则a =1;D.若直线l 上有两个关于直线y =x +1对称的点在曲线C 1上,则0<a <1.32.(2022·广东·中山一中高三阶段练习)下列命题中正确的是( )A.双曲线x 2-y 2=1与直线x +y -2=0有且只有一个公共点B.平面内满足PA -PB =2a a >0 的动点P 的轨迹为双曲线C.若方程x 24-t +y 2t -1=1表示焦点在y 轴上的双曲线,则t >4D.过给定圆上一定点A 作圆的动弦AB ,则弦AB 的中点P 的轨迹为椭圆33.(2022·广东·中山一中高三阶段练习)达·芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达·芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为f (x )=a cosh xa(a >0),双曲余弦函数cosh (x )=e x +e-x 2则以下正确的是( )A.f x 是奇函数B.f x 在-∞,0 上单调递减C.∀x ∈R ,f x ≥aD.∃a ∈0,+∞ ,f x ≥x 234.(2022·广东·高三阶段练习)设a 与b 是两个不共线向量,关于向量a +λb ,λ-1 a +2λb ,-b -2a ,则下列结论中正确的是( )A.当λ>1时,向量a +λb ,λ-1 a+2λb 不可能共线B.当λ>-3时,向量a +λb ,-b -2a可能出现共线情况C.若a ⋅b =0,且a ,b 为单位向量,则当λ>-3时,向量λ-1 a +2λb ,-b -2a可能出现垂直情况D.当λ=2时,向量a-λb 与-22b -a 平行35.(2022·广东·高三阶段练习)已知函数f x =x -2 +1,g x =kx ,若方程f x =g x 有两个不相等的实根,则实数k 的取值可以是( )A.43B.34C.45D.136.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f x =sin cos x +cos sin x ,下列关于该函数结论正确的是( )A.f x 的图象关于直线x =π2对称B.f x 的一个周期是2πC.f x 的最大值为2D.f x 是区间0,π2上的减函数37.(2022·湖南·邵阳市第二中学高三阶段练习)在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到.而信号处理背后的“功臣”就是正弦型函数.函数f (x )=4i =1sin [(2i -1)x ]2i -1的图象就可以近似的模拟某种信号的波形,则( )A.函数f (x )为周期函数,且最小正周期为πB.函数f (x )的图象关于点(2π,0)对称C.函数f (x )的图象关于直线x =π2对称D.函数f (x )的导函数f (x )的最大值为438.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知函数f (x )是定义在R 上的奇函数,当x >0时,f(x )=e -x (x -1).则下列结论正确的是( )A.当x <0时,f (x )=e x (x +1)试卷第1页,共50页B.函数f(x)有两个零点C.若方程f(x)=m有三个解,则实数m的取值范围是f(-2)<m<f(2)D.∀x1,x2∈R,f x1-f x2max=239.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)2022年北京冬奥会开幕式精彩纷呈,其中雪花造型惊艳全球.有一个同学为了画出漂亮的雪花,将一个边长为1的正六边形进行线性分形.如图,图(n)中每个正六边形的边长是图n-1中每个正六边形的边长的12.记图(n)中所有正六边形的边长之和为a n,则下列说法正确的是( )A.图(4)中共有294个正六边形B.a4=10294C.a n是一个递增的等比数列D.记S n为数列a n的前n项和,则对任意的n∈N*且n≥2,都有a n>S n-1三、填空题40.(2022·广东·广州市真光中学高三开学考试)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆上存在一点P使得∠F1PF2=23π,则该椭圆离心率的取值范围是________.41.(2022·广东广州·高三开学考试)折纸是我国民间的一种传统手工艺术,明德小学在课后延时服务中聘请了民间艺术传人给同学们教授折纸.课堂上,老师给每位同学发了一张长为10cm,宽为8cm的矩形纸片,要求大家将纸片沿一条直线折叠.若折痕(线段)将纸片分为面积比为1:3的两部分,则折痕长度的取值范围是___________cm.42.(2022·广东·深圳外国语学校高三阶段练习)已知函数f(x)的导函数f (x)满足:f (x)-f(x)=e2x,且f(0)=1,当x∈0,+∞时,x(f(x)-a)≥1+ln x恒成立,则实数a的取值范围是______________.43.(2022·广东·高三阶段练习)若不等式a x+1e x-x<0有且仅有一个正整数解,则实数a的取值范围是______.44.(2022·广东·高三阶段练习)已知⊙C:x2+y2-2x-2y-2=0,直线l:x+2y+2=0,M为直线l上的动点,过点M作⊙C的切线MA,MB,切点为A,B,当四边形MACB的面积取最小值时,直线AB的方程为____.45.(2022·广东·高三开学考试)已知双曲线C:x24-y23=1,F1、F2是双曲线C的左、右焦点,M是双曲线C右支上一点,l是∠F1MF2的平分线,过F2作l的垂线,垂足为P,则点P的轨迹方程为_______.46.(2022·广东·中山一中高三阶段练习)在△ABC中,角A,B,C的对边分别为a,B,C,已知sin2A+sin2C=sin2B+sin A sin C,若△ABC的面积为334,则a+c的最小值为__________.47.(2022·广东·高三阶段练习)已知矩形ABCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为_____.48.(2022·湖南·邵阳市第二中学高三阶段练习)设f x =ln x,0<x≤2f4-x,2<x<4,若方程f x =m有四个不相等的实根x i i =1,2,3,4 ,则x 1+x 2 2+x 23+x 24的取值范围为___________.49.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知F 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,过点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为A ,且直线l 与双曲线C 的左支交于点B ,若3FA =AB ,则双曲线C 的渐近线的方程为______.四、双空题50.(2022·广东惠州·高三阶段练习)已知抛物线方程y 2=8x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF与抛物线的交点,定义:d P =PFFQ.已知点P -2,82 ,则d P =___________;设点P -2,t t >0 ,若4d P -PF-k >0恒成立,则k 的取值范围为___________.51.(2022·广东·鹤山市鹤华中学高三开学考试)甲射击一次,中靶概率是P 1,乙射击一次,中靶概率是P 2,已知1P 1,1P 2是方程x 2-5x +6=0的根,且P 1满足方程x 2-x +14=0.则甲射击一次,不中靶概率为_____;乙射击一次,不中靶概率为_____.52.(2022·湖南·邵阳市第二中学高三阶段练习)若f x =ln a +11-x+b 是奇函数,则a =_____,b =______.试卷第1页,共50页。
2023年新高考数学选填压轴题汇编(十)一、单选题1.(2022·广东·大埔县虎山中学高三阶段练习)已知三棱锥P -ABC 三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =6,M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最小值为( )A.23-3B.43-6C.6-23D.232.(2022·广东·大埔县虎山中学高三阶段练习)设函数f (x )=sin ωx -π4 (ω>0),若f (x 1)-f (x 2) =2时,x 1-x 2 的最小值为π3,则( )A.函数f (x )的周期为π3B.将函数f (x )的图像向左平移π4个单位,得到的函数为奇函数C.当x ∈π6,π3 ,f (x )的值域为22,1 D.函数f (x )在区间[-π,π]上的零点个数共有6个3.(2022·广东·广州市南武中学高三阶段练习)已知函数f x =ln x -x e 2x +a 有两个零点,则a 的取值范围是( )A.-∞,1e 2 B.1e 2,+∞ C.-∞,1e D.1e ,+∞ 4.(2022·湖南·高三阶段练习)已知a >0,函数f x =x +1x 2+a 在1,+∞ 上的最大值为23,则a =( )A.2或3316 B.12或3316 C.2 D.125.(2022·湖南·高三阶段练习)某干燥塔的底面是半径为1的圆面O ,圆面有一个内接正方形ABCD 框架,在圆O 的劣弧BC 上有一点P ,现在从点P 出发,安装PA ,PB ,PC 三根热管,则三根热管的长度和的最大值为( )A.4B.23C.33D.266.(2022·湖南·高三阶段练习)设m 为正整数,(x +y )2m 的展开式中二项式系数的最大值为a ,(x +y )2m +1的展开式中的二项式系数的最大值为b .若15a =8b ,则m 的值为( )A.5B.6C.7D.87.(2022·湖南·高三阶段练习)已知函数f (x )=A cos ωx -3sin ωx (ω>0)的部分图象如图,y =f (x )的对称轴方程为x =5π6+k π4,k 为正整数,则将函数f (x )向左平移π6个单位长度,得到函数g (x ),则g (0)=( )A.2B.-2C.-32D.-18.(2022·湖南·株洲市南方中学高三阶段练习)若a =ln 1-0.010.02,b =0.02sin0.01,c =0.01sin0.02,则( )A.a <b <cB.a <c <bC.b <c <aD.c <a <b9.(2022·湖南·长郡中学高三阶段练习)已知函数f x =x 3+ax +b ,a 、b ∈R .x 1、x 2∈m ,n 且满足f x 1 =f n ,f x 2 =f m ,对任意的x ∈m ,n 恒有f m ≤f x ≤f n ,则当a 、b 取不同的值时,( )A.n +2x 1与m -2x 2均为定值B.n -2x 1与m +2x 2均为定值C.n -2x 1与m -2x 2均为定值D.n +2x 1与m +2x 2均为定值10.(2022·湖南师大附中高三阶段练习)函数f (x )=sin (ωx +φ)ω>0,|φ|≤π2 ,已知-π6,0 为f (x )图象的一个对称中心,直线x =13π12为f (x )图象的一条对称轴,且f (x )在13π12,19π12 上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( )A.125B.85C.165D.18511.(2022·湖南师大附中高三阶段练习)古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线;当0<e <1时,轨迹为椭圆;当e =1时,轨迹为抛物线;当e >1时,轨迹为双曲线.现有方程m x 2+y 2+2y +1 =x -2y +3 2表示的曲线是双曲线,则m 的取值范围为( )A.0,1B.1,+∞C.0,5D.5,+∞12.(2022·湖南·雅礼中学高三阶段练习)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,点P 是正方形DCC 1D 1面内(包括边界)的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 的体积最大值是A.36B.24C.183D.12313.(2022·湖南·雅礼中学高三阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2的直线与双曲线C 的右支相交于P 、Q 两点,且PQ ⊥PF 1.若|PQ |=PF 1 ,则双曲线C 的离心率为( )A.6-3B.5-22C.5+22D.1+2214.(2022·湖南省临澧县第一中学高三阶段练习)已知点A ,B ,C 是函数y =2sin ωx +π3 ,ω>0的图象和函数y =2sin ωx -π6 ,ω>0图象的连续三个交点,若△ABC 是锐角三角形,则ω的取值范围为( )A.π2,+∞ B.π4,+∞ C.0,π2 D.0,π415.(2022·湖北·黄冈中学高三阶段练习)将曲线x +y x -2y +1 +1=0的图像画在坐标轴上,再把坐标轴擦去(x 轴水平向右,y 轴竖直向上),得到的图像最有可能为( )A. B.C. D.16.(2022·湖北·黄冈中学高三阶段练习)若实数M 满足:对每个满足a n +1=a 2n -2的不为常数的数列a n ,存在k ∈N *,使得a k ≥M ,则M 的最大值为( )A.-1B.-1-52C.-1+52D.217.(2022·湖北孝感·高三阶段练习)已知拋物线C :y 2=8x 的焦点为F ,准线为l ,点A 在C 上,AB ⊥l 于点B ,若∠FAB =2π3,则BF =( )A.163 B.833 C.1633 D.8318.(2022·湖北孝感·高三阶段练习)已知a =e 0.01,b =ln1.01e ,c =2cos1.1,则( )A.b >a >cB.a >b >cC.a >c >bD.c >a >b19.(2022·山东·招远市第二中学高三阶段练习)在△ABG 中,已知BE =38BG ,AF =13AG ,AE 与BF 交于O ,则AO =( )A.27AB +13BGB.45AB +310BGC.47AB +314BGD.314AB +47BG 20.(2022·山东·招远市第二中学高三阶段练习)已知函数f x =2cos x -sin2x ,则f x 的最小值是( )A.-323B.-5C.-325D.-3二、多选题21.(2022·广东·大埔县虎山中学高三阶段练习)已知函数f x =x 3-3x ,下列说法中正确的是( )A.函数f x 在原点0,0 处的切线方程是3x +y =0B.-1是函数f x 的极大值点C.函数y =sin x +f x 在R 上有3个极值点D.函数y =sin x -f x 在R 上有3个零点22.(2022·广东·广州市南武中学高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为1323.(2022·广东·广州市南武中学高三阶段练习)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23 D.124.(2022·湖南·高三阶段练习)已知函数f (x )=cos ωπx (ω>0),将f (x )的图象向右平移13ω个单位长度后得到函数g (x )的图象,点A ,B ,C 是f (x )与g (x )图象的连续相邻的三个交点,若△ABC 是锐角三角形,则ω的值可能为( )A.23B.14C.33D.325.(2022·湖南·高三阶段练习)已知函数f x =e x+e-x-cos2x,若f x1>f x2,则( )A.f x 为偶函数B.f x 在-∞,0上为增函数C.x21>x22D.e x1-x2>126.(2022·湖南·高三阶段练习)已知函数f x =x ln x-ax,则( )A.当a≤0或a=1e时,f x 有且仅有一个零点B.当a≤0或a=12时,f x 有且仅有一个极值点C.若f x 为单调递减函数,则a>12D.若f x 与x轴相切,则a=1e27.(2022·湖南·株洲市南方中学高三阶段练习)已知函数f(x)=e sin|x|-|cos x|,则( )A.f(x)是周期函数B.f(x)是偶函数C.f(x)是0,π2上的增函数 D.f(x)的最小值为e-128.(2022·湖南·株洲市南方中学高三阶段练习)在棱长为2的正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,P为棱AA1上的动点,则下列说法正确的是( )A.点P为AA1中点时,PO⊥DC1B.点P与点A重合时,三棱锥P-BDC1外接球体积为23πC.当P点运动时,三棱锥P-BDC1外接球的球心总在直线A1C上D.当P为AA1的中点时,正方体表面到P点距离为2的轨迹的总长度为43+3π29.(2022·湖南·长郡中学高三阶段练习)设定义在R上的函数f x 与g x 的导函数分别为f x 和g x ,若f x+2-g1-x=2,f x =g x+1,且g x+1为奇函数,则下列说法中一定正确的是( )A.g1 =0B.函数g x 的图象关于x=2对称C.2022k=1g k =0D.2021k=1f kg k =030.(2022·湖南·长郡中学高三阶段练习)已知数列a n满足a1=8,a2=1,a n+2=-a n,n为偶数a n-2,n为奇数,Tn为数列a n的前n项和,则下列说法正确的有( )A.n为偶数时,a n=-1n-22 B.T2n=-n2+9nC.T99=-2049D.T n的最大值为2031.(2022·湖南师大附中高三阶段练习)已知定义在R 上的函数f (x )连续不间断,满足:当x ≥0时,f (1+x )=2f (1-x ),且当x >0时,f (1+x )+f (1-x )<0,则下列说法正确的是( )A.f (1)=0B.f (x )在(-∞,1]上单调递减C.若x 1<x 2,f x 1 <f x 2 ,则x 1+x 2<2D.若x 1,x 2是g (x )=f (x )-cosπx 在区间(0,2)内的两个零点,且x 1<x 2,则1<f x 2 f x 1<232.(2022·湖南·雅礼中学高三阶段练习)下列不等关系正确的是( )A.3e <e 3<3πB.e 3<πe <e πC.πe ≤π3<e πD.3e <π3<3π33.(2022·湖南·雅礼中学高三阶段练习)已知函数f (x )=sin (cos x )+cos (sin x ),则下列结论正确的是( )A.f (x )是偶函数B.f (x )在区间0,π2 单调递减C.f (x )的周期是π D.f (x )的最大值为234.(2022·湖南省临澧县第一中学高三阶段练习)设函数y =f (x )的定义域为R 且满足:f (x )=f (2-x ),f (x )=-f (x +2),当x ∈(0,1]时,f (x )=x sin 1x,则有( )A.f (x )是奇函数B.f (1)+f (3)+f (2022)=0C.f (x )的值域是[-1,1]D.f (x )在区间20212022,20232022内无零点35.(2022·湖北·黄冈中学高三阶段练习)已知a >b ,c >d ,e a a +1=e b b +1=1.01,1-c e c =1-d e d =0.99,则( )A.a +b >0 B.c +d >0 C.a +d >0D.b +c >036.(2022·湖北·黄冈中学高三阶段练习)已知a ≠0,a ,b ∈R .设命题p :过点1,1 恰可作一条关于y =ax 3+bx 的切线.以下为命题p 的充分条件的有( )A.b +a =1B.b -a =1C.a =e bD.b =e a37.(2022·湖北孝感·高三阶段练习)将数列a n 中的所有项排成如下数阵:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9⋯⋯已知从第二行开始每一行比上一行多两项,第一列数 a 1, a 2, a 5,⋯⋯,成等差数列,且a 2=4,a 10=10.从第二行起,每一行中的数按从左到右的顺序均构成以12为公比的等比数列,则( )A. a 1=1 B.a 2021位于第84列 C.a n 2<a n 2+1 D.a 2021=13328438.(2022·湖北孝感·高三阶段练习)已知b >0,若对任意的x ∈(0,+∞),不等式ax 3+3x 2-abx -3b ≤0恒成立,则( )A.a <0B.a 2b =3C.a 2+4b 的最小值为12D.a 2+ab +3a +b 的最小值为6-6339.(2022·山东·招远市第二中学高三阶段练习)设x 1,x 2分别是f x =x -a -x 与g x =x log a x -1a >1 的零点,则x 1+9x 2的值可能是( )A.8B.10C.11D.12三、填空题40.(2022·广东·大埔县虎山中学高三阶段练习)已知函数f x =x ln x -ax 2+x a ∈R ,则曲线y =f x 在点1,f 1 处的切线l 恒过定点_____________.41.(2022·广东·广州市南武中学高三阶段练习)已知随机变量ξ~N 1,σ2 ,且P ξ≤1 =P ξ≥a -3 ,则1x+9a -x 0<x <a 的最小值为______.42.(2022·湖南·高三阶段练习)已知函数f (x )=x 2-4x -1,x ≥0,2x -2,x <0,若方程[f (x )]2-2af (x )+4=0有5个不同的实数解,则实数a 的取值范围为___________.43.(2022·湖南·高三阶段练习)已知点P 在双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上,F 1,F 2分别是双曲线E 的左、右焦点,若F 1F 2 是PF 1 ,PF 2 的等差中项,且△PF 1F 2的面积为c 2(c 为双曲线E 的半焦距),则双曲线E 的离心率为__________.44.(2022·湖南·株洲市南方中学高三阶段练习)已知对任意x ∈(0,+∞),都有k e kx +1 -1+1xln x >0,则实数k 的取值范围为_________.45.(2022·湖南·长郡中学高三阶段练习)已知函数f x =ln x x ,g x =x e x ,若存在x 1>0,x 2∈R ,使得f x 1 =g x 2 <0成立,则x 1x 2的最小值为______.46.(2022·湖南师大附中高三阶段练习)已知四面体ABCD 的各条棱长都为2,其顶点都在球O 的表面上,点E 满足BE =13BD ,过点E 作平面α,则平面α截球O 所得截面面积的取值范围是_____.47.(2022·湖南师大附中高三阶段练习)已知函数f x =sin 2x +φ 的图象关于点π6,0对称,且f 0 >f π6 ,若f x 在0,t 上没有最大值,则实数t 的取值范围是__________.48.(2022·湖南·雅礼中学高三阶段练习)已知三角形数表:现把数表按从上到下、从左到右的顺序展开为数列a n ,记此数列的前n 项和为S n .若S m =2t t ∈Z ,m ∈N ∗,m >77 ,则m 的最小值是_____.49.(2022·湖南省临澧县第一中学高三阶段练习)函数f (x )=x 2+1x2-ax -a x -b 有零点,则a 2+b 2的最小值为___.50.(2022·湖北孝感·高三阶段练习)刍(ch ú)甍(m éng )是中国古代算数中的一种几何体,其结构特征是底面为长方形,顶棱和底面平行,且长度不等于底面平行的棱长的五面体.如图,现有一个刍甍ABCDEF ,AB =BC =6,EF =4,BF =CF =59,△ADE ≌△BCF ,则该刍甍的外接球体积为______.51.(2022·山东·招远市第二中学高三阶段练习)在△ABC 中,AB =3AC ,AD 是∠A 的平分线,且AD =tAC ,则实数t 的取值范围_____.四、双空题52.(2022·湖北·黄冈中学高三阶段练习)已知e 为平面单位向量,平面向量a 满足a -e +2a +e =4,则a -e ⋅a +e a +e的最小值为___________,最大值为___________.53.(2022·湖北·黄冈中学高三阶段练习)数学家高斯在各个领域中都取得了重大的成就.在研究一类二次型数论问题时,他在他的著作《算术研究》中首次引入了二次剩余的概念.二次剩余理论在噪音工程学、密码学以及大数分解等各个领域都有广泛的应用.已知对于正整数a ,n n ≥2 ,若存在一个整数x ,使得n 整除x 2-a ,则称a 是n 的一个二次剩余,否则为二次非剩余.从1到20这20个整数中随机抽取一个整数a ,记事件A =“a 与12互质”,B =“a 是12的二次非剩余”,则P A =___________;P B ∣A =___________.。
高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
2023年新高考数学选填压轴题汇编(十七)一、单选题1.(2022·广东·深圳实验学校光明部高三期中)定义在R 上的偶函数f x 满足f -x +f x -2 =0,当-1≤x ≤0时,f x =1+x e x ,则( )A.f 2023 <f ln13e10<f e 0.3 B.f 2023 <f e 0.3 <f ln 13e 10C.f e 0.3 <f ln 13e10 <f 2023D.f ln13e10<f e 0.3 <f 2023 2.(2022·广东·广州市第一一三中学高三阶段练习)在平面直角坐标系xOy 中,直线x +2y -22=0与椭圆C :x 2a 2+y 2b2=1a >b >0 相切,且椭圆C 的右焦点F c ,0 关于直线l :y =cb x 的对称点E 在椭圆C上,则a =( )A.12B.32C.1D.23.(2022·湖南·衡阳师范学院祁东附属中学高三期中)设函数f (x )是定义在区间12,+∞上的函数,f '(x )是函数f (x )的导函数,且xfx ln 2x >f x ,x >12 ,f e 2 =1,则不等式f e x 2 <x 的解集是A.12,1 B.(1,+∞)C.(-∞,1)D.(0,1)4.(2022·湖南·宁乡一中高三期中)设a =15ln13,b =14ln14,c =13ln15,则( )A.a >c >bB.c >b >aC.b >a >cD.a >b >c5.(2022·湖南·宁乡一中高三期中)圆是中华民族传统文化的形态象征,象征着“圆满”和“饱满”,是自古以和为贵的中国人所崇拜的图腾.如图,AB 是圆O 的一条直径,且|AB |=4.C ,D 是圆O 上的任意两点,|CD |=2,点P 在线段CD 上,则PA ⋅PB的取值范围是( )A.-1,2B.3,2C.3,4D.-1,06.(2022·湖北·武汉市武钢三中高三阶段练习)设a >b >0,x =ln 1+a a ,y =ln 1+bb,m =7778,n =7877,则( )A.x >y ,m >nB.x >y ,m <nC.x <y ,m >nD.x <y ,m <n7.(2022·湖北·武汉市武钢三中高三阶段练习)已知P 为椭圆x 2a 2+y 2b2=1a >b >0 上一动点,F 1、F 2分别为该椭圆的左、右焦点,B 为短轴一端点,如果PB 长度的最大值为2b ,则使△PF 1F 2为直角三角形的点P 共有( )个A.8个B.4个或6个C.6个或8个D.4个或8个8.(2022·湖北·高三期中)在A 、B 、C 三个地区爆发了流感,这三个地区A 、B 、C 分别有6%、5%、4%的人患了流感,假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.则下列叙述正确的是( )A.这个人患流感的概率为0.15B.此人选自A 地区且患流感的概率为0.0375C.如果此人患流感,此人选自A 地区的概率为3097D.如果从这三个地区共任意选取100人,则平均患流感的人数为4人9.(2022·湖北襄阳·高三期中)某大学为了制作“迎新杯”篮球赛创意冠军奖杯,在全校学生中开展“迎新杯”篮球赛奖杯的创意设计征集活动.同学甲设计的创意奖杯如图1所示,从其轴截面中抽象出来的平面图形如图2所示,若圆O 的半径为10cm ,AB =BC =CD ,BC ⎳AD ,∠ABC =∠BCD =120°.甲在奖杯的设计与制作的过程中发现,当OB 越长时,该奖杯越美观,则当该奖杯最美观时,AD =( )A.10cmB.102cmC.103cmD.56cm10.(2022·湖北·高三阶段练习)已知x >0,y >0,若1+x 2+1 4y 2+1-2y =x ,则log 2x ⋅log 2y 的最大值为( )A.1B.12C.14D.011.(2022·湖北·高三期中)已知函数f x =k x -1 +14 e x -32x 2,若函数f x 的单调递减区间(理解为闭区间)中包含且仅包含两个正整数,则实数k 的取值范围为( )A.3e 3-112,3e 2-18 B.3e 2-18,3e -14 C.3e3-112,3e 2-18D.3e2-18,3e -1412.(2022·湖北·高三期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且3ca cos B=tan A +tan B ,下列结论正确的是( )A.A =π6B.当a =2,c =4时,△ABC 的面积为43C.若AD 是∠BAC 的角平分线,且AD =23,则1b+1c =2D.当b -c =3a3时,△ABC 为直角三角形13.(2022·山东德州·高三期中)已知定义在[-2,2]上的函数f (x )=x 2+x ,-2≤x ≤-1ln (x +1) ,-1<x ≤2,若g x =f x -a x +1 的图像与x 轴有4个不同的交点,则实数a 的取值范围是( )A.ln33,1eB.ln33,1eC.ln33,13eD.ln33,13e14.(2022·山东·青岛二中高三期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0), 过椭圆中心的一条直线与椭圆相交于A ,B 两点,P 是椭圆上不同于A ,B 的一点,设直线AP ,BP 的斜率分别为m ,n ,则当a b 3-23mn +3mn +92ln m +ln n 取最小值时,椭圆C 的离心率为( )A.15B.45C.223D.3215.(2022·福建省诏安县桥东中学高三期中)已知偶函数f x 在R 上的任一取值都有导数,且f 1 =1,f x +2 =f x -2 ,则曲线y =f x 在x =-5处的切线的斜率为( )A.-1B.-2C.1D.216.(2022·江苏盐城·高三阶段练习)图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为( )A.94B.934C.134D.133417.(2022·江苏盐城·高三阶段练习)已知f x 是定义在R 上的奇函数,对任意两个不相等的正数x 1,x 2,都有x 2f x 1 -x 1f x 2 x 2-x 1>0,记a =f 0.23 0.23,b =f sin1 sin1,c =-f ln 13ln3,则a ,b ,c 的大小关系为( )A.a <b <cB.b <a <cC.c <a <bD.c <b <a18.(2022·江苏·南京市天印高级中学高三期中)设a =sin111,b =ln1.1,c = 1.2-1,则( )A.c <b <aB.a <b <cC.a <c <bD.c <a <b19.(2022·江苏·南京市天印高级中学高三期中)已知菱形ABCD 的边长为2,∠BAD =120°,G 是菱形ABCD 内一点,若GA +GB +GC =0,则AG ⋅AB =( )A.12B.1C.32D.2二、多选题20.(2022·广东·深圳实验学校光明部高三期中)下列命题中真命题有( )A.若a ⋅b <0,则a ,b 是钝角B.数列a n 的前n 项和为S n ,若a 1=1,a n +1=3S n n ∈N ∗ ,则a n =1n =13⋅4n -1n ≥2C.若定义域为R 的函数f (x )是奇函数,函数f (x -1)为偶函数,则f (2)=0D.若2OA +OB +3OC =0,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC :S △ABC =1:621.(2022·广东·广州市第一一三中学高三阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,长轴长为4,点P (2,1)在椭圆C 外,点Q 在椭圆C 上,则( )A.椭圆C 的离心率的取值范围是0,22B.当椭圆C 的离心率为32时,QF 1 的取值范围是[2-3,2+3]C.存在点Q 使得QF 1 ⋅QF 2=0D.1QF 1 +1QF 2的最小值为122.(2022·广东·广州市第一一三中学高三阶段练习)设定义在R 上的函数f x 满足f x +y f x -y =f 2x-f 2y ,且f 1 ≠0,则下列说法正确的是( )A.f x 为奇函数B.f x 的解析式唯一C.若f x 是周期为T 的函数,则T ≠1D.若x >0时,f x >0,则f x 是R 上的增函数23.(2022·湖南·衡阳师范学院祁东附属中学高三期中)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e -x (x -1).则下列结论正确的是( )A.当x <0时,f (x )=e x (x +1)B.函数f (x )有两个零点C.若方程f (x )=m 有三个解,则实数m 的取值范围是f (-2)<m <f (2)D.∀x 1,x 2∈R ,f x 1 -f x 2 max =224.(2022·湖南·宁乡一中高三期中)设函数f x 是函数f x 的导函数,且满足f x -f x x =ln x ,f 1e =1e,则( )A.f x 有极大值B.4f 2 <3f 4C.f 1 >f eD.f 1 >1e25.(2022·湖北·武汉市武钢三中高三阶段练习)正方体ABCD -A 1B 1C 1D 1的棱长为2,N 为底面ABCD 的中心,P 为线段A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则( )A.CM 与PN 是异面直线B.平面PAN ⊥平面BDD 1B 1C.存在P 点使得PN ⊥AND.当P 为线段A 1D 1中点时,过A 、M ,N 三点的平面截此正方体所得截面的面积为9226.(2022·湖北·武汉市武钢三中高三阶段练习)已知函数f x =x x -a ,a ∈R ,下列判断中,正确的有( )A.存在k ∈R ,函数y =f x -k 有4个零点B.存在常数a ,使f x 为奇函数C.若f x 在区间0,1 上最大值为f 1 ,则a 的取值范围为a ≤22-2或a ≥2D.存在常数a ,使f x 在1,3 上单调递减27.(2022·湖北·高三期中)已知抛物线C :y 2=2px 过点(2,4),焦点为F ,准线与x 轴交于点T ,直线l 过焦点F 且与抛物线C 交于P ,Q 两点,过P ,Q 分别作抛物线C 的切线,两切线相交于点H ,则下列结论正确的是( )A.PH ⋅QH=0B.抛物线C 的准线过点HC.tan ∠PTQ =22D.当PF PT取最小值时,∠PTF =π428.(2022·湖北·高三期中)已知函数f (x )=e x -x -m (x ∈R ),g (x )=sin x -cos x (x ≥0),则下列说法正确的是( )A.若f (x )有两个零点,则m >1B.若x 1≠x 2且f x 1 =f x 2 ,则x 1+x 2<0C.函数y =g (x )在区间0,5π4有两个极值点D.过原点的动直线l 与曲线y =g (x )相切,切点的横坐标从小到大依次为:x 1,x 2,⋯,x n .则x n =tan x n -π4 29.(2022·湖北襄阳·高三期中)已知正三棱锥S -ABC 的底面边长为6,体积为63,A ,B ,C 三点均在以S 为球心的球S 的球面上,P 是该球面上任意一点,下列结论正确的有( )A.三棱锥P -ABC 体积的最大值为183B.三棱锥P -ABC 体积的最大值为273C.若PA ⊥平面ABC ,则三棱锥P -ABC 的表面积为24+93+343D.若PA ⊥平面ABC ,则异面直线AB 与PC 所成角的余弦值为3132630.(2022·湖北襄阳·高三期中)已知等差数列{a n }的前n 项和为S n ,且S 11<S 7.若存在实数a ,b ,使得a +b =3,且e a -2b -1≤S 17≤ln (a -2b +1),当n =k 时,S n 取得最大值,则k +2a -b 的值可能为( )A.13B.12C.11D.1031.(2022·湖北·高三阶段练习)已知△ABC 外接圆的面积为π,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A ,sin B ,sin C 成等比数列,设△ABC 的周长和面积分别为P ,S ,则( )A.0<B ≤π3B.0<b ≤3C.0<P ≤23D.0<S ≤33432.(2022·湖北·高三阶段练习)已知函数f x =tan cos x +cos sin x ,则( )A.f x 是定义域为R 的偶函数B.f x 的最大值为2C.f x 的最小正周期为πD.f x 在0,π2上单调递减33.(2022·湖北·高三期中)若x >0,y >0,且x +y =xy ,则( )A.x +y ≥4B.xy ≥2C.x +2y +xy ≥5+26D.2xx -1+4y y -1≥6+4234.(2022·山东德州·高三期中)将n 2个数排成n 行n 列的数阵,如图所示:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=3,a 13=a 51+1,记这n 2个数的和为S ,下面叙述正确的是( )a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n⋯⋯a n 1a n 2a n 3⋯a nnA.m =2B.a 78=15×28C.a ij =(2i +1)⋅2j -1D.S =n (n +2)2n -135.(2022·山东·青岛二中高三期中)已知函数f x =-2xe x ,x ≤0ln x ,x >0 若函数y =f x -b 有四个不同的零点:x 1,x 2,x 3,x 4,且x 1<x 2<x 3<4,则以下结论正确的是( )A.x 23+x 24>2B.0<b <2eC.x 1+x 2=-2D.x 1+x 2 x 3x 4<-2.36.(2022·江苏盐城·高三阶段练习)给出定义:若函数f x 在D 上可导,即f x 存在,且导函数f x 在D 上也可导,则称f x 在D 上存在二阶导函数,记f x =f x 若f x <0在D 上恒成立,则函数f x 在D 上为凸函数.以下四个函数在0,3π4 上是凸函数的是( )A.f x =-x 3+2x -1B.f x =ln x -2xC.f x =sin x +cos xD.f x =xe x37.(2022·江苏·南京市天印高级中学高三期中)已知函数y =f (x )满足:对于任意实数x ,y ∈R ,都有2f (x )f y =f (x +y )+f x -y ,且f (1)=-1,则( )A.f (x )是奇函数B.f (x )是偶函数C.12,0 是曲线y =f x 的一个对称中心D.f (2022)=1三、填空题38.(2022·广东·深圳实验学校光明部高三期中)已知数列{a n }的前n 项和为S n ,a 1=1,S n -(2n -1)S n -1=n 2a n n ≥2,n ∈N ∗ ,则数列S n =_____________.39.(2022·广东·广州市第一一三中学高三阶段练习)过点M (2,3)的直线与⊙C :(x -3)2+y 2=16交于A ,B两点,当M 为线段AB 中点时,CA ⋅CB=___________.40.(2022·湖南·衡阳师范学院祁东附属中学高三期中)设f x =ln x ,0<x ≤2f 4-x ,2<x <4若方程f (x )=m 有四个不相等的实根x i i =1,2,3,4 ,且x 1<x 2<x 3<x 4,则x 1+x 2 2+x 23+x 24的取值范围为___________.41.(2022·湖南·宁乡一中高三期中)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且2≤l ≤3,则该正四棱锥体积的取值范围是______.42.(2022·湖北·武汉市武钢三中高三阶段练习)若双曲线x 2a 2-y 2b2=1的右支上存在两点A ,B ,使△ABM 为正三角形(其中M 为双曲线右顶点),则离心率e 的取值范围为______.43.(2022·湖北·高三期中)若不等式e x a≥ln (ax -a )+ln 3a 对任意x >1恒成立,则a 的取值范围是_______________.44.(2022·湖北·高三期中)已知数列a n 满足a 1=1,a 2=2,a 2k +1=a 22k a 2k -1且a 2k +2=2a 2k +1-a 2k ,则a 100=______________.45.(2022·湖北襄阳·高三期中)最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,赵爽创制了一幅“勾股圆方图”,他用数形结合的方法,给出了勾股定理的详细证明.如图,某数学探究小组仿照“勾股圆方图”,利用6个全等的三角形和一个小的正六边形ABCDEF ,拼成一个大的正六边形GHMNPQ ,若AB =AG =1,则BE ⋅GD=__________.46.(2022·湖北襄阳·高三期中)已知实数x 、y 满足2x 2-3y 2-xy =1,则2x 2+3y 2的最小值为__________.47.(2022·湖北·高三阶段练习)已知函数f x =e x +ax +1a ∈R ,若函数f x 与函数f f x 的单调区间相同,并且既有单调递增区间,也有单调递减区间,则a 的取值范围是______.48.(2022·山东德州·高三期中)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC ,则λ2+μ2的最小值为________.49.(2022·山东·青岛二中高三期中)在三棱锥S -ABC 中,底面ABC 是边长为2的正三角形,SA =AB ,点M 为△SAB 的垂心,且CM ⊥平面SAB ,则三棱锥S -ABC 的外接球的表面积为_________.50.(2022·江苏盐城·高三阶段练习)△ABC 中角的A ,B ,C 的对边分别为a ,b ,c ,若该三角形的面积为5,且sin A -B =3-4cos A sin B ,则c 的最小值为_______.51.(2022·江苏·南京市天印高级中学高三期中)设圆锥的底面半径为2,母线长为22,若正四棱柱上底面的4个顶点在其母线上,下底面的4个顶点在其底面圆内,则该正四棱柱体积的最大值为______.四、双空题52.(2022·湖北·武汉市武钢三中高三阶段练习)平面四边形ABCD 中,AB =AD =3,BC =1,CD =22,BD =3,沿BD 将△ABD 向上翻折,进而得到四面体A -BCD ,①四面体A -BCD 体积的最大值为______;②若二面角A -BD -C 的大小为120°,则AC 2=______.53.(2022·湖北·高三期中)已知f x 是定义在R 上的函数,且函数y =f 2x +1 的图象关于直线x =1对称,当x <12时,f x =ln 1-2x ,则f 6 =__________,曲线y =f x 在x =6处的切线方程是__________.54.(2022·山东德州·高三期中)定义x (x ∈R )为与x 距离最近的整数(当x 为两相邻整数算术平均值时,x 取较大整数),令函数G (x )=x ,如:G 43 =1,G 53 =2,G (2)=2,G (2.5)=3.则1G (1)+1G (2)+1G (3)+1G (4)+1G (5)+1G (6)=__________;1G (1)+1G (2)+1G (3)+⋯+1G (2023)=_________.55.(2022·江苏盐城·高三阶段练习)已知数列a n 满足a 1=a 2=32,a n +2=a n +2×3n n ∈N * ,且b n =a n +a n +1n ∈N * .则数列b n 的通项公式为________.若b n c n =4(n +1)34n 2-1 n ∈N *,则数列c n 的前n 项和为________.。
2023年新高考数学选填压轴题汇编(八)一、单选题1.(2022·湖南·永兴县童星学校高三阶段练习)已知a =65ln1.2,b =0.2e 0.2,c =13,则( )A.a <b <c B.c <b <aC.c <a <bD.a <c <b【答案】A【解析】b =0.2e 0.2=e 0.2ln e 0.2,a =65ln1.2=1.2ln1.2,令f x =x ln x ,则f x =ln x +1,当0<x <1e 时,f x <0,当x >1e时,f x >0,所以函数f x 在0,1e 上递减,在1e,+∞ 上递增,令g x =e x -x -1,则g x =e x-1,当x <0时,g x <0,当x >0时,g x >0,所以函数g x 在-∞,0 上递减,在0,+∞ 上递增,所以g 0.2 >g 0 =0,即e 0.2>1+0.2=1.2>1e,所以f e 0.2 >f 1.2 ,即e 0.2ln e 0.2>1.2ln1.2,所以b >a ,由b =0.2e 0.2,得ln b =ln 0.2e 0.2 =15+ln 15,由c =13,得ln c =ln 13,ln c -ln b =ln 13-ln 15-15=ln 53-15,因为53 5=625×5243>10>e ,所以53>e 15,所以ln 53>15,所以ln c -ln b >0,即ln c >ln b ,所以c >b ,综上所述a <b <c .故选:A .2.(2022·湖南·永兴县童星学校高三阶段练习)已知函数f x =x ,x <0,13x 3-12a +1 x 2+ax ,x ≥0,若方程f x=ax -148恰有3个不同的实根,则实数a 的取值范围为( )A.-∞,2 B.-12,1 C.-12,2 D.12,1 【答案】B【解析】由题,当x <0时,令g x =f x -ax +148=x -ax +148=1-a x +148,根据一次函数性质可得1-a >0⇒a <1,此时有一个根,1-a <0⇒a >1,此时无根;当x ≥0时,令g x =13x 3-12a +1 x 2+ax -ax +148=13x 3-12a +1 x 2+148,求导g x =x 2-a +1 x =x x -a +1 ,令g x =0⇒x 1=0或x 2=a +1,当a +1≤0时,g x 在0,+∞ 上单调递增,故无零点,不满足题意;当a +1>0时,g x 在0,a +1 单调递减,在a +1,+∞ 单调递增,由题,函数f x 恰有3个零点,则说明在当x <0时,有1个零点,在x ≥0时有两个零点,故可知a <1且g a +1 <0,所以g a +1 =13a +1 3-12a +1 a +1 2+148=-16a +1 3+148<0,解得a >-12;综上可得-12<a <1故选:B3.(2022·湖北·荆州中学高三阶段练习)已知tan α,tan β是方程ax 2+bx +c =0a ≠0 的两根,有以下四个命题:甲:tan α+β =-12;乙:tan αtan β=7:3;丙:sin α+β cos α-β =54;丁:tan αtan βtan α+β -tan α+β =5:3.如果其中只有一个假命题,则该命题是( )A.甲 B.乙C.丙D.丁【答案】B【解析】因为tan α,tan β是方程ax 2+bx +c =0a ≠0 的两根,所以tan α+tan β=-ba,tan α⋅tan β=c a,则甲:tan α+β =tan α+tan β1-tan α⋅tan β=-b a1-c a=b c -a =-12;丙:sin α+β cos α-β =sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=-b a1+ca=-b c +a =54.若乙、丁都是真命题,则tan α+tan β=-53,tan α⋅tan β=73,所以tan α+β =tan α+tan β1-tan α⋅tan β=-b a 1-c a =-531-73=54,sin α+β cos α-β =sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=-b a 1+c a =-531+73=-12,两个假命题,与题意不符,所以乙、丁一真一假,假设丁是假命题,由丙和甲得a -c =2b ,-5a +c =4b ,所以2a -c =-5a +c ,即7a +3c =0,所以c :a =-7:3,与乙不符,假设不成立;假设乙是假命题,由丙和甲得7a +3c =0,又a -c =2b ,所以3b =5a ,即b :a =5:3与丙相符,假设成立;故假命题是乙,故选:B .4.(2022·湖北·荆州中学高三阶段练习)已知函数f x =ax ln x -x 2+3-a x +1a ∈R ,若f x 存在两个试卷第2页,共42页极值点x1,x2x1<x2,当x2x1取得最小值时,实数a的值为( )A.0B.1C.2D.3【答案】D【解析】由题意可知,f (x)=a ln x-2x+3有两个变号零点,即f (x)=0有两个不同的正根x1,x2x1<x2,不妨令g(x)=f (x),则g (x)=ax-2,当a≤0时,g (x)=ax-2<0,故f (x)=a ln x-2x+3在(0,+∞)上单调递减,此时f (x)最多只有一个零点,不合题意;当a>0时,g (x)>0⇒0<x<a2;g (x)<0⇒x>a2,故f (x)在0,a 2上单调递增,在a2,+∞单调递减,因为f e-3a=a ln e-3a-2e-3a+3=--2e-3a<0,f (1)=1>0,且由对数函数性质可知,当x足够大时,f (x)=a ln x-2x+3<0,所以由零点存在基本定理可知,0<x1<1<x2,因为a ln x1-2x1+3=0,a ln x2-2x2+3=0,所以a=2x1-3ln x1=2x2-3ln x2=2(x1-x2)ln x1x2=2x1x2x1-1ln x2x1,不妨令t=x2x1,由x2>x1>0⇒t>1,从而2x1-32x1ln x1=x2x1-1ln x2x1=t-1ln t=h(t),因为h (t)=ln t+1t-1ln2t,令y=ln t+1t-1,则y =1t-1t2=t-1t2>0,从而y=ln t+1t-1在(1,+∞)单调递增,且y|t=1=0,故对于∀t>1,h (t)>0,即h(t)在(1,+∞)单调递增,从而当t=x2x1取得最小值是,h(t)也取得最小值,即2x1-32x1ln x1取得最小值,不妨令F(x)=2x-32x ln x,x∈(0,1),则F (x)=3ln x-2x+32x2ln2x,令φ(x)=3ln x-2x+3,则φ (x)=3-2xx>0对于x∈(0,1)恒成立,故φ(x)=3ln x-2x+3在(0,1)上单调递增,因为φ(1)=1>0,φ1e =-2e<0,所以存在唯一的x0∈1e,1,使得φ(x0)=3ln x0-2x0+3=0⇔2x0-3ln x0=3,故F (x)<0⇒0<x<x0;F (x)>0⇒x>x0,从而F(x)=2x-32x ln x在(0,x0)上单调递减,在(x0,+∞)单调递增,故F (x )min =F (x 0)=2x 1-32x 1ln x 1min,此时h (t )也取得最小值,即x 0=x 1,故a =2x 0-3ln x 0=2x 1-3ln x 1=3.故选:D .5.(2022·山东·乳山市银滩高级中学高三阶段练习)已知f (x +2)是偶函数,f (x )在-∞,2 上单调递减,f (0)=0,则f (2-3x )>0的解集是( )A.-∞,23 ∪2,+∞ B.23,2C.-23,23D.-∞,-23 ∪23,+∞ 【答案】D【解析】根据题意,f (x +2)是偶函数,则函数f (x )的图象关于直线x =2对称,又由f (x )在-∞,2 上单调递减,则f (x )在2,+∞ 上递增,又由f (0)=0,则f (2-3x )>0⇒f (2-3x )>f (0)⇒|3x |>2,解可得:x <-23或x >23,即不等式的解集为-∞,-23 ∪23,+∞ ;故选:D .6.(2022·山东·乳山市银滩高级中学高三阶段练习)已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A.c <b <a B.b <a <c C.a <c <b D.a <b <c【答案】C【解析】a =log 52<log 55=12=log 822<log 83=b ,即a <c <b .故选:C .7.(2022·山东·栖霞市第一中学高三阶段练习)已知a =log 328,b =π0.02,c =sin1,则a ,b ,c 的大小关系是( )A.c <b <a B.c <a <b C.a <b <c D.a <c <b【答案】D【解析】由题意,a =log 328=log 2523=35=0.6,b =π0.02>π0=1,sin π4<sin1<sin π3⇒22<c <32,则a <c <b .故选:D .8.(2022·山东·济南市天桥区黄河双语实验学校高三阶段练习)已知f x =2x x 2+1,x ≥0-1x ,x <0 ,若函数g x =f x -t 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,则-1x 1+1x 2+1x 3的取值范围是( )A.3,+∞B.2,+∞C.52,+∞D.1,+∞【答案】A试卷第2页,共42页【解析】函数f x =2x x 2+1,x ≥0-1x ,x <0 的图象如图所示,函数g x =f x -t 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,即方程f x =t 有三个不同的实数根x 1,x 2,x 3,由图知t >0,当x >0时,f x =2x x 2+1=2x +1x,∵x +1x≥2x >0 ,∴f x ≤1,当且仅当x =1时取得最大值,当y =1时,x 1=-1,x 2=x 3=1,此时-1x 1+1x 2+1x 3=3,由2x +1x=t 0<t <1 ,可得x 2-2x t +1=0,∴x 2+x 3=2t,x 2x 3=1,∴1x 2+1x 3=2t >2,∴-1x 1+1x 2+1x 3=t +2t,∵0<t <1,∴-1x 1+1x 2+1x 3的取值范围是3,+∞ .故选:A .9.(2022·山东·高密三中高三阶段练习)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=a ⋅2x +b .若f (0)+f (3)=6,则f log 296 的值是( )A.-12 B.-2C.2D.12【答案】B【解析】f (x +1)为奇函数,即其图象关于(0,0)点对称,所以f (x )的图象关于(1,0)点对称,f (x +2)为偶函数,即其图象关于y 轴对称,因此f (x )的图象关于直线x =2对称,所以f (1)=0,f (0)=-f (2),f (3)=f (1),所以f (1)=2a +b =0,f (0)+f (3)=-f (2)=-(4a +b )=6,由此解得a =-3,b =6,所以x ∈[1,2]时,f (x )=-3⋅2x +6,由对称性得f (x +2)=f (2-x )=-f (1-(1-x ))=-f (x ),所以f (x +4)=-f (x +2)=f (x ),f (x )是周期函数,周期为4,6<log 296<7,f (log 296)=f (log 296-4)=f (4-log 296+4)=f log 225696 =f log 283 =-3×83+6=-2,故选:B .10.(2022·福建师大附中高三阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾在数学著作《算罔论》中得出结论:圆周率的平方除以十六约等于八分之五.已知在菱形ABCD 中,AB =BD =23,将△ABD 沿BD 进行翻折,使得AC =26.按张衡的结论,三棱锥A -BCD 外接球的表面积约为( )A.72 B.2410C.2810D.3210【答案】B【解析】如图1,取BD 的中点M ,连接AM ,CM .由AB =AD =BD =23,可得△ABD 为正三角形,且AM =CM =23×32=3,所以cos ∠AMC =32+32-(26)22×3×3=-13,则sin ∠AMC =1--13 2=223,以M 为原点,MC 为x 轴,MD 为y 轴,过点M 且与平面BCD 垂直的直线为z 轴建立空间直角坐标系如图2,则C (3,0,0), A (-1,0,22).设O 为三棱锥A -BCD 的外接球球心,则O 在平面BCD 的投影必为△BCD 的外心,则设O (1,0,h ).由R 2=|OA |2=|OC |2可得22+02+(22-h )2=22+02+h 2,解得h =2,所以R 2=|OC |2=6.由张衡的结论,π216≈58,所以π≈10,则三棱锥A -BCD 的外接球表面积为4πR 2≈2410,故选:B .11.(2022·福建省福州教育学院附属中学高三开学考试)若函数f x =kx -ln x 在区间1,+∞ 上单调递增,则实数k 的取值范围是A.-∞,-2 B.-∞,-1C.2,+∞D.1,+∞【答案】D 【解析】f x =k -1x,∵函数f x =kx -ln x 在区间1,+∞ 单调递增,∴f x ≥0在区间1,+∞ 上恒成立.∴k ≥1x ,而y =1x在区间1,+∞ 上单调递减,∴k ≥1∴k 的取值范围是1,+∞ .故选D .考点:利用导数研究函数的单调性.12.(2022·江苏·沭阳如东中学高三阶段练习)已知圆柱的轴截面是边长为2的正方形,P 为上底面圆的圆心,AB 为下底面圆的直径,E 为下底面圆周上一点,则三棱锥P -ABE 外接球的表面积为( )A.2516π B.254π C.52π D.5π【答案】B【解析】由题,由圆的性质,△ABE 为直角三角形,∠E =90°,如图所示,设外接球半径为R ,底面圆心为Q ,外接球球心为O , 由外接球的定义,OP =OA =OB =OE =R ,易得O 在线段PQ 上, 又圆柱的轴截面是边长为2的正方形,所以底面圆半径AQ =BQ =1,∵PQ ⊥AQ ,则OA 2=OQ 2+AQ 2⇒R 2=2-R 2+12,解得R =54,试卷第2页,共42页∴外接球表面积为4πR 2=25π4.故选:B .13.(2022·江苏·沭阳如东中学高三阶段练习)若a =sin1+tan1,b =2,c =ln4+12,则a ,b ,c 的大小关系为( )A.c <b <a B.c <a <bC.a <b <cD.b <c <a【答案】A【解析】令f x =2ln x +1x -x ,则fx =2x +-1x 2-1=-x 2+2x -1x 2=-x -1 2x 2≤0,则f x 在定义域0,+∞ 上单调递减,所以f 2 <f 1 =0,即2ln2+12-2<0,所以ln4+12<2,即b >c ,令g x =sin x +tan x -2x ,x ∈0,π2 ,则g x =cos x +1cos 2x -2=cos 3x -2cos 2x +1cos 2x ,因为x ∈0,π2 ,所以cos x ∈0,1 ,令h x =x 3-2x 2+1,x ∈0,1 ,则h x =3x 2-4x =x 3x -4 <0,即h x 在0,1 上单调递减,所以h x >h 1 =0,所以g x >0,即g x 在0,π2上单调递增,所以g 1 >g 0 =0,即sin1+tan1-2>0,即sin1+tan1>2,即a >b ,综上可得a >b >c ;故选:A 14.(2022·江苏·常州市第一中学高三开学考试)已知a >0,且a ≠1,函数f (x )=5a x +3a x +1+ln (1+4x 2-2x )(-1≤x ≤1),设函数f (x )的最大值为M ,最小值为N ,则( )A.M +N =8B.M +N =10C.M -N =8D.M -N =10【答案】A 【解析】f (x )=5a x +3a x+1+ln (1+4x 2-2x )(-1≤x ≤1),令g (x )=ln (1+4x 2-2x ),x ∈[-1,1],由g (-x )=ln (1+4x 2+2x )=ln11+4x 2-2x=-ln (1+4x 2-2x )=-g (x ),可知g (-x )=-g (x ),故g (x )函数的图象关于原点对称,设g (x )的最大值是a ,则g (x )的最小值是-a ,由5a x +3a x +1=5-2a x +1,令h (x )=-2a x +1,当0<a <1时,h (x )在[-1,1]递减,所以h (x )的最小值是h (-1)=-2a a +1,h (x )的最大值是h 1 =-2a +1,故h -1 +h 1 =-2,∴f (x )的最大值与最小值的和是10-2=8,当a >1时,h (x )在[-1,1]单调递增,所以h (x )的最大值是h (-1)=-2a a +1,h (x )的最小值是h 1 =-2a +1,故h -1 +h 1 =-2,故函数f (x )的最大值与最小值之和为8,综上:函数f (x )的最大值与最小值之和为8,故选:A .15.(2022·江苏·泗洪县洪翔中学高三阶段练习)不等式ae ax >ln x 在(0,+∞)上恒成立,则实数a 的取值范围是( )A.12e ,+∞B.1e ,+∞C.(1,+∞)D.(e ,+∞)【答案】B【解析】当a ≤0时,不等式ae ax >ln x 在(0,+∞)上恒成立不会成立,故a >0 ,当x ∈(0,1] 时,ln x ≤0 ,此时不等式ae ax >ln x 恒成立;不等式ae ax >ln x 在(1,+∞)上恒成立,即axe ax >x ln x 在(1,+∞)上恒成立,而axe ax >x ln x 即axe ax >ln x ⋅e ln x ,设g (x )=xe x ,g (x )=(x +1)e x ,当x >-1 时,g (x )=(x +1)e x >0,故g (x )=xe x ,(x >-1)是增函数,则axe ax >ln x ⋅e ln x 即g (ax )>g (ln x ),故ax >ln x ,a >ln xx,设h (x )=ln x x ,(x >1),h (x )=1-ln xx 2,当1<x <e 时,h (x )=1-ln xx 2>0, h (x )递增,当x >e 时,h (x )=1-ln xx 2<0, h (x )递减,故h (x )≤h (e )=1e ,则a >1e,综合以上,实数a 的取值范围是a >1e,故选:B 16.(2022·江苏·泗洪县洪翔中学高三阶段练习)已知四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,平面PAB ⊥平面ABCD ,且△PAB 为等边三角形,则该四棱锥的外接球的表面积为( )A.283π B.1123π C.32πD.2563π【答案】B【解析】如图所示,在四棱锥P -ABCD 中,取侧面△PAB 和底面正方形ABCD 的外接圆的圆心分别为O 1,O 2,分别过O 1,O 2作两个平面的垂线交于点O ,则由外接球的性质知,点O 即为该球的球心,取线段AB 的中点E ,连O 1E ,O 2E ,O 2D ,OD ,则四边形O 1EO 2O 为矩形,在等边△PAB 中,可得PE =23,则O 1E =233,即OO 2=233,在正方形ABCD 中,因为AB =4,可得O 2D =22,在直角△OO 2D 中,可得OD 2=OO 22+O 2D 2,即R 2=OO 22+O 2D 2=283,所以四棱锥P -ABCD 外接球的表面积为S =4πR 2=112π3.故选:B .试卷第2页,共42页17.(2022·江苏·淮安市钦工中学高三阶段练习)已知定义在R 上的函数f x 的导函数f x ,且f x <f x<0,则( )A.ef 2 >f 1 ,f 2 >ef 1B.ef 2 >f 1 ,f 2 <ef 1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D【解析】构造函数g (x )=f (x )e x ⇒g(x )=f (x )-f (x )ex,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D18.(2022·江苏·沭阳县潼阳中学高三阶段练习)已知函数f (x )=e x -x -1,x ≤0,-f (-x ),x >0, 则使不等式f (ln x )>-1e 成立的实数x 的取值范围为( )A.0,1eB.1e ,+∞C.(0,e )D.(e ,+∞)【答案】C【解析】因为f (0)=0,x >0时,f (x )=-f (-x ),因此x <0时也有f (x )=-f (-x ),即函数f (x )是奇函数,x ≤0时,f (x )=e x -x -1,f (x )=e x -1≤0,所以f (x )是减函数,所以奇函数f (x )在R 上是减函数,又f (-1)=1e ,所以f (1)=-f (-1)=-1e,不等式f (ln x )>-1e为f (ln x )>f (1),所以ln x <1,0<x <e ,故选:C .19.(2022·江苏·沭阳县潼阳中学高三阶段练习)已知实数a 、b 、c 满足a 2+b 2+c 2=1,则2ab +3c 的最大值为( )A.3 B.134C.2D.5【答案】A【解析】因为1-c 2=a 2+b 2≥2ab ,所以,2ab +3c ≤-c 2+3c +1=-c -32 2+134,因为1-c 2≥0,可得-1≤c ≤1,故当a =b =0c =1 时,2ab +3c 取最大值3.故选:A .二、多选题20.(2022·湖南·永兴县童星学校高三阶段练习)已知函数f x =x ln x -ax ,则( )A.当a ≤0或a =1e 时,f x 有且仅有一个零点B.当a ≤0或a =12时,f x 有且仅有一个极值点C.若f x 为单调递减函数,则a >12D.若f x 与x 轴相切,则a =1e【答案】AD【解析】令f x =0可得x ln x -ax =0,化简可得ln xx=a ,设h (x )=ln x x ,则h (x )=1-ln xx 2,当x >e ,h (x )<0,函数h (x )在e ,+∞ 单调递减,当0<x <e ,h (x )>0,函数h (x )在0,e 单调递增,又h (1)=0,h (e )=1e ,由此可得函数h (x )=ln xx 图像如下:所以当a ≤0或a =1e 时,ln xx =a 有且仅有一个零点所以当a ≤0或a =1e时,f x 有且仅有一个零点,A 对,函数f x =x ln x -ax 的定义域为0,+∞ ,f x =ln x -2ax +1,若f x 与x 轴相切,设f x 与x 轴相切相切与点(x 0,0),则f x 0 =0,f x 0 =0,所以ln x 0-ax 0=0,ln x 0-2ax 0+1=0所以x 0=e ,a =1e,故D 正确;若f x 为单调递减函数,则f x ≤0在0,+∞ 上恒成立,所以ln x +12x≤a 在0,+∞ 上恒成立,设g (x )=ln x +12x ,则g (x )=-ln x2x 2,当x >1时,g (x )<0,函数g (x )=ln x +12x单调递减,当0<x <1时,g (x )>0,函数g (x )=ln x +12x单调递增,且g (1)=12,g 1e =0,当x >1e时,g (x )>0,由此可得函数g (x )=ln x +12x的图像如下:所以若f x 为单调递减函数,则a ≥12,C 错,所以当a =12时,函数f (x )在0,+∞ 上没有极值点,B 错,故选:AD .21.(2022·湖南·永兴县童星学校高三阶段练习)已知函数f (x )=x 2+2x +1,x <0ln x -2 ,x >0,若方程f (x )=k (k ∈R )有四个不同的实数解,它们从小到大依次记为x 1,x 2,x 3,x 4,则( )A.0<k <1 B.x 1+x 2=-1C.e <x 3<e 2D.0<x 1x 2x 3x 4<e 4【答案】ACD【解析】画出函数f (x )与函数y =k 的图像如下:f (x )在-∞,-1 单调递减,值域0,+∞ ;在-1,0 单调递增,值域0,1 ;在0,e 2 单调递减,值域0,+∞ ;在e 2,+∞ 单调递增,值域0,+∞ .试卷第2页,共42页则有x1+x 2=-2,ln x 3-2+ln x 4-2=0,即x 3x 4=e 4.选项B 判断错误;方程f (x )=k (k ∈R )有四个不同的实数解,则有0<k <1.选项A 判断正确;由f (x )在0,e 2 单调递减,值域0,+∞ ,f (e )=ln e -2 =1,f (e 2)=ln e2-2 =0,可知e <x 3<e 2.选项C 判断正确;由x 1<x 2<0<x 3<x 4,可知x 1x 2x 3x 4>0又x 1x 2x 3x 4=e 4x 1x 2=e 4-x 1 -x 2 <e 4-x 1 +-x 2 22=e 4.则有0<x 1x 2x 3x 4<e 4.故选项D 判断正确.故选:ACD22.(2022·湖北·荆州中学高三阶段练习)已知函数f x =2sin x 2+π6,若将函数f x 的图象纵坐标不变,横坐标缩短到原来的14,再向右平移π6个单位长度,得到函数g x 的图象,则( )A.函数g x =2sin 2x -π6 B.函数f x 的周期为4πC.函数g x 在区间π,4π3 上单调递增D.函数f x 的图象的一条对称轴是直线x =-π3【答案】ABC【解析】由题意可知,函数f x 的图象纵坐标不变,横坐标缩短到原来的14后,其解析式为y =2sin 2x +π6 ,y =2sin 2x +π6 向右平移π6个单位长度后,得到g (x )=2sin 2x -π6 +π6 =2sin 2x -π6 ,故A 正确;由周期公式可知,函数f x 的周期为T =2π12=4π,故B 正确;由-π2+2k π≤2x -π6≤π2+2k π⇒-π6+k π≤x ≤π3+k π,k ∈Z ,故g (x )的单调递增区间为-π6+k π,π3+k π ,k ∈Z ,从而函数g x 在区间π,4π3上单调递增,故C 正确;因为f -π3=2sin0=0≠±2,故D 错误.故选:ABC .23.(2022·湖北·荆州中学高三阶段练习)已知奇函数f x 在R 上可导,其导函数为f ′x ,且f 1-x -f 1+x +2x =0恒成立,若f x 在0,1 单调递增,则( )A.f x 在1,2 上单调递减 B.f 0 =0C.f 2022 =2022 D.f 2023 =1【答案】BCD 【解析】方法一:对于A ,若f x =x ,符合题意,故错误,对于B ,因已知奇函数f x 在R 上可导,所以f 0 =0,故正确,对于C 和D ,设g x =f x -x ,则g x 为R 上可导的奇函数,g 0 =0,由题意f 1-x +x -1=f 1+x -1-x ,得g 1-x =g 1+x ,g x 关于直线x =1对称,易得奇函数g x 的一个周期为4,g 2022 =g 2 =g 0 =0,故C 正确,由对称性可知,g x 关于直线x =-1对称,进而可得g -1 =0,(其证明过程见备注)且g x 的一个周期为4,所以g ′2023 =g ′-1 =0,故D 正确.备注:g 1-x =g 1+x ,即-g 1-x =-g 1+x ,所以g -1+x =g -1-x ,等式两边对x 求导得,g ′-1+x =-g ′-1-x ,令x =0,得g ′-1 =-g ′-1 ,所以g -1 =0.方法二:对于A ,若f x =x ,符合题意,故错误,对于B ,因已知奇函数f x 在R 上可导,所以f 0 =0,故正确,对于C ,将f 1-x -f 1+x +2x =0中的x 代换为x +1,得f -x -f 2+x +2x +2=0,所以f x +2 +f x =2x +2,可得f x +4 +f x +2 =2x +6,两式相减得,f x +4 -f x =4,则f 6 -f 2 =4,f 10 -f 6 =4,⋯,f 2022 -f 2018 =4,叠加得f 2022 -f 2 =2020,又由f x +2 +f x =2x +2,得f 2 =-f 0 +2=2,所以f 2022 =f 2 +2020=2022,故正确,对于D ,将f 1-x -f 1+x +2x =0的两边对x 求导,得-f 1-x -f 1+x +2=0,令x =0得,f 1 =1,将-f -x =f x 的两边对x 求导,得f ′-x =f ′x ,所以f -1 =1,将f x +4 -f x =4的两边对x 求导,得f x +4 =f x ,所以f 2023 =f 2019 =⋅⋅⋅=f -1 =1,故正确.故选:BCD24.(2022·山东·乳山市银滩高级中学高三阶段练习)已知函数f x =ln x 2+1+x +x 5+3,函数g x 满足g -x +g x =6.则( )A.f lg7 +f lg17=6B.函数g x 的图象关于点3,0 对称C.若实数a 、b 满足f a +f b >6,则a +b >0D.若函数f x 与g x 图象的交点为x 1,y 1 、x 2,y 2 、x 3,y 3 ,则x 1+y 1+x 2+y 2+x 3+y 3=6【答案】AC【解析】对于A 选项,对任意的x ∈R ,x 2+1+x >x +x ≥0,所以,函数f x =ln x 2+1+x +x 5+3的定义域为R ,f -x +f x =ln x 2+1-x +-x 5+3 +ln x 2+1+x +x 5+3=ln x 2+1-x 2 +6=6,所以,f lg7 +f lg 17=f lg7 +f -lg7 =6,A 对;对于B 选项,因为函数g x 满足g -x +g x =6,故函数g x 的图象关于点0,3 对称,B 错;对于C 选项,对于函数h x =ln x 2+1+x ,该函数的定义域为R ,h -x +h x =ln x 2+1-x +ln x 2+1+x =ln x 2+1-x 2 =0,即h -x =-h x ,所以,函数h x 为奇函数,当x ≥0时,内层函数u =x 2+1+x 为增函数,外层函数y =ln u 为增函数,试卷第2页,共42页所以,函数h x 在0,+∞上为增函数,故函数h x 在-∞,0上也为增函数,因为函数h x 在R上连续,故函数h x 在R上为增函数,又因为函数y=x5+3在R上为增函数,故函数f x 在R上为增函数,因为实数a、b满足f a +f b >6,则f a >6-f b =f-b,可得a>-b,即a+b>0,C对;对于D选项,由上可知,函数f x 与g x 图象都关于点0,3对称,由于函数f x 与g x 图象的交点为x1,y1、x2,y2、x3,y3,不妨设x1<x2<x3,若x2≠0,则函数f x 与g x 图象的交点个数必为偶数,不合乎题意,所以,x2=0,则y2=3,由函数的对称性可知,点x1,y1、x3,y3关于点0,3对称,则x1+x3=0,y1+y3=6,故x1+y1+x2+y2+x3+y3=9,D错.故选:AC.25.(2022·山东·栖霞市第一中学高三阶段练习)已知函数f x =2sinωx+π4(ω>0),则下列说法正确的是( )A.若函数f x 的最小正周期为π,则其图象关于直线x=π8对称B.若函数f x 的最小正周期为π,则其图象关于点π8,0对称C.若函数f x 在区间0,π8上单调递增,则ω的最大值为2D.若函数f x 在0,2π有且仅有5个零点,则ω的取值范围是198≤ω<238【答案】ACD【解析】A选项:∵f x 的最小正周期为π∴ω=2∴fπ8 =2sin2⋅π8+π4=2sinπ2=2,故A正确;B选项:∵f x 的最小正周期为π∴ω=2∴fπ8 =2sin2⋅π8+π4=2sinπ2=2≠0,故B错误;C选项:∵0<x<π8∴π4<ωx+π4<π8ω+π4又函数f x 在0,π8上单调递增∴π8ω+π4≤π2∴ω≤2,故C正确;D选项:∵x∈0,2π∴ωx+π4∈π4,2πω+π4又f x 在0,2π有且仅有5个零点,则5π≤2πω+π4<6π,∴198≤ω<238,故D正确.故选:ACD26.(2022·山东·济南市天桥区黄河双语实验学校高三阶段练习)已知函数f x =ln x-x+1x-1,下列结论成立的是( )A.函数f x 在定义域内无极值B.函数f x 在点A2,f2处的切线方程为y=52x+ln2-8C.函数f x 在定义域内有且仅有一个零点D.函数f x 在定义域内有两个零点x 1,x 2,且x 1⋅x 2=1【答案】ABD【解析】A ,函数f x =ln x -x +1x -1定义域为0,1 ∪1,+∞ ,f x =1x -x -1-x +1 x -1 2=1x +2x -12>0,∴f x 在0,1 和1,+∞ 上单调递增,则函数f x 在定义域内无极值,故A 正确;B ,由f x =1x +2x -1 2,则f 2 =12+22-12=52,又f 2 =ln2-2+12-1=-3+ln2,∴函数f x 在点A 2,f 2 处的切线方程为y +3-ln2=52x -2即y =52x +ln2-8,故B 正确;C ,∵f x 在1,+∞ 上单调递增,又f e =ln e -e +1e -1=1-e +1e -1=-2e -1<0,f e 2 =ln e 2-e 2+1e 2-1=2-e 2+1e 2-1=e 2-3e 2-1>0,所以函数f x 在e ,e 2 存在x 0,使f x 0 =ln x 0-x 0+1x 0-1=0,又1e2<1x 0<1e ,即0<1x 0<1,且f 1x 0 =ln 1x 0-1x 0+11x 0-1=-ln x 0-x 0+1x 0-1=-f x 0 =0,即1x 0为函数f x 的一个零点,所以函数f x 在定义域内有两个零点,故C 错误.D ,由选项C 可得x 1=x 0,x 2=1x 0,所以x 1⋅x 2=1,故D 正确.故选:ABD27.(2022·山东·济南市天桥区黄河双语实验学校高三阶段练习)已知定义在R 上的函数f x 对任意实数x 满足f 2+x =f x ,f 2-x =f x ,且x ∈0,1 时,f x =x 2+1,则下列说法中,正确的是( )A.2是f x 的周期 B.x =-1不是f x 图象的对称轴C. f 2021 =2D.方程f (x )=12x 只有4个实根【答案】AC【解析】A 选项:因为定义在R 上的函数f x 对任意实数x 满足f 2+x =f x ,所以函数f x 是以2为周期的周期函数,故A 选项正确;B 选项:因为f 2-x =f x ,所以函数f x 关于直线x =1对称,又f x 是周期为2周期函数,所以函数f x 关于直线x =-1对称,故B 选项错误;C 选项: f 2021 =f 1 =12+1=2,C 选项正确;D 选项:在同一直角坐标系中分别作出函数y =f x 与y =12x 的图象,如图所示:试卷第2页,共42页由图象可知两函数共有6个不同的交点,则方程f (x )=12x 有6个实根,故D 选项错误;故选:AC .28.(2022·山东·高密三中高三阶段练习)英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件A 、B 存在如下关系:P A B =P A P B AP B.某高校有甲、乙两家餐厅,王同学第一天去甲、乙两家餐厅就餐的概率分别为0.4和0.6.如果他第一天去甲餐厅,那么第二天去甲餐厅的概率为0.6;如果第一天去乙餐厅,那么第二天去甲餐厅的概率为0.5,则王同学( )A.第二天去甲餐厅的概率为0.54B.第二天去乙餐厅的概率为0.44C.第二天去了甲餐厅,则第一天去乙餐厅的概率为59D.第二天去了乙餐厅,则第一天去甲餐厅的概率为49【答案】AC【解析】设A 1:第一天去甲餐厅,A 2:第二天去甲餐厅,B 1:第一天去乙餐厅,B 2:第二天去乙餐厅,所以P A 1 =0.4,P B 1 =0.6,P A 2A 1 =0.6,P A 2B 1 =0.5,因为P A 2A 1 =P (A 2)P A 1A 2 P (A 1)=0.6,P A 2B 1 =P (A 2)P B 1A 2P (B 1)=0.5,所以P (A 2)P A 1A 2 =0.24,P (A 2)P B 1A 2 =0.3,所以有P A 2 =P A 1 P A 2A 1 +P B 1 P A 2B 1 =0.4×0.6+0.6×0.5=0.54,因此选项A 正确, P B 2 =1-P A 2 =0.46,因此选项B 不正确;因为P B 1A 2 =0.3P A 2=59,所以选项C 正确;P A 1B 2 =P (A 1)P B 2A 1) P (B 2)=P (A 1)[1-P A 2A 1)] P (B 2)=0.4×(1-0.6)0.46=823,所以选项D 不正确,故选:AC29.(2022·福建师大附中高三阶段练习)已知⊙O 1:x 2+y 2-2mx +2y =0,⊙O 2:x 2+y 2-2x -4my +1=0.则下列说法中,正确的有( )A.若(1,-1)在⊙O 1内,则m ≥0B.当m =1时,⊙O 1与⊙O 2共有两条公切线C.若⊙O 1与⊙O 2存在公共弦,则公共弦所在直线过定点13,16D.∃m ∈R ,使得⊙O 1与⊙O 2公共弦的斜率为12【答案】BC【解析】因为⊙O 1:x 2+y 2-2mx +2y =0,⊙O 2:x 2+y 2-2x -4my +1=0,所以⊙O 1:(x -m )2+(y +1)2=m 2+1,⊙O 2:(x -1)2+(y -2m )2=4m 2,则O 1(m ,-1),r 1=m 2+1,O 2(1,2m ),r 2=2|m |,则m ≠0,由(1,-1)在⊙O 1内,可得12+(-1)2-2m -2<0,即m >0,A 错误;当m =1时,O 1(1,-1),r 1=2,O 2(1,2),r 2=2,所以|O 1O 2|=3∈(2-2,2+2),所以两圆相交,共两条公切线,B 正确;⊙O 1-⊙O 2,得(-2m +2)x +(2+4m )y -1=0,即m (-2x +4y )+(2x +2y -1)=0,令-2x +4y =0,2x +2y -1=0, 解得x =13,y =16,所以定点为13,16 ,C 正确;公共弦所在直线的斜率为2m -22+4m ,令2m -22+4m =12,无解,所以D 错误,故选:BC .30.(2022·福建师大附中高三阶段练习)函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图像如图所示,则下列说法中,正确的有( )A.f (x )的最小正周期T 为πB.f (x )向左平移3π8个单位后得到的新函数是偶函数C.若方程f (x )=1在(0,m )上共有6个根,则这6个根的和为33π8D.f (x )x ∈0,5π4图像上的动点M 到直线2x -y +4=0的距离最小时,M 的横坐标为π4【答案】ABD【解析】因为f (x )经过点5π8,0,所以f 5π8 =2sin 5ωπ8+φ =0,又5π8在f (x )的单调递减区间内,所以5ωπ8+φ=π+2k π(k ∈Z )①;又因为f (x )经过点5π4,1 ,所以f 5π4 =2sin 5ωπ4+φ =1,sin 5ωπ4+φ =22,又x =5π4是f (x )=1在x >5π8时最小的解,所以5ωπ4+φ=9π4+2k π(k ∈Z )②.联立①、②,可得5ωπ8=5π4,即ω=2,代入①,可得φ=-π4+2k π(k ∈Z ),又|φ|<π2,所以φ=-π4,则f(x )=2sin 2x -π4 .f (x )的最小正周期为2π2=π,A 正确.f (x )向左平移3π8个单位后得到的新函数是f (x )=2sin 2x +3π8 -π4 =2sin 2x +π2 =2cos2x ,为偶函数,B 正确.设f (x )=1在(0,m )上的6个根从小到大依次为x 1,x 2,⋯,x 6.令2x -π4=π2,则x =3π8,根据f (x )的对称性,可得x 1+x 22=3π8,则由f (x )的周期性可得x 3+x 42=3π8+T =11π8,x 5+x 62=3π8+2T =19π8,所以6i =1x i =2 3π8+11π8+19π8 =33π4,C 错误.作与l :2x -y +4=0平行的直线,使其与f (x )x ∈0,5π4有公共点,则在运动的过程中,只有当直线与f (x )x ∈0,5π4相切时,直线与l 存在最小距离,也是点M 到直线2x -y +4=0的最小距离,试卷第2页,共42页令f (x )=22cos 2x -π4 =2,则2x -π4=±π4+2k π(k ∈Z ),解得x =k π(k ∈Z )或x =π4+k π(k ∈Z ),又x ∈0,5π4 ,所以x =0,π4,5π4(舍去),又f (0)=-1,令M 1(0,-1),f π4 =1,M 2π4,1 ,则由|1+4|5>π2-1+4 5可得M 1到直线l 的距离大于M 2到直线l 的距离,所以M 到直线2x -y +4=0的距离最小时,M 的横坐标为π4,D 正确故选:ABD .31.(2022·福建师大附中高三阶段练习)公元前300年前后,欧几里得撰写的《几何原本》是最早有关黄金分割的论著,书中描述:把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为“黄金分割比”,把离心率为“黄金分割比”倒数的双曲线叫做“黄金双曲线”.黄金双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的一个顶点为A ,与A 不在y 轴同侧的焦点为F ,E 的一个虚轴端点为B ,PQ 为双曲线任意一条不过原点且斜率存在的弦,M 为PQ 中点.设双曲线E 的离心率为e ,则下列说法中,正确的有( )A.e =5+12B.|OA ||OF |=|OB |2C.k OM ⋅k PQ =eD.若OP ⊥OQ ,则1|OP |2+1|OQ |2=e 恒成立【答案】ABC【解析】由E 为黄金分割双曲线可得a c =ca +c,即a 2+ac =c 2(*),对(*)两边同除以a 2可得e 2-e -1=0,则e =5+12,A 正确;对(*)继续变形得ac =c 2-a 2=b 2,∴|AB |2+|BF |2=a 2+b 2+c 2+b 2=a 2+c 2+2(c 2-a 2)=3c 2-a 2,|AF |2=(a +c )2=a 2+2ac +c 2=3c 2-a 2,∴AB ⊥BF ,所以∠ABF =90∘,又∠AOB =90∘,所以∠BAO =∠FBO ,∠ABO =∠BFO ,所以△AOB ∼△BOF ,所以OA OB =OBOF,所以|OA ||OF |=|OB |2, B 正确;设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),将P ,Q 坐标代入双曲线方程可得,x 21a 2-y 21b 2=1x 22a 2-y 22b 2=1,作差后整理可得y 2-y 1x 2-x 1∙y 2+y 1x 2+x 1=b 2a 2,即y 2-y 1x 2-x 1∙y 0x 0=b 2a 2所以k PQ ∙k OM =c 2-a 2a2=e 2-1=5+12,故C 正确;设直线OP :y =kx ,则直线OQ :y =-1kx ,将y =kx 代入双曲线方程b 2x 2-a 2y 2=a 2b 2,可得x 2=a 2b 2b 2-a 2k 2,则y 2=a 2b 2k 2b 2-a 2k 2,∴|OP |2=x 2+y 2=a 2b 2(k 2+1)b 2-a 2k 2,将k 换成-1k 即得|OQ |2=a 2b 2(k 2+1)b 2k 2-a 2,则1|OP |2+1|OQ |2=(b 2-a 2)(k 2+1)a 2b 2(k 2+1)=b 2-a 2a 2b 2=1a 2-1b 2与a ,b 的值有关,故D 错误,故选:ABC .32.(2022·福建省福州教育学院附属中学高三开学考试)知函数f (x )=sin 2x -π3,则下列说法正确的是( )A.函数f x 的最小正周期是π2B.函数f x 增区间是k π2+π6,k π2+5π12(k ∈Z )C.函数f x 是奇函数 D.函数图象关于直线x =2π3对称【答案】ABD【解析】函数y =sin x 的图象如下图:由图可知,函数y =sin x 的最小正周期为π,单调递增区间是k π,k π+π2k ∈Z ,对称轴是x =k π2k ∈Z .f x =sin 2x -π3 ,f (x )的最小正周期是π2,故A 正确;令k π≤2x -π3≤k π+π2得k π2+π6≤x ≤k π2+5π12,所以f (x )的增区间是k π2+π6,k π2+5π12(k ∈Z ),故B 正确;因为f (0)≠0,所以f (x )不是奇函数,故C 错误;令2x -π3=k π2得x =k π4+π6(k ∈Z ),取k =2得对称轴方程为x =2π3,故D 正确.故选:ABD .33.(2022·江苏·沭阳如东中学高三阶段练习)在正方体ABCD -A 1B 1C 1D 1中,点M 、N 分别是棱A 1D 1、AB 的中点,则下列选项中正确的是( ).A.MC ⊥DNB.A 1C 1⎳平面MNCC.异面直线MD 与NC 所成的角的余弦值为15D.平面MNC 截正方体所得的截面是五边形【答案】AD 【解析】以点D 为原点如图建立空间直角坐标系,设正方体的边长为2,则M 1,0,2 ,C 0,2,0 ,N 2,1,0 ,D 0,0,0 ,A 2,0,0因为MC =-1,2,-2 ,DN =2,1,0 ,MC ⋅DN =-2+2=0,所以MC ⊥DN ,故A 正确;因为MC =-1,2,-2 ,MN =1,1,-2 ,设平面MNC 的法向量为n =x ,y ,z所以由MC ⋅n =0,MN ⋅n =0可得-x +2y -2z =0x +y -2z =0,所以可取n=2,4,3 ,因为AC =-2,2,0 ,AC ⋅n =-4+8=8≠0,所以A 1C 1不与平面MNC 平行,故B 错误;因为DM=1,0,2 ,NC =-2,1,0试卷第2页,共42页所以cos DM ,NC=-25⋅5=-25所以异面直线MD 与NC 所成的角的余弦值为25,故C 错误;连接CN ,在D 1C 1上取靠近D 1的四等分点为Q ,则MQ ⎳CN 连接CQ ,在AA 1上取靠近A 1的三等分点为P ,则NP ⎳CQ 所以平面MNC 截正方体所得的截面是五边形CQMPN ,故D 正确故选:AD34.(2022·江苏·沭阳如东中学高三阶段练习)已知函数f x =3x -2x ,x ∈R ,则( )A.f x 在0,+∞ 上单调递增B.存在a ∈R ,使得函数y =f xa x为奇函数C.函数g x =f x +x 有且仅有2个零点 D.任意x ∈R ,f x >-1【答案】ABD【解析】A :f x =3x ln3-2x ln2=2x 32xln3-ln2 因为x ∈0,+∞ ,所以2x >1,32 x >1,因此32 xln3>ln3>ln2,故f x >0,所以f x 在0,+∞ 上单调递增,故A 正确;B :令a =6,则y =62 x -26 x ,令g x =62 x -26x,定义域为R ,关于原点对称,且g -x=62-x -26 -x =26 x -62 x=-g x ,故g x 为奇函数,B 正确C : x =0时,g x =0,x >0时,g x =2x 32 x -1 >0,x <0时,g x =2x 32 x -1<0,所以g x 只有1个零点,C 错误;D :x >0时,f x >0;x =0时,f x =0;x <0时,f x >-2x >-1;D 正确;故选:ABD35.(2022·江苏·常州市第一中学高三开学考试)已知数列{a n }满足a 1=1,a n +1a n =a n +1a n,则( )A.a n +1≥2a nB.a n +1a n是递增数列C.{a n +1-4a n }是递增数列 D.a n ≥n 2-2n +2【答案】ABD【解析】对于A ,因为a n +1=a 2n +1≥1,故a n +1a n =a n +1a n≥2a n ⋅1a n =2,所以a n +1≥2a n ,当且仅当a n =1时取等号,故A 正确;对于B ,由A 可得{a n }为正数数列,且a n +1≥2a n ,则a n +1>a n ,故a n 为递增数列,且a 1=1,根据对勾函数的单调性,a n +1a n =a n +1a n为递增数列,故B 正确;对于C ,由a n +1-4a n =a n -2 2-3,由题意a 1=1,a 2a 1=a 1+1a 1,即a 2=2可知a n +1-4a n 不是递增数列;对于D ,因为a n >1,所以a n +1-a 2n =1<a n +1-a n ,所以a n +1≥n +1,a n ≥n ,所以a n +1=a 2n +1≥n 2+1,即a n ≥(n -1)2+1=n 2-2n +2.故选:ABD36.(2022·江苏·泗洪县洪翔中学高三阶段练习)设正实数a ,b 满足a +b =1,则下列结论正确的是( )A.1a +1b 有最小值4 B.ab 有最小值12C.a +b 有最大值2D.a 2+b 2有最小值12【答案】ACD【解析】A :由题设,1a +1b =1a +1b (a +b )=2+b a +a b≥2+2b a ⋅a b =4,当且仅当a =b =12时等号成立,正确;B :由a ,b >0,则a +b =1≥2ab ,即ab ≤12,当且仅当a =b =12时等号成立,故ab 的最大值为12,错误;C :由a ,b >0,则a +b =1≥(a +b )22,即a +b ≤2,当且仅当a =b =12时等号成立,正确;D :a 2+b 2≥(a +b )22=12,当且仅当a =b =12时等号成立,正确;故选:ACD .37.(2022·江苏·泗洪县洪翔中学高三阶段练习)已知数列a n 满足a 1=1,a n +1=a n2+3a n n ∈N + ,则( )A.1a n +3 为等比数列 B.a n 的通项公式为a n =12n -1-3C.a n 为递增数列D.1a n的前n 项和T n =2n +2-3n -4【答案】AD 【解析】因为1a n +1=2+3a n a n =2a n +3,所以1a n +1+3=21a n+3 ,又1a 1+3=4≠0,所以1a n +3 是以4为首项,2为公比的等比数列,即1a n +3=4×2n -1,所以1a n =2n +1-3,所以a n =12n +1-3,所以a n 为递减数列,1a n 的前n 项和T n =22-3 +23-3 +⋅⋅⋅+2n +1-3 =221+22+⋅⋅⋅+2n -3n =2×2×1-2n 1-2-3n =2n +2-3n -4.故选:AD .38.(2022·江苏·淮安市钦工中学高三阶段练习)已知函数f (x )=xe x ,x <1e x x 3,x ≥1,函数g (x )=xf (x ),下列选项正确的是( )A.点(0,0)是函数f (x )的零点B.∃x 1∈0,1 ,x 2∈(1,3),使f (x 1)>f (x 2)C.函数f (x )的值域为[-e -1,+∞)D.若关于x 的方程[g (x )]2-2ag (x )=0有两个不相等的实数根,则实数a 的取值范围是2e 2,e 28∪e2,+∞【答案】BC【解析】对于选项A ,0是函数f x 的零点,零点不是一个点,所以A 错误;试卷第2页,共42页对于选项B ,当x <1时,f x =x +1 e x ,则当x <-1时,f x <0,f x 单调递减,当-1<x <1时,f x >0,f x 单调递增,所以,当0<x <1时,0<f x <e ;当x >1时,fx =e x x -3 x 4,则当1<x <3时,f x <0,f x 单调递减,当x >3时,f x >0,f x 单调递增,所以,当1<x <3时,e 327<f x <e .综上可得,选项B 正确.对于选项C ,f x min =f -1 =-1e,选项C 正确.结合函数f x 的单调性及图像可得:函数f x 有且只有一个零点0,则g x =xf x 也有且只有一个零点0;所以对于选项D ,关于x 的方程g x 2-2ag x =0有两个不相等的实数根⇔关于x 的方程g x g x -2a =0有两个不相等的实数根⇔关于x 的方程g x -2a =0有一个非零的实数根⇔函数y =g x 的图象与直线y =2a 有一个交点,且x ≠0,则g x =x 2e x ,x <1,e xx 2,x ≥1.当x <1时,g x =e x x x +2 ,当x 变化时,g x ,g x 的变化情况如下:x x <-2-2-2<x <000<x <1g x +0-0+g x增极大值减极小值增极大值g -2 =4e 2,极小值g 0 =0;当x ≥1时,gx =e x x -2 x 3,当x 变化时,g x ,g x 的变化情况如下:x 11<x <22x >2g x -e -0+g xe减极小值增。
2023年新高考数学选填压轴题汇编(二十四)一、单选题1.(2023·广东佛山·统考一模)已知函数f x =log a x ,0<x <12a -x ,x ≥12(a >0且a ≠1),若对任意x >0,f x ≥x 2,则实数a 的取值范围为( )A.0,e -1eB.116,e -1eC.0,e -2eD.116,e -2e2.(2023·广东佛山·统考一模)已知球O 的直径SC =2,A ,B 是球O 的球面上两点,∠ASC =∠BSC =∠ASB =π3,则三棱锥S -ABC 的体积为( )A.26 B.23C.22 D.23.(2023·广东茂名·统考一模)设a =2ln2-35 ,b =ln 3e 2+1,c =ln 5e 2+23则( )A.a <b <c B.b <a <cC.c <a <bD.b <c <a 4.(2023·广东茂名·统考一模)已知菱形ABCD 的各边长为2,∠B =60°.将△ABC 沿AC 折起,折起后记点B 为P ,连接PD ,得到三棱锥P -ACD ,如图所示,当三棱锥P -ACD 的表面积最大时,三棱锥P -ACD 的外接球体积为( )A.523πB.433πC.23πD.823π5.(2023·湖北·宜昌市一中校联考模拟预测)设集合A ={1,2,⋯,2023},S =A 1,A 2,⋯,A 100 ∣A 1⊆A 2⊆⋯⊆A 100⊆A ,则集合S 的元素个数为( )A.C 1002023 B.C 1012023 C.1002023 D.10120236.(2023·湖北·宜昌市一中校联考模拟预测)已知平面非零向量a ,b 满足a ⋅b =|2a +b |,则|a |⋅|b |的最小值为( )A.2B.4C.8D.167.(2023·湖北·宜昌市一中校联考模拟预测)设随机变量X ∼B (n ,p ),当正整数n 很大,p 很小,np 不大时,X 的分布接近泊松分布,即P (X =i )≈e -np (np )ii !(n ∈N ).现需100个正品元件,该元件的次品率为0.01,若要有95%以上的概率购得100个正品,则至少需购买的元件个数为(已知1e=0.367879⋯)( )A.100B.101C.102D.1038.(2023·山东·潍坊一中校联考模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为3,点M 满足CC 1 =3CM .若在正方形A 1B 1C 1D 1内有一动点P 满足BP ⎳平面AMD 1,则动点P 的轨迹长为( )A.3B.10C.13D.329.(2023·山东·潍坊一中校联考模拟预测)设a =sin0.2,b =0.2cos0.1,c =2sin0.1,则( )A.a <b <cB.a <c <bC.b <a <cD.c <b <a10.(2023·山东·潍坊一中校联考模拟预测)克罗狄斯·托勒密是希腊数学家,他博学多才,既是天文学权威,也是地理学大师.托勒密定理是平面几何中非常著名的定理,它揭示了圆内接四边形的对角线与边长的内在联系,该定理的内容为圆的内接四边形中,两对角线长的乘积等于两组对边长乘积之和.已知四边形ABCD 是圆O 的内接四边形,且AC =3BD ,∠ADC =2∠BAD .若AB ⋅CD +BC ⋅AD =43,则圆O 的半径为( )A.4B.2C.3D.2311.(2023·江苏南通·统考一模)已知函数f x 的定义域为R ,且f 2x +1 为偶函数,f x =f x +1 -f x +2 ,若f 1 =2,则f 18 =( )A.1B.2C.-1D.-212.(2023·江苏南通·统考一模)若过点P t ,0 可以作曲线y =1-x e x 的两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 ,则y 1y 2的取值范围是( )A.0,4e -3B.-∞,0 ∪0,4e -3C.-∞,4e -2D.-∞,0 ∪0,4e -213.(2023·河北石家庄·统考模拟预测)甲口袋中有3个红球,2个白球和5个黑球,乙口袋中有3个红球,3个白球和4个黑球,先从甲口袋中随机取出一球放入乙口袋,分别以A 1,A 2和A 3表示由甲口袋取出的球是红球,白球和黑球的事件;再从乙口袋中随机取出一球,以B 表示由乙口袋取出的球是红球的事件,则下列结论中正确的是( )A.P B A 2 =411B.事件A 1与事件B 相互独立C.P A 3 B =12D.P (B )=31014.(2023·河北石家庄·统考模拟预测)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论错误的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上是减函数D.方程f (x )+lg x =0仅有6个实数解15.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知点A 1,A 2,A 3,⋯,A n ,⋯和数列a n ,b n 满足A n A n +1 =cos 2n π3,sin 2n π3n ∈N * ,a n A n A n +1 +a n +1A n +1A n +2 =0,b n ,若a 1=1,S n ,T n 分别为数列a n ,b n 的前n 项和,则S 60+2T 60=( )A.-20B.243C.483-20D.0二、多选题16.(2023·广东佛山·统考一模)若正实数x ,y 满足xe x -1=y 1+ln y ,则下列不等式中可能成立的是( )A.1<x <yB.1<y <xC.x <y <1D.y <x <117.(2023·广东佛山·统考一模)如图,在正方体ABCD -A 1B 1C 1D 1中,点M 是棱DD 1上的动点(不含端点),则( )A.过点M 有且仅有一条直线与AB ,B 1C 1都垂直B.有且仅有一个点M 到AB ,B 1C 1的距离相等C.过点M 有且仅有一条直线与AC 1,BB 1都相交D.有且仅有一个点M 满足平面MAC 1⊥平面MB B 118.(2023·广东茂名·统考一模)e 是自然对数的底数,m ,n ∈R ,已知me m +ln n >n ln n +m ,则下列结论一定正确的是( )A.若m >0,则m -n >0B.若m >0,则e m -n >0C.若m <0,则m +ln n <0D.若m <0,则e m +n >2【答案】BC19.(2023·广东茂名·统考一模)已知抛物线C :x 2=4y ,F 为抛物线C 的焦点,下列说法正确的是( )A.若抛物线C 上一点P 到焦点F 的距离是4,则P 的坐标为-23,3 、23,3B.抛物线C 在点-2,1 处的切线方程为x +y +1=0C.一个顶点在原点O 的正三角形与抛物线相交于A 、B 两点,△OAB 的周长为83D.点H 为抛物线C 的上任意一点,点G 0,-1 ,HG =t HF ,当t 取最大值时,△GFH 的面积为220.(2023·湖北·宜昌市一中校联考模拟预测)已知1+ln a a =e 1-b b=ec -1c >0,则( )A.a ≥b B.b ≥c C.a ≥c D.2b ≥a +c21.(2023·湖北·宜昌市一中校联考模拟预测)已知⊙P :x 2+(y -3)2=9,⊙Q :(x -4)2+y 2=1,⊙R :(x +1)2+(y -4)2=1.点A ,B ,C 分别在⊙P ,⊙Q ,⊙R 上.则( )A.AB 的最大值为9B.AC 的最小值为2-2C.若AB 平行于x 轴,则AB 的最小值为4-5D.若AC 平行于y 轴,则AC 的最大值为1+1722.(2023·湖北·宜昌市一中校联考模拟预测)已知正方体ABCD -A 1B 1C 1D 1的边长为2,点P ,Q 分别在正方形A 1B 1C 1D 1的内切圆,正方形C 1D 1DC 的外接圆上运动,则( )A.PQ ⋅CD ≤2+22B.|PQ |≥3-2C.∠PAQ >π8D.∠PAQ <π223.(2023·山东·潍坊一中校联考模拟预测)在数列a n 中,若对于任意n ∈N *,都有a n +1+6a n +1=4,则( )A.当a 1=1或a 1=2时,数列a n 为常数列B.当a 1>2时,数列a n 为递减数列,且2<a n ≤a 1C.当1<a 1<2时,数列a n 为递增数列D.当0<a 1<1时,数列a n 为单调数列24.(2023·山东·潍坊一中校联考模拟预测)已知函数f x 的定义域为R ,f x +12为奇函数,且对于任意x ∈R ,都有f 2-3x =f 3x ,则( )A.f x +1 =f xB.f -12 =0C.f x +2 为偶函数D.f x -12 为奇函数25.(2023·江苏南通·统考一模)已知抛物线x 2=4y 的焦点为F ,以该抛物线上三点A ,B ,C 为切点的切线分别是l 1,l 2,l 3,直线l 1,l 2相交于点D ,l 3与l 1,l 2分别相交于点P ,Q .记A ,B ,D 的横坐标分别为x 1,x 2,x 3,则( )A.DA ⋅DB =0B.x 1+x 2=2x 3C.AF ⋅BF =|DF |2D.AP ⋅CQ =PC ⋅PD26.(2023·河北石家庄·统考模拟预测)如图所示,设单位圆与x 轴的正半轴相交于点A (1,0),以x 轴非负半轴为始边作锐角α,β,α-β,它们的终边分别与单位圆相交于点P 1,A 1,P ,则下列说法正确的是( )A.AP的长度为α-βB.扇形OA 1P 1的面积为α-βC.当A 1与P 重合时,AP 1 =2sin βD.当α=π3时,四边形OAA 1P 1面积的最大值为1227.(2023·河北石家庄·统考模拟预测)已知正方体ABCD -A 1B 1C 1D 1,棱长为2,R ,E ,F 分别是AB,A 1D 1,CC 1的中点,连接RE ,EF ,RF ,记R ,E ,F 所在的平面为α,则( )A.α与正方体的棱有6个交点B.B 1D ⊥αC.α截正方体所得的截面面积为33D.DD 1与α所成角的正弦值为6328.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)正四棱台ABCD -A 1B 1C 1D 1中,AB =2,A 1B 1=1,侧棱AA 1与底面所成角为π3.E ,F ,G 分别为AD ,AB ,BB 1的中点,M 为线段B 1D 1上一动点(包括端点),则下列说法正确的是( )A.该四棱台的体积为766B.三棱锥E -FGM 的体积为定值C.平面EFG 截该棱台所得截面为六边形D.异面直线AB 1与ED 1所成角的余弦值为52829.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知函数f x =ln sin x ⋅ln cos x ,下列说法正确的是( )A.f x 定义域为2k π,2k π+π2 ,k ∈ZB.f -x =f xC.f x +π4 是偶函数 D.f x 在区间0,π2上有唯一极大值点三、填空题30.(2023·广东佛山·统考一模)已知函数f x =sin ωx +φ (其中ω>0,ϕ <π2).T 为f x 的最小正周期,且满足f 13T=f 12T .若函数f x 在区间0,π 上恰有2个极值点,则ω的取值范围是______.31.(2023·广东茂名·统考一模)e 是自然对数的底数,f x =e cos 2πx +e 2x -2ex -1e的零点为______.32.(2023·广东茂名·统考一模)已知直线x =2m 与双曲线C :x 2m 2-y 2n2=1m >0,n >0 交于A ,B 两点(A 在B 的上方),A 为BD 的中点,过点A 作直线与y 轴垂直且交于点E ,若△BDE 的内心到y 轴的距离不小于32m ,则双曲线C 的离心率取值范围是______.33.(2023·湖北·宜昌市一中校联考模拟预测)冰雹猜想是指:一个正整数x ,如果是奇数就乘以3再加1,如果是偶数就析出偶数因数2n ,这样经过若干次,最终回到1.问题提出八十多年来,许多专业数学家前仆后继,依然无法解决这个问题.已知正整数列a n 满足递推式a n +1=3a n +1,a n 2∉N *,a n 2,a n 2∈N *,请写出一个满足条件的首项a 1<50,使得a 10=1,而a i ≠1(i =1,2,⋯,9)_____________.34.(2023·湖北·宜昌市一中校联考模拟预测)设实数a ≠0,不等式e x a-2ax ≥2e x +1对任意实数x ≥-12恒成立,则a 的取值范围为__________.35.(2023·湖北·宜昌市一中校联考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =_______.36.(2023·山东·潍坊一中校联考模拟预测)设奇函数f x 的定义域为R ,且对任意x 1,x 2∈0,+∞ ,都有f x 1x 2 =f x 1 +f x 2 .若当x >1时,f x <0,且f 14=2,则不等式lg f x +2 <0的解集为__________.37.(2023·山东·潍坊一中校联考模拟预测)已知三棱锥P -ABC 的体积为6,且PA =2PB =3PC =6.若该三棱锥的四个顶点都在球O 的球面上,则三棱锥O -ABC 的体积为__________.38.(2023·江苏南通·统考一模)已知圆O :x 2+y 2=r 2(r >0),设直线x +3y -3=0与两坐标轴的交点分别为A ,B ,若圆O 上有且只有一个点P 满足AP =BP ,则r 的值为__________.39.(2023·河北石家庄·统考模拟预测)定义在R 上的可导函数f (x )满足f (x )-f (-x )+x 1e x +e x=0,且在(0,+∞)上有f (x )>1e2成立.若实数a 满足f (1-a )-f (a )+e a -1-ae a -1-ae -a ≥0,则a 的取值范围是__________.40.(2023·河北石家庄·统考模拟预测)过圆O :x 2+y 2=2上一点P 作圆C :x -4 2+y -4 2=2的切线,切点为Q ,则PQ 的最小值为___________.41.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知抛物线y 2=2px (x >0),P 2,1 为抛物线内一点,不经过P 点的直线l :y =2x +m 与抛物线相交于A ,B 两点,连接AP ,BP 分别交抛物线于C ,D两点,若对任意直线l ,总存在λ,使得AP =λPC ,BP =λPD (λ>0,λ≠1)成立,则该抛物线线方程为______.42.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)已知三棱锥P -ABC 的体积为233,各顶点均在以PC 为直径的球面上,AC =23,AB =2,BC =2,则该球的体积为______.四、双空题43.(2023·江苏南通·统考一模)已知正四棱锥S -ABCD 的所有棱长都为1,点E 在侧棱SC 上,过点E且垂直于SC 的平面截该棱锥,得到截面多边形Γ,则Γ的边数至多为__________,Γ的面积的最大值为__________.。
江苏高考压轴题精选1.如图为函数()1)f x x =<<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q ,点N (0,1),若△PQN 的面积为b 时的点M 恰好有两个,则b 的取值范围为 ▲ . 解:2. 已知⊙A :221x y +=,⊙B : 22(3)(4)4x y -+-=,P 是平面内一动点,过P 作⊙A 、⊙B 的切线,切点分别为D 、E ,若PE PD =,则P 到坐标原点距离的最小值为 ▲ .解:设)(y x P ,,因为PE PD =,所以22PD PE =,即14)4()3(2222-+=--+-y x y x ,整理得:01143=-+y x ,这说明符合题意的点P 在直线01143=-+y x 上,所以点)(y x P ,到坐标原点距离的最小值即为坐标原点到直线01143=-+y x 的距离,为5113. 等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.求n a 与n b ;解:设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一,解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=4. 在ABC ∆中,2==⋅AC AB (1)求22AC AB +(2)求ABC ∆面积的最大值.解:(1)因为||||2BC AC AB =-=,所以4222=+⋅-AB AB AC AC ,(2)设||||||AB c AC b BC a ===,,,由(1)知822=+c b ,2=a , 又因为bcbc bc a c b A 22282cos 222=-=-+=,所以A bc A bc S ABC2cos 121sin 21-==∆=222222421cb c b c b ⋅-≤34)2(21222=-+c b , 当且仅当c b a ==时取“=”,所以ABC ∆的面积最大值为3.5. 设等差数列{}n a 的公差为d ,0d >,数列{}n b 是公比为q 等比数列,且110b a =>. (1)若33a b =,75a b =,探究使得n m a b =成立时n m 与的关系; (2)若22a b =,求证:当2>n 时,n n b a <.解:记a b a ==11,则1,)1(-=-+=m m n aq b d n a a ,……………1分(1)由已知得2426a d aq a d aq ⎧+=⎨+=⎩,,消去d 得4232aq aq a -=, 又因为0≠a ,所以02324=+-q q ,所以2122==q q 或,……………5分若12=q ,则0=d ,舍去;……………6分 若22=q ,则2a d =,因此12)1(-=-+⇔=m m n aq a n a b a 1211-=-+⇔m q n , 所以1221-=+m n (m 是正奇数)时,m n b a =;……………8分(2)证明:因为0,0>>a d ,所以111212>+=+===ada d a a ab b q , …………11分2>n 时,1)1(---+=-n n n aq d n a b a =d n q a n )1()1(1-+--=d n q q q q a n )1()1)(1(22-+++++--d n n q a )1()1)(1(-+--<=[]0))(1()1()1(22=--=+--b a n d q a n所以,当n n b a n <>时,2. …………………………16分6. 已知圆O :221x y +=,O 为坐标原点.(1的正方形ABCD 的顶点A 、B 均在圆O 上,C 、D 在圆O 外,当点A 在圆O 上运动时,C 点的轨迹为E . (ⅰ)求轨迹E 的方程;(ⅱ)过轨迹E 上一定点00(,)P x y 作相互垂直的两条直线12,l l ,并且使它们分别与圆O 、轨迹E 相交,设1l 被圆O 截得的弦长为a ,设2l 被轨迹E 截得的弦长为b ,求a b +的最大值.(2)正方形ABCD 的一边AB 为圆O 的一条弦,求线段OC 长度的最值.解:(1)(ⅰ)连结OB ,OA ,因为OA =OB =1,AB =2,所以222AB OB OA =+,所以4OBA π∠=,所以34OBC π∠=,在OBC ∆中,52222=⋅-+=BC OB BC OB OC ,所以轨迹E 是以O 为圆心,5为半径的圆,所以轨迹E 的方程为522=+y x ; (ⅱ)设点O 到直线12l l ,的距离分别为12d d ,,因为21l l ⊥,所以2222212005d d OP x y +==+=, 则22215212d d b a -+-=+,则[])5)(1(2)(64)(222122212d d d d b a --++-=+≤4⎥⎥⎦⎤⎢⎢⎣⎡--⋅++-262)(622212221d d d d =22124[122()]d d -+=4(1210)8-=,当且仅当221222125,15,d d d d ⎧+=⎨-=-⎩,即22219,21,2d d ⎧=⎪⎪⎨⎪=⎪⎩时取“=”,所以b a +的最大值为 (2)设正方形边长为a ,OBA θ∠=,则cos 2a θ=,0,2θπ⎡⎫∈⎪⎢⎣⎭.当A 、B 、C 、D 按顺时针方向时,如图所示,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+-+= ⎪⎝⎭,即OC == ==由2,444θππ5π⎡⎫+∈⎪⎢⎣⎭,此时(1,1]OC ∈; 当A 、B 、C 、D 按逆时针方向时,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+--= ⎪⎝⎭,即OC ====,由2,444θππ3π⎡⎫-∈-⎪⎢⎣⎭,此时1,OC ∈, 综上所述,线段OC 1-1.7. 已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=,求实数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <,且对任意(]1,0,21∈x x ,都有121211|()()|4||f x f x x x -≤-,求实数a 的取值范围.另解:042≤--ax x 在(]1,0∈x 上恒成立,设4)(2--=ax x x g ,只需[)0,30041)1(04)0(-∈⇒⎪⎩⎪⎨⎧<≤--=<-=a a a g g .8. 已知函数2()3,()2f x mx g x x x m =+=++. (1)求证:函数()()f x g x -必有零点; (2)设函数()G x =()()1f x g x --(ⅰ)若|()|G x 在[]1,0-上是减函数,求实数m 的取值范围;(ⅱ)是否存在整数,a b ,使得()a G x b ≤≤的解集恰好是[],a b ,若存在,求出,a b 的值;若不存在,说明理由.9. 已知函数()1ax x ϕ=+,a 为正常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+,且对任意12,(0,2]x x ∈,12x x ≠,都有2121()()1g x g x x x -<--,求a 的的取值范围.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,∵92a =,令'()0f x >,得2x >,或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞.(2)∵2121()()1g x g x x x -<--,∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-,设()()h x g x x =+,依题意,()h x 在(]0,2上是减函数.当12x ≤≤时, ()ln 1ah x x x x =+++,21'()1(1)a h x x x =-++, 令'()0h x ≤,得:222(1)1(1)33x a x x x x x+≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x =+-,∵12x ≤≤,∴21'()230m x x x=+->, ∴()m x 在[1,2]上是增函数,则当2x =时,()m x 有最大值为272,∴272a ≥.当01x <<时, ()ln 1ah x x x x =-+++,21'()1(1)a h x x x =--++, 令'()0h x ≤,得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--,则21'()210t x x x=++>, ∴()t x 在(0,1)上是增函数,∴()(1)0t x t <=, ∴0a ≥,综上所述,272a ≥10. (1)设10+<<a b ,若对于x 的不等式()()22ax b x >-的解集中的整数恰有3个,则实数a 的取值范围是 ▲ .(2)若关于x 的不等式()2221x ax -<的解集中的整数恰有3个,则实数a 的取值范围是▲ .解:(1)()3,1(2)⎪⎭⎫ ⎝⎛1649,92511. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β,使得n a =log n b αβ+对每一个正整数n 都成立,则βα= ▲ .12. 在直角坐标系平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 的图象上;②Q P ,关于原点对称,则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“有好点对”).已知函数⎪⎩⎪⎨⎧≥<++=,0,2,0,142)(2x ex x x x f x 则函数)(x f 的“友好点对”有 ▲ 个.13. 已知ABC ∆的三边长c b a ,,满足b a c a c b 22≤+≤+,,则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛23,32xyO已知ABC ∆的三边长c b a ,,满足b a c a c b 3232≤+≤+,,则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛35,4314. 已知分别以21,d d 为公差的等差数列{}n a ,{}n b ,满足120091,409a b ==. (1)若11=d ,且存在正整数m ,使得200920092-=+m m b a ,求2d 的最小值;(2)若0k a =,1600k b =且数列200921121,,,,,,b b b b a a a k k k k ++-,的前项n 和n S 满足200920129045k S S =+,求 {}n a 的通项公式.解:(1)证明:220092009m m a b +=-,21120092[(1)]2009a m d b md ∴+-=+-,即200940922-+=md m , ……4分2160080d m m ∴=+≥=. 等号当且仅当"1600"mm =即"40"=m 时成立,故40m =时,2min []80d = . ……7分(2)0k a =,1600k b =,120091,409a b ==200912112009()()k k k k S a a a a b b b -+∴=++++++++=++2)(1k a a k 2)12009)((2009+-+k b b k 2009(2010)22k k -=+,…10分 200920129045k S S =+1()201290452k a a k +=+=904522012+k201290452k ∴⋅+2009(2010)22k k -=+40202009201018090k ∴=⨯-,220099k ∴=-,1000k ∴= ……13分故得1,011000==a a 又,11999d ∴=-,1210001(1)999999n a a n d n ∴=+-=-,因此{}n a 的通项公式为n a n 99919991000-=. ……15分15. 已知函数)(3ln )(R a ax x a x f ∈--=. (1)当1a =时,求函数)(x f 的单调区间;(2)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45,问:m 在什么范围取值时,对于任意的[]2,1∈t ,函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值?(3)当2=a 时,设函数32)2()(-+--=xep x p x h ,若在区间[]e ,1上至少存在一个0x ,使得)()(00x f x h >成立,试求实数p 的取值范围. 24,1e e ⎛⎫+∞ ⎪-⎝⎭16. 如图,在△ABC 中,已知3=AB ,6=AC ,7BC =,AD 是BAC ∠平分线. (1)求证:2DC BD =; (2)求AB DC ⋅的值.(1)在ABD ∆中,由正弦定理得sin sin AB BDADB BAD=∠∠①, 在ACD ∆中,由正弦定理得sin sin AC DCADC CAD=∠∠②, 所以BAD CAD ∠=∠,sin sin BAD CAD ∠=∠, sin sin()sin ADB ADC ADC π∠=-∠=∠, 由①②得36BD AB DC AC ==,所以2DC BD =(2)因为2DC BD =,所以32=. 在△ABC 中,因为22222237611cos 223721AB BC AC B AB BC +-+-===⋅⨯⨯, 所以22()||||cos()33AB DC AB BC AB BC B π⋅=⋅=⋅- 2112237()3213=⨯⨯⨯-=- AB D17. 已知数列{}n a 的前n 项和为n S ,数列{}1n S +是公比为2的等比数列.(1)证明:数列{}n a 成等比数列的充要条件是13a =;(2)设n n n n a b )1(5--=(*∈N n ),若1+<n n b b 对任意*∈N n 成立,求1a 的取值范围.18. 已知分别以1d 和2d 为公差的等差数列{}n a 和{}n b 满足181=a ,3614=b .(1)若181=d ,且存在正整数m ,使得45142-=+m mb a ,求证:1082>d ; (2)若0==k k b a ,且数列142121b b b a a a k k k ,,,,,,, ++的前n 项和n S 满足k S S 214=,求数列{}n a 和{}n b 的通项公式;(3)在(2)的条件下,令0>==a a d a c n n b n a n ,,,且1≠a ,问不等式n n n n d c d c +≤+1是否对一切正整数n 都成立?请说明理由.19. 若椭圆)0(12222>>=+b a by a x 过点(-3,2),离心率为33,⊙O 的圆心为原点,直径为椭圆的短轴,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线P A 、PB ,切点为A 、B .(1)求椭圆的方程;(2)若直线P A 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线P A 的直线方程; (3)求OB OA ⋅的最大值与最小值.(1)1101522=+y x ;(2)直线PA 的方程为:0509130103=--=+-y x y x 或 (3)20. 已知集合{}k x x x x x x D =+>>=212121,0,0),(,其中k 为正常数. (1)设21x x u =,求u 的取值范围;(2)求证:当1≥k 时,不等式⎪⎭⎫⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立; (3)求使不等式⎪⎭⎫⎝⎛-≥⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立的k 取值范围.21. 设函数x m mx x x f )4(31)(223-+-=,R x ∈,且函数)(x f 有三个互不相同的零点βα,,0,且βα<,若对任意的[]βα,∈x ,都有)1()(f x f ≥成立,求实数m 的取值范围. 解:传染病应急预案为了及时处理或预防传染病,为适应疾病预防控制形式发展的需要,提高预防控制突发事件的应急应变能力,有效预防、及时控制和消除我市区域内发生的重大传染病的危害,规范和指导传染病应急处理工作,最大限度地减少传染病造成的危害,保障全市人民身体健康与生命安全,维护正常的社会秩序,依据《突发公共卫生事件应急条例》、《中华人民共和国传染病防治法》及其实施办法,《国家突发公共卫生事件应急预案》、《突发公共卫生事件与传染病疫情监测信息报告管理办法》、《中华人民共和国食品卫生法》及《中华人民共和国职业病防治法》等有关法律法规,结合我院实际,制定本预案:一、有下列情形之一的,应及时报告:1、发生或者可能发生严重传染病的:2、发生或发现不明原因的群体性疾病的:3、发生或者可能发生重大食物重度事件的。
数列高考选择填空压轴题专题练A 组一、选择题1.若数列{}{},n n a b 的通项公式分别为()20161?n n a a +=-, ()201712n nb n+-=+,且n n a b <,对任意*n N ∈恒成立,则实数a 的取值范围是( )A. 11,2⎡⎫-⎪⎢⎣⎭ B. [)1,1- C. [)2,1- D. 32,2⎡⎫-⎪⎢⎣⎭【答案】D【解析】,n n a b < 可得()()2017201611?2n n a n++--<+,若n 是偶数,不等式等价于12a n <-恒成立,可得13222a <-= ,若n 是奇数,不等式等价于12a n-<+ ,即2,2a a -≤≥- ,所以3-22a ≤< ,综上可得实数a 的取值范围是32,2⎡⎫-⎪⎢⎣⎭ ,故选D . 2.已知数列{}n a 满足11a =,213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A.112n - B. 121n - C. 113n - D. 1121n -+ 【答案】B【解析】111123n n n n n n a a a a a a -+-++= , 11123n n n a a a +-+= , 1111112n n nn a a a a +-⎛⎫-=- ⎪⎝⎭,则1111211n n n n a a a a +--=- ,数列111n n a a +⎧⎫-⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1111222n nn na a -+-=⨯=,利用叠加法,211213211111111......122.......2n n n a a a a a a a --⎛⎫⎛⎫⎛⎫+-+-++-=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 1212121n n n a -==-- ,则121n na =-.选B.3.等比数列{}n a 的前n 项和11·32n n S c +=+(c 为常数),若23n n a S λ≤+恒成立,则实数λ的最大值是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】由题意可知32c =-且3n n a =,可得211333223n n λ++⋅-≤,化简为31323n n λ⎛⎫≤+ ⎪⎝⎭,由于均值不等式等号不成立,所以由钩型函数可知,当n=1时,max 5λ=.选C.4.已知数列{}n a 是各项均不为0的正项数列, n S 为前n项和,且满足+1n a =,*n N ∈,()1281nn a +≤+-对任意的*n N ∈恒成立,求实数λ的最大值为A. 21-B. 15-C. 9-D. 2-【答案】D【解析】由+1n a =得114({4(nn a n a n S S --==,()()221411n n n a a a -∴=+-+,整理得()()1120n n n n a a a a --+--=,数列{}n a 是各项均不为0的正项数列, 12n n a a -∴-=,由+1n a =,令1n =可得()1112121n a a n n =∴=+-=-, 2n S n ∴=,不等式()1281nn a +≤+-即()8124nn nλ-≤++,当n 为偶数时, 104n λ≤+,1044n +>, 4λ≤,当n 为奇数时, 64n λ≤-, 64n-单调递增, 1n =取最小2-, 2λ∴≤-,综上可得2λ≤-,所以实数λ的最大值为2-.5.各项均为正数的等差数列{}n a 中,前n 项和为n S ,当*,2n N n ∈≥时,有()2211n n nS a a n =--,则20102S S -= A. 50 B. 50- C. 100 D. 100- 【答案】A【解析】 设等差数列的公差为d ,则当2n =时, ()()22222211112222S a a a d a d a =-⇒+=+-,当3n =时, ()()222233111122233233S a a a d a d a =-⇒+=+-, 联立方程组得281030d d -+=,可得12d =, 所以2010112019112202010950222S S a a ⨯-=+⨯--⨯⨯=,故选A .6.已知函数()()936,10{,10x a x x f x a x ---≤=>,若数列{}n a 满足()()*n a f n n N =∈,且{}n a 是递增数列,则实数a 的取值范围是A. (1,3)B. (]1,2 C. (2,3) D. 24,311⎡⎫⎪⎢⎣⎭【答案】C【解析】因为{}n a 是递增数列,所以()11930{13106a a a a -->>-⨯-<,解得3{1212a a a a <>><-或,即23a <<,故选C.二、填空题7.已知数列{}n a 的首项为()0a a ≠,前n 项和为n S ,且1n n S tS a +=+(0t ≠且*1,t n N ≠∈),1n n b S =+.若122n n c b b b =++++,则使数列{}n c 为等比数列的所有数对(),a t 为__________.【答案】()1,2【解析】本题主要考査等比数列的应用. 当1n =时,由21S tS a =+,解得2a at =.当2n ≥时, 1n n S tS a -=+,∴()11n n n n S S t S S +--=-,即1n n a ta +=. 又10a a =≠,∴1n na t a +=,即{}n a 是首项为a ,公比为t 的等比数列,∴1n n a at -=, ∵1t ≠,∴11nn a at b t-=+-.∴()21222111n n n a a c b b b n t t t t t ⎛⎫=++++=++-+++ ⎪--⎝⎭()()()()12221212111111n n at t a at a at n n t t t t t +-⎛⎫⎛⎫=++-=-+++ ⎪ ⎪--⎝⎭⎝⎭---. 若{}n c 为等比数列,则有()22=01{10,1att at--+=-,解得1,{2,a t ==故满足条件的数对是()1,2.8.已知函数()12f x x =+,点O 为坐标原点,点()()()*,n A n f n n N ∈,向量()0,1i =,θn 是向量OAn 与i 的夹角,则使得1212cos cos cos sin sin sin nnt θθθθθθ++< 恒成立的实数t 的取值范围为 ___________. 【答案】3,4⎡⎫+∞⎪⎢⎣⎭【解析】根据题意得,2n πθ- 是直线OA n 的倾斜角,则:()()sin cos 11112tan sin 2222cos 2n n n n n f n n n n n n πθθπθπθθ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭==-===- ⎪ ⎪++⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,据此可得:结合恒成立的结论可得实数t 的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭. 9.若数列{}n a 满足111n nd a a +-=(*n N ∈, d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12990b b b +++=,则46b b 的最大值是__________. 【答案】100 【解析】因为数列1n b ⎧⎫⎨⎬⎩⎭是“调和数列”,所以1n n b b d +-=,即数列{}n b 是等差数列,所以()461299902b b b bb ++++==, 4620b b +=,所以4620b b +=≥,46100b b ≤,当且仅当46b b =时等号成立,因此46b b 的最大值为100.10.若,x y 满足约束条件50{210210x y x y x y +-≤--≥-+≤,等差数列{}n a 满足1a x =, 5a y =,其前n项为n S ,则52S S -的最大值为__________. 【答案】334【解析】由约束条件50{210210x y x y x y +-≤--≥-+≤作出可行域如图,联立210{50x y x y -+=+-= ,解得()3,2A ,15,a x a y ==,所以公差4y xd -=, ()()34552453333344y x y x a a a S S a a d y +-⎛⎫++=-==-=⨯-=⎪⎝⎭,设9344y z x =+ ,当直线过点()3,2 时,有最大值334 ,即52S S - 最大值为334,故答案为334.11.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”. 将数列1,2进行 “扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;…. 设第次“扩展”后所得数列为121,,,,,2m x x x ,并记()212log 12n m a x x x =⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为______.【答案】312n n a +=【解析】()()()()333321211122212log 1122log 1231n m m m n a x x x x x x x x x x a +⎡⎤=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=-⎣⎦. 则111322n n a a +⎛⎫-=- ⎪⎝⎭ 且()12113log 1222,22a a =⨯⨯=-= , 据此可得数列12n a ⎧⎫-⎨⎬⎩⎭是首项为32,公比为3的等比数列, 则312n n a += .12.已知数列{}n a 的首项为9,且()21122n n a a a n --=+≥,若1112n n n b a a +=++,则数列{}n b 的前n 项和n S =__________. 【答案】2119101n -- 【解析】因为()21122n n n a a a n --=+≥,故()2111n n a a -+=+,取对数可得()()1lg 12lg 1n n a a -+=+,故()()1lg 12lg 1n n a a -+=+,故(){}lg 1n a +是以1为首项,2为公比的等比数列,故()1lg 12n n a -+=,故12110n n a -+=,则12101n n a -=-,因为()21122n n n a a a n --=+≥,故212n n n a a a +=+两边取倒数可得1111112n n n n a a a a +++=-+,故数列{}n b 的前n 项和2122334111111*********n n n n S a a a a a a a a +=-+-+-+-=-- 13.把正整数按一定的规则排成了如下图所示的三角形数表.设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8.若a ij =2009,则i 与j 的和为_________.【答案】107【解析】 由三角形数表可以看出其奇数行为奇数数列,偶数行为偶数列,2009210051=⨯+,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以63i =,因为第63行的第一个数为()296211923,2009192321m ⨯-==+-, 解得44m =,即44j =,所以107i j +=. 14.已知数列{}n a 满足111,2256n n a a a +==2log 2n n b a =-,则12···n b b b 的最大值为__________. 【答案】6254【解析】由题意可得: 21log log n n a a +=, 即: 21211log log 12n n a a ++=+ ,整理可得: ()()2121log 2log 22n n a a +-=- ,又21log 210a -=- ,则数列{}n b 是首项为-10,公比为12的等比数列, 12110222n n n b --⎛⎫=-⨯=-⨯ ⎪⎝⎭,则: ()()3212 (52)n n nn n S b b b -==-⨯ ,很明显, n 为偶数时可能取得最大值,由()2*2{2,n n n n S S n k k N S S +-≥=∈≥ 可得: 4n = ,则12···n b b b 的最大值为6254. 15.数列{}n a 满足12sin12n n n a a n π+⎛⎫=-+ ⎪⎝⎭,则数列{}n a 的前100项和为__________. 【答案】2550【解析】由于()sin2f n n π=⋅的周期为4T =,11a a = ,211a a =+ , 32121a a a =-+=-+43134a a a =+=-+ ,于是得到12346a a a a +++=;同理可求出567814a a a a +++=, 910111222a a a a +++=,……由此,数列{}n a 的前100项和可以转化为以6为首项,8为公比的等差数列的前25项和,所以前100项和为2524256825502⨯⨯+⨯= .B 组一、选择题1.设数列{}n a 为等差数列, n S 为其前n 项和,若113S ≤, 410S ≥, 515S ≤,则4a 的最大值为( )A. 3B. 4C. 7-D. 5- 【答案】B【解析】∵S 4≥10,S 5≤15∴a 1+a 2+a 3+a 4≥10,a 1+a 2+a 3+a 4+a 5≤15 ∴a 5≤5,a 3≤3即:a 1+4d≤5,a 1+2d≤3两式相加得:2(a 1+3d )≤8∴a 4≤4 故答案是42.设等差数列{}n a 的前n 项和为11,13,0,15n m m m S S S S -+===-,其中*m N ∈且2m ≥.则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和的最大值为( )A.24143 B. 1143 C. 2413 D. 613【答案】D 【解析】由题意可得111113,15,2m m m m m m m m a S S a S S d a a -+++=-=-=-=-=-=-,()1102m m m dS ma -=+=可得11a m -=,又()1113m a a m d =+-=-,可得1215a m -=-, 113,14a m ==, 152n a n =-,12231122311111111111111213152n n n n n n S S a a a a a a d a a a a a a n ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=--=-⎢⎥ ⎪ ⎪ ⎪ ⎪-⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,可知767,13n S ==取最大值。
高考数学最具参考价值选择填空(适合一本学生)1、点O 在ABC ∆内部且满足230OA OB OC ++=,则AOB ∆面积与AOC ∆面积之比为A 、 2B 、 32C 、3D 、 532、已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭成中心对称图形,且满足3()()2f x f x =-+,(1)1f -=,(0)2f =-则(1)(2)(2006)f f f ++⋅⋅⋅+的值为A 、1B 、2C 、 1-D 、2-3、椭圆1:C 22143x y +=的左准线为l ,左右焦点分别为12,F F 。
抛物线2C 的准线为l ,焦点是2F ,1C 与2C 的一个交点为P ,则2PF 的值为A 、43B 、83 C 、4 D 、84、若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为 A 、16(12)- B 、 18π C 、 36π D 、64(6)-5、、设32()f x x bx cx d =+++,又k 是一个常数,已知当0k <或4k >时,()0f x k -=只有一个实根;当04k <<时,()0f x k -=有三个相异实根,现给出下列命题:(1)()40f x -=和()0f x '=有一个相同的实根, (2)()0f x =和()0f x '=有一个相同的实根(3)()30f x +=的任一实根大于()10f x -=的任一实根 (4)()50f x +=的任一实根小于()20f x -=的任一实根其中错误命题的个数是 A 、 4 B 、 3 C 、 2 D 、 16、已知实数x 、y 满足条件2040250x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则24z x y =+-的最大值为A 、 21B 、 20C 、 19D 、 187、三棱锥P ABC -中,顶点P 在平面ABC 的射影为O ,满足0OA OB OC ++=,A 点在侧面PBC 上的射影H 是PBC ∆的垂心,6PA =,则此三棱锥体积的最大值为 A 、 36 B 、 48 C 、 54 D 、 728、已知函数()f x 是R 上的奇函数,且()0,+∞在上递增,(1,2)A -、(4,2)B 是其图象上两点,则不等式(2)2f x +<的解集为A 、 ()(),44,-∞-⋃+∞B 、 ()(){}4,11,40--⋃⋃C 、 ()(),04,-∞⋃+∞D 、 ()(){}6,31,22--⋃-⋃-9、设方程220(,)x ax b a b R ++-=∈在(][),22,-∞-⋃+∞上有实根,则22a b +的最小值是A 、2B 、5 C 、 45 D 、 410、非零向量OA a =,OB b =,若点B 关于OA 所在直线的对称点为1B,则向量1OB OB +为A 、22(a b )aa⋅ B 、2(a b )aa⋅ C 、 2(a b )a a⋅ D 、(a b )a a⋅11、函数2log (2)a y x ax =-+在[)2,+∞恒为正,则实数a 的范围是A 、 0a 1<<B 、1a 2<<C 、51a 2<<D 、2a 3<<12、已知函数2f (x )x 2x=+,若关于x 的方程2()()0f x bf x c ++=有7个不同的实数解,则b 、c 的大小关系为A 、b c >B 、b c ≥与b c ≤中至少有一个正确C 、b c <D 、不能确定13、设定义域为R 的函数111()11x x f x x ⎧≠⎪-=⎨⎪⎩=,若关于x 的方程2()()0f x bf x c ++=有三个不同的实数解1x 、2x 、3x ,则222123x x x ++=A 、 5B 、2222b b +C 、13D 、2232c c +14、已知(,),P t t t R ∈,点M 是园2211:(1)4O x y +-=上的动点,点N 是园()2221:24O x y -+=上的动点,则PN PM -的最大值是 A 、1 B 、C 、 1D 、 215.椭圆的两焦点分别为1(0,1)F -、2(0,1)F ,直线y 4=是椭圆的一条准线。
2024年新高考新题型数学选填压轴好题汇编04一、单选题1(2024·广东·一模)已知集合A=-12,-13,12,13,2,3,若a,b,c∈A且互不相等,则使得指数函数y =a x,对数函数y=log b x,幂函数y=x c中至少有两个函数在(0,+∞)上单调递增的有序数对(a,b,c)的个数是()A.16B.24C.32D.48【答案】B【解析】若y=a x和y=log b x在(0,+∞)上单调递增,y=x c在(0,+∞)上单调递减,则有A22⋅C12=4个;若y=a x和y=x c在(0,+∞)上单调递增,y=log b x在(0,+∞)上单调递减,则有C12⋅C12⋅C12=8个;若y=log b x和y=x c在(0,+∞)上单调递增,y=a x在(0,+∞)上单调递减,则有C12⋅C12⋅C12=8个;若y=a x、y=log b x和y=x c在(0,+∞)上单调递增,则有A22⋅C12=4个;综上所述:共有4+8+8+4=24个.故选:B.2(2024·广东江门·一模)物理学家本·福特提出的定律:在b进制的大量随机数据中,以n开头的数出现的概率为P b n =log b n+1n.应用此定律可以检测某些经济数据、选举数据是否存在造假或错误.若80n=kP10(n)=log4811+log25k∈N*,则k的值为()A.7B.8C.9D.10【答案】C【解析】80n=k P10(n)=P10(k)+P10(k+1)+⋯+P10(80)=lg k+1k +lg k+2k+1+⋯+lg8180=lg81k,而log4811+log25=lg81lg41+lg5lg2=4lg32lg21+lg5lg2=2lg3=lg9,故k=9.故选:C.3(2024·广东·模拟预测)在正三棱锥A-BCD中,△BCD的边长为6,侧棱长为8,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.33468B.3434C.21717D.1734【答案】A【解析】依题意,记BC的中点为F,连接DF,记正△BCD的中心为O,连接AO,因为在正三棱锥A-BCD中,AO⊥底面BCD,在正△BCD中,DF⊥BC,在平面BCD中过F点作z轴⊥底面BCD,则AO⎳z轴,以F点为原点,建立空间直角坐标系,如图,因为在正三棱锥A-BCD中,△BCD的边长为6,侧棱长为8,所以DF=32CD=32×6=33,2DF=23,AO=AD2-OD2=64-12=213,故B -3,0,0 ,C 3,0,0 ,D 0,33,0 ,O 0,3,0 ,A 0,3,213 ,则E -32,32,13 ,CE =-92,32,13 ,BD =3,33,0 ,所以cos CE ,BD =CE ⋅BDCE BD =-92×3+32×33-92 2+32 2+13×9+27=-33468,则异面直线CE 与BD 所成角的余弦值为33468.故选:A .4(2024·天津滨海新·一模)已知抛物线C 1:y 2=2px p >0 的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)顶点三等分,且两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,则双曲线C 2的离心率为()A.2B.322C.113D.222【答案】D【解析】求得抛物线的焦点和准线,可得EF 的长度,由题意可得p =6a ,求出两曲线交点坐标,代入双曲线方程可得a ,b 的关系,利用离心率公式可求得结果.抛物线y 2=2px 的焦点为F p 2,0 ,准线方程为x =-p2,E -p2,0 ,|EF |=p ,因为线段EF 被双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)顶点三等分,所以2a =p 3,即p =6a ,因为两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,所以两个交点为p 2,p 、p2,-p ,将p 2,p 代入双曲线x 2a 2-y 2b 2=1得p 24a 2-p 2b2=1,所以36a 24a 2-36a 2b 2=1,所以9-36a 2b 2=1,所以b 2a2=92,所以双曲线C 2的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=1+92=222.故选:D5(2024·湖南·二模)已知函数f x =sin ωx +3cos ωx ,若沿x 轴方向平移f x 的图象,总能保证平移后的曲线与直线y =1在区间0,π 上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.2,83B.2,103C.103,4 D.2,4【答案】A【解析】由f x =sin ωx +3cos ωx 可得:f x =2sin ωx +π3,若沿x 轴方向平移,考虑其任意性,不妨设得到的函数g x =2sin ωx +φ .令g x =1,即sin ωx +φ =12,x ∈[0,π],取z =ωx +φ,则z ∈[φ,ωπ+φ].依题意知,sin z =12在φ,ωπ+φ 上至少有2解,至多有3解,则须使区间[φ,ωπ+φ]的长度在2π到8π3之间,即2π≤ωπ<8π3,解得2≤ω<83.6(2024·湖南·二模)过点P -1,0 的动直线与圆C :(x -a )2+(y -2)2=4(a >0)交于A ,B 两点,在线段AB 上取一点Q ,使得1PA +1PB =2PQ ,已知线段PQ 的最小值为2,则a 的值为()A.1B.2C.3D.4【答案】A【解析】圆心C a ,2 ,半径为2,则圆C 与x 轴相切,设切点为M a ,0 ,则PM =a +1,则|PM |2=PA PB =(a +1)2,设AB 的中点为D ,连接CD ,则CD ⊥AB ,令圆心C 到直线AB 的距离为d ,则0≤d <2,|PA |+|PB |=|PD |-|AD |+|PD |+|AD |=2|PD |,由1PA +1PB =2PQ ,得PQ =2PA PB PA +PB =(a +1)2|PC |2-d 2=(a +1)2(a +1)2+4-d 2,因此(a +1)2(a +1)2+4-0≤PQ <(a +1)2(a +1)2+4-4,而PQ 的最小值为2,所以a +12a +1 2+4=2,则a =1.故选:A7(2024·高三·浙江宁波·阶段练习)如图1,水平放置的直三棱柱容器ABC -A 1B 1C 1中,AC ⊥AB ,AB =AC =2,现往内灌进一些水,水深为2.将容器底面的一边AB 固定于地面上,再将容器倾斜,当倾斜到某一位置时,水面形状恰好为三角形A 1B 1C ,如图2,则容器的高h 为()A.3B.4C.42D.6【答案】A【解析】在图1中水的体积V =12×2×2×2=4,在图2中水的体积V =VABC -A 1B 1C 1-V C -A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h ,4h =4⇒h =3.8(2024·江西·高考真题)已知F 1、F 2是椭圆的两个焦点,满足MF 1 ⋅MF 2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是A.(0,1) B.0,12C.0,22D.22,1 【答案】C【解析】设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c .因为MF 1 ·MF 2=0所以点M 的轨迹为以原点为圆心,半径为c 的圆.与因为点M 在椭圆的内部,所以c <a ,c <b ,所以c 2<b 2=a 2-c 2,所以2c 2<a 2∴e 2=c 2a2<12,所以e ∈0,22,故选C .9(2024·高二·湖北鄂州·阶段练习)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的焦距为2c ,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1-d 2 ≤c ,则双曲线的离心率的取值范围为()A.1,233B.233,+∞ C.1,2D.2,+∞【答案】C【解析】由题意可知,直线AB 经过双曲线的右焦点,且垂直于x 轴,不妨设A c ,y 0 ,代入椭圆方程c 2a 2-y 02b2=1,又c 2=a 2+b 2,所以y 0=b 2a ,所以A c ,b 2a ,B c ,-b 2a,任取双曲线的一条渐近线为直线bx +ay =0,由点到直线的距离公式可得点A 到渐近线的距离d 1=bc +b 2a 2+b2=bc +b 2c ,点B 到渐近线的距离d 2=bc -b 2a 2+b 2=bc -b 2c ,所以d 1-d 2 =bc +b 2c -bc -b 2c =2b 2c=2b 2c,因为d 1-d 2 ≤c ,所以2b 2c≤c ,因c >0,所以2b 2≤c 2,即2c 2-a 2 ≤c 2,所以c 2≤2a 2,所以c 2a 2≤2,因为双曲线离心率c a >1,所以1<ca≤2,所以双曲线的离心率的取值范围为1,2 .故选:C .10(2024·高二·广东深圳·期末)已知抛物线C :y 2=2px p >0 的焦点为F ,斜率为k 的直线l 经过点F ,并且与抛物线C 交于A 、B 两点,与y 轴交于点M ,与抛物线的准线交于点N ,若AF =2MN,则k =()A.3B.2C.±2D.±3【答案】D【解析】当A 在第一象限时,设准线与x 轴的交点为P ,过A 作准线的垂线,垂足为A ,因为OM ∥PN ,且O 为PF 的中点,所以OM 为三角形PFN 的中位线,即FM =MN ,所以AF =2MN =FN ,又根据抛物线的定义AF =AA ,所以AN =2AF =2AA ,所以在直角三角形AA N 中,∠A AN =60°,所以∠AFx =60°,此时k =3,根据对称性,当A 在第四象限时,k =-3,故选:D .11(2024·湖北·一模)设直线l :x +y -1=0,一束光线从原点O 出发沿射线y =kx x ≥0 向直线l 射出,经l 反射后与x 轴交于点M ,再次经x 轴反射后与y 轴交于点N .若MN =136,则k 的值为()A.32B.23C.12D.2【答案】B【解析】如图,设点O 关于直线l 的对称点为A x 1,y 1 ,则x 12+y12-1=0y 1x 1×-1 =-1得x 1=1y 1=1 ,即A 1,1 ,由题意知y =kx x ≥0 与直线l 不平行,故k ≠-1,由y =kx x +y -1=0 ,得x =1k +1y =k k +1,即P 1k +1,k k +1 ,故直线AP 的斜率为k AP =kk +1-11k +1-1=1k ,直线AP 的直线方程为:y -1=1kx -1 ,令y =0得x =1-k ,故M 1-k ,0 ,令x =0得y =1-1k ,故由对称性可得N 0,1k-1 ,由MN =136得(1-k )2+1k -1 2=1336,即k +1k 2-2k +1k =1336,解得k +1k=136,得k =23或k =32,若k =32,则第二次反射后光线不会与y 轴相交,故不符合条件.故k =23,故选:B 12(2024·湖北·二模)能被3个半径为1的圆形纸片完全覆盖的最大的圆的半径是()A.263B.62C.233D.33+12【答案】C【解析】要求出被完全覆盖的最大的圆的半径,由圆的对称性知只需考虑三个圆的圆心构成等边三角形的情况,设三个半径为1的圆的圆心分别为O 1,O 2,O 3,设被覆盖的圆的圆心为O ,如图,设OO 1=OO 2=OO 3=x ,则O 1H =3x 2,OH =x 2,OA =OH +HA =x 2+1-32x 2=12(x +4-3x 2),又OC =OO 3+O 3C =x +1>OA ,因此圆O 的最大半径为OA ,令f (x )=12(x +4-3x 2),求导得f(x )=4-3x 2-3x 24-3x 2,由f (x )=0,得x =33,当0<x <33时,f (x )>0,当33<x <233时,f (x )<0,因此f (x )在0,33上单调递增,在33,233 上单调递减,f (x )max =f 33 =233,所以被完全覆盖的最大的圆的半径为233,此时O 1O 2=O 2O 3=O 3O 1=1,即圆O 1、圆O 2、圆O 3中的任一圆均经过另外两圆的圆心.故选:C13(2024·高三·浙江嘉兴·期末)已知正实数a ,b ,c 满足a 2-b =2ln ab>0,7b -2b =a +4 c ,则()A.0<c <b <1<aB.0<b <c <1<aC.0<c <b <a <1D.0<b <c <a <1【答案】A【解析】因a >0,b >0,由ln a b >0可得:ab >1,则a >b .由a 2-b =2lnab 化简得:a 2-2ln a =b -2ln b ,分别设函数f x =x 2-2ln x ,g x =x -2ln x .由f(x )=2x 2-1 x,(x >0),则当0<x <1时,f (x )<0,当x >1时,f (x )>0,则f x 在0,1 上递减,在1,+∞ 上递增,故f x min =f 1 =1.又g x =x -2x,(x >0),则当0<x <2时,g (x )<0,当x >2时,g (x )>0,则g x 在0,2 上递减;在2,+∞ 上递增,故g x min =g 2 =2-2ln2.由f x -g x =x 2-x =x x -1 ,则0<x <1时,f x <g x ;x =1时,f x =g x ;x >1时,f x >g x .函数f x 与g x 的图象如图.令f a =f b =k .由于a >b ,则0<b <1,1<a ,排除C ,D ;由于a >1,7b-2b=a +4c>5c,则7b -2b >5c -b .令h x =75 x -25x,其在R 上单调递增.由于0<b <1,则0=h (0)<h b <h (1)=1,则有5c -b <1,即c -b <0得c <b .综上,0<c <b <1<a .故选:A .14(2024·高二·北京西城·期末)在直角坐标系xOy 内,圆C :(x -2)2+(y -2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是()A.-2,2B.-4-2,-4+2C.-2-2,-2+2D.-2+2,2+2【答案】A【解析】连接OP ,设∠POx =θ(即以x 轴正方向为始边,OP 为终边的角),由题意对于直线l :x +y +m =0上任意一点P x ,y ,存在a =x 2+y 2,θ∈R ,使得P a cos θ,a sin θ ,则直线l :x +y +m =0绕原点O 顺时针旋转90°后,点P a cos θ,a sin θ 对应点为P 1a cos θ-π2 ,a sin θ-π2 ,即P 1a sin θ,-a cos θ ,因为P a cos θ,a sin θ 在直线l :x +y +m =0上,所以满足a cos θ+a sin θ+m =0设x 1=a sin θ,y 1=-a cos θ,所以-y 1+x 1+m =0,即P 1a sin θ,-a cos θ 所在直线方程为l 1:x -y +m =0,而圆C :(x -2)2+(y -2)2=1的圆心,半径分别为2,2 ,r =1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,所以圆心C 2,2 到直线l 1:x -y +m =0的距离d =m2≤r =1,解得-2≤m ≤ 2.故选:A .15(2024·山东青岛·一模)已知A (-2,0),B (2,0),设点P 是圆x 2+y 2=1上的点,若动点Q 满足:QP⋅PB =0,QP =λQA |QA |+QB|QB |,则Q 的轨迹方程为()A.x 2-y 23=1B.x 23-y 2=1C.x 25+y 2=1D.x 26+y 22=1【答案】A【解析】由QP ⋅PB=0,可得QP ⊥PB ,而QP =λQA QA +QBQB,可知点P 在∠BQA 的平分线上.圆x 2+y 2=1,圆心为原点O ,半径r =1,连接AQ ,延长BP 交AQ 于点C ,连接OP ,因为∠PQB =∠PQC 且PQ ⊥BC ,所以QB =QC ,且P 为BC 中点,OP ∥AC ,OP =1AC因此,QA -QB =QA -QC =AC =2OP =2,点Q 在以A 、B 为焦点的双曲线上,设双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,可知c =2,a 2+b 2=c 2=4,由2a =QA -QB =2,得a =1,故b 2=3,双曲线方程为x 2-y 23=1.故选:A .16(2024·山东青岛·一模)∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,则f (2024)的值为()A.2B.1C.0D.-1【答案】B【解析】由题意知∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,令x =-1,则f (-1)+f (2)=1-f (-1)f (2),∴f (2)=1显然f (x )=-1时,-1+f (x +3)=1+f (x +3)不成立,故f (x )≠-1,故f (x +3)=1-f (x )1+f (x ),则f (x +6)=1-1-f (x )1+f (x )1+1-f (x )1+f (x )=f (x ),即6为函数f (x )的周期,则f (2024)=f (337×6+2)=f (2)=1,故选:B17(2024·山东聊城·一模)已知P 是圆C :x 2+y 2=1外的动点,过点P 作圆C 的两条切线,设两切点分别为A ,B ,当PA ⋅PB的值最小时,点P 到圆心C 的距离为()A.42 B.32 C.2 D.2【答案】A【解析】设P x ,y ,则OP =x 2+y 2,则PA ⋅PB =PO +OA PO +OB =PO 2+PO ⋅OA +OB +OA ⋅OB ,OA ⋅OB =OA ⋅OBcos ∠AOB =cos ∠AOB =cos2∠POA =2cos 2∠POA -1=2×OA2OP2-1=2x 2+y 2-1,PO ⋅OA =PO ⋅OB =PO ⋅OA cos 180°-∠POA =-PO ⋅OAcos ∠POA=-PO ⋅OA ⋅OA OP=-1,故PA ⋅PB =x 2+y 2-2+2x 2+y2-1≥2x 2+y 2 ⋅2x 2+y 2-3=22-3,当且仅当x 2+y 2=2x 2+y2,即x 2+y 2=2时,等号成立,故当PA ⋅PB的值最小时,点P 到圆心C 的距离为42.故选:A .18(2024·山东聊城·一模)在三棱柱ABC -A 1B 1C 1中,点D 在棱BB 1上,且△ADC 1所在的平面将三棱柱ABC -A 1B 1C 1分割成体积相等的两部分,点M 在棱A 1C 1上,且A 1M =2MC 1,点N 在直线BB 1上,若MN ⎳平面ADC 1,则BB 1NB 1=()【答案】D【解析】如图,连接AB 1,则V A -A 1B 1C 1=13V ABC -A 1B 1C1,又△ADC 1所在的平面将三棱柱ABC -A 1B 1C 1分割成体积相等的两部分,所以V A -DB 1C 1=12V ABC -A 1B 1C 1-13V ABC -A 1B 1C 1=16V ABC -A 1B 1C1,即VA -DB 1C 1=12V A -A 1B 1C1,即V C 1-ADB 1=12V C 1-AA 1B1,设C 1到平面ABB 1A 1的距离为d ,则V C 1-ADB 1=13S △ADB 1⋅d ,V C 1-AA 1B 1=13S △AA 1B1⋅d ,所以S △ADB 1=12S △AA 1B 1=12S △ABB 1,所以D 为BB 1的中点,在AA 1上取点E ,使得A 1E =2AE ,连接EN 、EM ,因为A 1M =2MC 1,所以EM ⎳AC 1,又EM ⊄平面ADC 1,AC 1⊂平面ADC 1,所以EM ⎳平面ADC 1,又MN ⎳平面ADC 1,EM ∩MN =M ,EM ,MN ⊂平面EMN ,所以平面EMN ⎳平面ADC 1,又平面EMN ∩平面ABB 1A 1=EN ,平面ADC 1∩平面ABB 1A 1=AD ,所以AD ⎳EN ,又AE ⎳ND ,所以四边形ADNE 为平行四边形,所以ND =AE =13AA 1=13BB 1,所以B 1N =B 1D -ND =12BB 1-13BB 1=16BB 1,所以BB 1NB 1=6.故选:D19(2024·山东烟台·一模)在平面直角坐标系xOy 中,点A -1,0 ,B 2,3 ,向量OC =mOA +nOB,且m -n -4=0.若P 为椭圆x 2+y 27=1上一点,则PC 的最小值为()A.4510B.10C.8510D.210【答案】A 【解析】设点C (x ,y ),由A -1,0 ,B 2,3 及OC =mOA +nOB ,得(x ,y )=(-m +2n ,3n ),即x =-m +2ny =3n,而m -n -4=0,消去m ,n 得:3x -y +12=0,设椭圆x 2+y 27=1上的点P (cos θ,7sin θ),θ∈R ,则点P 到直线3x -y +12=0的距离d =|3cos θ-7sin θ+12|32+(-1)2=12-4sin (θ+φ)10,其中锐角φ由tan φ=37确定,当sin (θ+φ)=1时,d min =4510,而PC ≥d ,所以PC 的最小值为4510.故选:A 20(2024·山东济宁·一模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与y 轴相交于M 点,与双曲线C 在第一象限的交点为P ,若F 1M =2MP ,F 1P ⋅F 2P=0,则双曲线C 的离心率为()A.2B.3C.332D.3+1【答案】D【解析】设∠PF 1F 2=θ,θ为锐角,因为F 1M =2MP ,F 1P ⋅F 2P =0,所以PF 1⊥PF 2,PF 1 =32MF 1 ,∴MF 1 =c cos θ,∴|PF 1|=32|MF 1|=3c2cos θ,又|PF 2|=2c sin θ,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴9c 24cos 2θ+4c 2sin 2θ=4c 2,∴9+16sin 2θcos 2θ=16cos 2θ,∴9+16(1-cos 2θ)cos 2θ=16cos 2θ,∴9-16cos 4θ=0,∴cos 2θ=34,∴cos θ=32(负值舍去),∴θ=30°,∴|PF 1|=32|MF 1|=3c2cos θ=3c ,|PF 2|=2c sin θ=c ,∴双曲线C 的离心率e =2c 2a =|F 1F 2||PF 1|-|PF 2|=2c3c -c=3+1.故选:D .21(2024·山东济宁·一模)设函数f (x )定义域为R ,f (2x -1)为奇函数,f (x -2)为偶函数,当x ∈[0,1]时,f (x )=x 2-1,则f (2023)-f (2024)=()A.-1 B.0C.1D.2【答案】C【解析】因为函数f (x )定义域为R ,f (2x -1)为奇函数,所以f (2x -1)=-f (-2x -1),所以函数f (x )关于点-1,0 中心对称,且f -1 =0,因为f (x -2)为偶函数,所以f (x -2)=f (-x -2),所以函数f (x )关于直线x =-2轴对称,又因为f x =-f -2-x =-f -2+x =--f -4+x ,所以函数f (x )的周期为4,因为当x ∈[0,1]时,f (x )=x 2-1,所以f (2023)=f 4×506-1 =f -1 =0,f (2024)=f 4×506 =f 0 =-1,所以f (2023)-f (2024)=1.故选:C .22(2024·山东淄博·一模)已知F 1,F 2是椭圆和双曲线的公共焦点,P ,Q 是它们的两个公共点,且P ,Q 关于原点对称,∠PF 2Q =2π3,若椭圆的离心率为e 1,双曲线的离心率为e 2,则e 21e 21+1+3e 22e 22+3的最小值是()A.2+33B.1+33C.233D.433【答案】A【解析】如图,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得:PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,∴PF 1 =a 1+a 2,PF 2 =a 1-a 2,设F 1F 2 =2c ,∠PF 2Q =2π3,根据椭圆与双曲线的对称性知四边形PF 1QF 2为平行四边形,则∠F 1PF 2=π3,则在△PF 1F 2中,由余弦定理得,4c 2=a 1+a 2 2+a 1-a 2 2-2a 1+a 2 a 1-a 2 cosπ3,化简得a 21+3a 22=4c 2,即1e 21+3e 22=4,则e 21e 21+1+3e 22e 22+3=11e 21+1+33e 22+1=11e 21+1+33e 22+1 1e 21+1+3e 22+1×16=16×4+3e 22+11e 21+1+31e 21+1 3e 22+1≥16×4+23e 22+11e 21+1×31e 21+1 3e 22+1=16×4+23 =2+33,当且仅当3e 22+1 2=31e 21+121e 21+3e 22=4,即e 21=33+411<1e 22=38-33=24+9337>1时等号成立,故选:A .23(2024·广东茂名·一模)若α∈π4,3π4 ,6tan π4+α +4cos π4-α =5cos2α,则sin2α=()A.2425B.1225C.725D.15【答案】C 【解析】令t =π4+α,t ∈π2,π ,得α=t -π4,则6tan t +4cos π2-t =5cos 2t -π2,即6tan t +4sin t =5sin2t =10sin t cos t ,整理得5cos t +3 cos t -1 =0,且cos t <0,那么cos t =-35,则sin2α=sin 2t -π2 =-cos2t =1-2cos 2t =725.故选:C .二、多选题24(2024·广东江门·一模)已知曲线E :x x 4+y y8=1,则下列结论正确的是()A.y 随着x 增大而减小B.曲线E 的横坐标取值范围为-2,2C.曲线E 与直线y =-1.4x 相交,且交点在第二象限D.M x 0,y 0 是曲线E 上任意一点,则2x 0+y 0 的取值范围为0,4 【答案】AD【解析】因为曲线E :x x 4+y y8=1,当x ≥0,y ≥0时x 24+y 28=1,则曲线E 为椭圆x 24+y 28=1的一部分;当x >0,y <0时x 24-y 28=1,则曲线E 为双曲线x 24-y 28=1的一部分,且双曲线的渐近线为y =±2x ;当x <0,y >0时y 28-x 24=1,则曲线E 为双曲线y 28-x 24=1的一部分,且双曲线的渐近线为y =±2x ;可得曲线的图形如下所示:由图可知y 随着x 增大而减小,故A 正确;曲线E 的横坐标取值范围为R ,故B 错误;因为-1.4>-2,所以曲线E 与直线y =-1.4x 相交,且交点在第四象限,故C 错误;因为2x 0+y 0 =3×2x 0+y 022+12,即点M x 0,y 0 到直线2x +y =0的距离的3倍,当直线2x +y +c =0与曲线x 24+y 28=1x ≥0,y ≥0 相切时,由x 24+y 28=12x +y +c =0,消去y 整理得4x 2+22cx +c 2-8=0,则Δ=22c 2-16c 2-8 =0,解得c =4(舍去)或c =-4,又2x +y =0与2x +y -4=0的距离d =4 2 2+12=43,所以2x 0+y 0 max =3d =4,所以2x 0+y 0 的取值范围为0,4 ,故D 正确;故选:AD25(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【解析】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD26(2024·广东·一模)已知正方体ABCD -A 1B 1C 1D 1的各个顶点都在表面积为3π的球面上,点P 为该球面上的任意一点,则下列结论正确的是()A.有无数个点P ,使得AP ⎳平面BDC 1B.有无数个点P ,使得AP ⊥平面BDC 1C.若点P ∈平面BCC 1B 1,则四棱锥P -ABCD 的体积的最大值为2+16D.若点P ∈平面BCC 1B 1,则AP +PC 1的最大值为6【答案】ACD【解析】令正方体ABCD -A 1B 1C 1D 1的外接球半径为r ,4πr 2=3π,r =32,则BD 1=3,AB =1,连接AB 1,AD 1,B 1D 1,由四边形ABC 1D 1是该正方体的对角面,得四边形ABC 1D 1是矩形,即有AD 1⎳BC 1,而BC 1⊂平面BDC 1,AD 1⊄平面BDC 1,则AD 1⎳平面BDC 1,同理AB 1⎳平面BDC 1,又AB 1∩AD 1=A ,AB 1,AD 1⊂平面AB 1D 1,因此平面AB 1D 1⎳平面BDC 1,令平面ABD 1截球面所得截面小圆为圆M ,对圆M 上任意一点(除点A 外)均有AP ⎳平面BDC 1,A 正确;对于B ,过A 与平面BDC 1垂直的直线AP 仅有一条,这样的P 点至多一个,B 错误;对于C ,平面BCC 1B 1截球面为圆R ,圆R 的半径为22,则圆R 上的点到底面ABCD 的距离的最大值为2+12,因此四棱锥P -ABCD 的体积的最大值为13×1×2+12=2+16,C 正确;对于D ,显然AB ⊥平面BCC 1B 1,在平面BCC 1B 1内建立平面直角坐标系,如图,令点P 22cos θ,22sin θ,而B -12,-12 ,C 112,12,因此AP =1+22cos θ+122+22sin θ+122=2+22(sin θ+cos θ),PC 1=22cos θ-122+22sin θ-122=1-22(sin θ+cos θ),令22(sin θ+cos θ)=x ,AP +PC 1=2+x +1-x =2+x +1-x 2≤22+x 2+1-x 2 =6,当且仅当x =-12取等号,此时22(sin θ+cos θ)=-12,即sin θ+π4 =-12,因此AP +PC 1的最大值为6,D 正确.故选:ACD27(2024·广东·一模)已知偶函数f (x )的定义域为R ,f 12x +1 为奇函数,且f (x )在0,1 上单调递增,则下列结论正确的是()A.f -32<0 B.f 43>0 C.f (3)<0D.f 20243>0【答案】BD【解析】因为f x 为偶函数,所以f -x =f x ;因为f 12x +1 是R 上的奇函数,所以f 1 =0,且f x +22 的图象是由f x 2 的图象向左平移2个单位得到的,所以f x 2 的图象关于2,0 点对称,进一步得f x 的图象关于点1,0 中心对称,即f 1+x =-f 1-x .所以f x +2 =f 1+1+x =-f 1-1+x =-f -x =-f x ,所以f x +4 =-f x +2 =f x .所以函数f x 是周期函数,且周期为4;又f x 在0,1 上单调递增,所以在0,1 上,有f x <0.所以函数的草图如下:由图可知:f -32 >0,故A 错;f 43>0,故B 对;f 3 =0,故C 错;f 20243=f 674+23 =f 4×168+2+23 =f 2+23>0,故D 对.故选:BD 28(2024·广东·模拟预测)已知函数f x 的定义域为R ,f x -1 是奇函数,f x +1 为偶函数,当-1≤x ≤1时,f x =2x +1-13x +1,则()A.f x 的图象关于直线x =1对称B.f x 的图象关于点-1,0 对称C.f x +6 =f xD.f 2021 =-34【答案】ABD【解析】设g x =f x -1 ,因为g x 是奇函数,所以g -x =f -x -1 =-g x =-f x -1 ,即f -1+x +f -1-x =0,即f x 关于-1,0 对称,B 正确;设h x =f x +1 ,因为h x 为偶函数,所以h -x =h x ,即f -x +1 =f x +1 ,f 1+x =f 1-x ,所以f x 的关于直线x =1对称,A 正确;由f x 关于-1,0 对称可得f x +f -2-x =0,由f x 的关于直线x =1对称,可得f x =f 2-x ,两式联立得f 2-x +f -2-x =0,令x =x +2得:f -x +f -4-x =0,即f x +f x -4 =0,令x =x -4,得f x -4 +f x -8 =0,即f x =f x -8 ,故f x 的周期为8,故f x +8 =f x ,C 错误;因为T =8,所以f 2021 =f 252×8+5 =f 5 =f -3 ,又f -1+x +f -1-x =0,令x =-2得f -3 +f 1 =0,f 1 =22-131+1=34,所以f 2021 =f -3 =-f 1 =-34,故D 正确.故选:ABD29(2024·高二·福建三明·期中)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中正确的是()A.异面直线AE 、BF 所成角为定值B.AC ⊥BFC.△AEF 的面积与△BEF 的面积相等D.三棱锥A -BEF 的体积为定值【答案】BD【解析】则A 1,0,0 ,B 1,1,0 ,设E a ,a ,1 ,则F a +24,a +24,1,其中0≤a ≤1-24,AE =(a -1,a ,1),BF =a +24-1,a +24-1,1 ,cos <AE ,BF >=AE ∙BF|AE |∙|BF |=(2a -1)a +24-1 +1(a -1)2+a 2+1∙2a +24-1 2+1.取a =12时,cos <AE ,BF >=442-122,取a =1-24时,cos <AE ,BF >=29-22,∵442-122≠29-22,∴异面直线AE 、BF 所成角不是定值,故A 错误;由正方体的结构特征可知,DD 1⊥AC ,BD ⊥AC ,又BD ∩DD 1=D ,BD ,DD 1⊂平面BDD 1B 1∴AC ⊥平面BDD 1B 1,又BF ⊂平面BDD 1B 1,则AC ⊥BF ,故B 正确;B 到B 1D 1的距离为BB 1=1,A 到B 1D 1的距离大于上下底面中心的连线,则A 到B 1D 1的距离大于1,∴△AEF 的面积大于△BEF 的面积,故C 错误;∵AC ⊥平面BDD 1B 1,∴A 到平面BDD 1B 1的距离为22,△BEF 的面积为定值,∴三棱锥A -BEF 的体积为定值,故D 正确.故选:BD .30(2024·湖南·二模)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,F 是线段A 1B 1的中点,则()A.若点P 满足AP ⊥B 1C ,则动点P 的轨迹长度为42B.三棱锥A -PB 1D 1体积的最大值为163C.当直线AP 与AB 所成的角为45°时,点P 的轨迹长度为π+42D.当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,线段PF 长度最大值为22【答案】CD【解析】对于A ,易知B 1C ⊥平面ABC 1D 1,A ∈平面ABC 1D 1,故动点P 的轨迹为矩形ABC 1D 1,动点P 的轨迹长度为矩形ABC 1D 1的周长,即为42+4,所以A 错误;对于B ,因为V A -PD 1D 1=V P -AB 1D 1,而等边△AB 1D 1的面积为定值23,要使三棱锥P -AB 1D 1的体积最大,当且仅当点P 到平面AB 1D 1的距离最大,易知点C 是正方体到平面AB 1D 1距离最大的点,所以V A -PB 1D 1max =V C -AB 1D 1,此时三棱锥C -AB 1D 1即为棱长是22的正四面体,其高为h =22 2-262=43,所以V =1×1×22×22×3×43=8,B 错误;对于C :连接AC ,AB 1,以B 为圆心,BB 1为半径画弧B 1C,如图1所示,当点P 在线段AC ,AB 1和弧B 1C上时,直线AP 与AB 所成的角为45°,又AC =AB 2+BC 2=4+4=22,AB 1=AB 2+BB 21=4+4=22,弧B 1C 长度14×π×22=π,故点P 的轨迹长度为π+42,故C 正确;对于D ,取A 1D 1,D 1D ,DC ,CB ,BB 1,AB 的中点分别为Q ,R ,N ,M ,T ,H ,连接QR ,QF ,FT ,TM ,MN ,NR ,FH ,HN ,HM ,如图2所示,因为FT ∥D 1C ,FT ⊄平面D 1B 1C ,D 1C ⊂平面D 1B 1C ,故FT ∥平面D 1B 1C ,TM ∥B 1C ,TM ⊄平面D 1B 1C ,B 1C ⊂平面D 1B 1C ,故TM ∥平面D 1B 1C ;又FT ∩TM =T ,FT ,TM ⊂平面FTM ,故平面FTM ∥平面D 1B 1C ;又QF ∥NM ,QR ∥TM ,RN ∥FT ,故平面FTMNRQ 与平面FTM 是同一个平面.则点P 的轨迹为线段MN :在三角形FNM 中,FN =FH 2+HN 2=4+4=22;FM =FH 2+HM 2=4+2=6;NM =2;则FM 2+MN 2=8=FN 2,故三角形FNM 是以∠FMN 为直角的直角三角形;故FP max =FN =22,故FP 长度的最大值为22,故D 正确.故选:CD .31(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b 2cos A +1 ,则下列结论正确的有()A.A =2BB.若a =3b ,则△ABC 为直角三角形C.若△ABC 为锐角三角形,1tan B -1tan A 的最小值为1D.若△ABC 为锐角三角形,则c a 的取值范围为22,233【答案】ABD【解析】对于A ,△ABC 中,由正弦定理得sin C =2sin B cos A +sin B ,由sin C =sin A +B ,得sin A cos B -cos A sin B =sin B ,即sin A -B =sin B ,由0<A ,B <π,则sin B >0,故0<A -B <π,所以A -B =B 或A -B +B =π,即A =2B 或A =π(舍去),即A =2B ,A 正确;对于B ,若a =3b ,结合A =2B 和正弦定理知a sin A=3b sin2B =b sin B ,cos B =32,又0<A ,B <π,所以可得A =2B =π3,C =π2,B 正确;πππππ3<1.故1tan B -1tan A=1tan B -1-tan 2B 2tan B =1+tan 2B 2tan B >1,C 错误;对于D ,在锐角△ABC 中,由π6<B <π4,22<cos B <32,c a =sin C sin A=sin3B sin2B =sin2B cos B +cos2B sin B sin2B =2cos B -12cos B ,令cos B =t ∈22,32 ,则c a =f t=2t -12t,易知函数f t =2t -12t 单调递增,所以可得c a ∈22,233,D 正确;故选:ABD .32(2024·高二·广东江门·期末)已知抛物线C :y 2=4x 的焦点为F ,直线l :x =-1,过F 的直线交抛物线C 于A x 1,y 1 ,B x 2,y 2 两点,交直线l 于点M ,MA =λ1AF ,MB =λ2BF,则()A.△ABO 的面积的最大值为2 B.y 1y 2=-4C.x 1x 2=1 D.λ1+λ2=0【答案】BCD【解析】设直线AB :x =my +1,由x =my +1y 2=4x得:y 2-4my -4=0.选项A :S △ABO =12OF ·y 1-y 2 =12y 21+y 22 -4y 1y 2=1216m 2+16≥12×4=2,应是最小值为2,故A 错误;选项B :y 1y 2=-4,故B 正确;选项C :x 1=y 214,x 2=y 224,则x 1x 2=(y 1y 2)216=1,故C 正确;选项D :由MA =λ1AF ,MB =λ2BF ,M -1,-2m,得:y 1+2m =-λ1y 1,y 2+2m=-λ2y 2,∴λ1+λ2=-2-2m 1y 1+1y 2=-2-2m ⋅y 1+y 2y 1y 2=-2-2m ⋅4m-4=0,故D 正确.故选:BCD33(2024·高三·黑龙江哈尔滨·阶段练习)已知函数f x =sin ωx +π4ω>0 在区间0,π 上有且仅有3条对称轴,给出下列四个结论,正确的是()A.f x 在区间0,π 上有且仅有3个不同的零点B.f x 的最小正周期可能是2π3C.ω的取值范围是94,134D.f x 在区间0,π15 上单调递增【答案】BD【解析】由函数f x =sin ωx +π4ω>0 ,令ωx +π4=π2+k π,k ∈Z ,则x =(1+4k )π4ω,k ∈Z ,函数f (x )在区间0,π 上有且仅有3条对称轴,即0≤(1+4k )π4ω≤π有3个整数k 符合,由0≤(1+4k)π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k≤4ω,则k=0,1,2,即1+4×2≤4ω<1+4×3,∴9 4≤ω<134,故C错误;对于A,∵x∈(0,π),∴ωx+π4∈π4,ωπ+π4,∴ωπ+π4∈5π2,7π2 ,当ωx+π4∈5π2,3π时,f(x)在区间(0,π)上有且仅有2个不同的零点;当ωx+π4∈3π,7π2时,f(x)在区间(0,π)上有且仅有3个不同的零点,故A错误;对于B,周期T=2πω,由94≤ω<134,则413<1ω≤49,∴8π13<T≤8π9,又2π3∈8π13,8π9,所以f(x)的最小正周期可能是2π3,故B正确;对于D,∵x∈0,π15,∴ωx+π4∈π4,ωπ15+π4,又94≤ω<134,∴ωπ15+π4∈2π5,7π15,又7π15<π2,所以f(x)在区间0,π15上一定单调递增,故D正确.故选:BD.34(2024·高一·辽宁丹东·期中)已知f x 是定义在R上的连续函数,且满足f x+y=f x +f y -2xy,当x>0时,f x >0,设g x =f x +x2()A.若f1 ⋅f-1=-3,则f1 =1 B.g x 是偶函数C.g x 在R上是增函数D.x-1g x >0的解集是-∞,0∪1,+∞【答案】ACD【解析】对选项A:取x=y=0得到f0 =f0 +f0 ,即f0 =0,取x=1,y=-1得到f0 =f1 +f-1+2=0,又f1 ⋅f-1=-3,f1 >0,解得f1 =1,正确;对选项B:取y=-x得到f0 =f x +f-x+2x2,即f x +f-x=-2x2,g x +g-x=f x +x2+f-x+x2=0,函数定义域为R,函数为奇函数,错误;对选项C:设x1<x2,则g x2-g x1=f x2+x22-f x1-x21=f x2-x1+x1+x22-f x1-x21=f x2-x1-2x2-x1x1+x22-x21=f x2-x1-2x2x1+x21+x22=f x2-x1+x1-x22,x>0时,f x >0,故f x2-x1>0,x1-x22>0,故g x2-g x1>0,即g x2>g x1,函数单调递增,正确;对选项D:g0 =f0 +0=0,x-1g x >0,当x>1时,g x >0,则x>0,故x>1;当x=1时,不成立;当x<1时,g x <0,则x<0,故x<0;综上所述:x∈-∞,0∪1,+∞,正确;35(2024·湖北·一模)某数学兴趣小组的同学经研究发现,反比例函数y =1x的图象是双曲线,设其焦点为M ,N ,若P 为其图象上任意一点,则()A.y =-x 是它的一条对称轴B.它的离心率为2C.点2,2 是它的一个焦点D.PM -PN =22【答案】ABD【解析】反比例函数的图象为等轴双曲线,故离心率为2,容易知道y =x 是实轴,y =-x 是虚轴,坐标原点是对称中心,联立实轴方程y =x 与反比例函数表达式y =1x得实轴顶点1,1 ,-1,-1 ,所以a =2,c =2,其中一个焦点坐标应为2,2 而不是2,2 ,由双曲线定义可知PM -PN =2a =22.故选:ABD .36(2024·湖北·一模)已知函数f x =ax 3+bx 2+cx +d 存在两个极值点x 1,x 2x 1<x 2 ,且f x 1 =-x 1,f x 2 =x 2.设f x 的零点个数为m ,方程3a f x 2+2bf x +c =0的实根个数为n ,则()A.当a >0时,n =3B.当a <0时,m +2=nC.mn 一定能被3整除D.m +n 的取值集合为4,5,6,7【答案】AB【解析】由题意可知f x =3ax 2+2bx +c 为二次函数,且x 1,x 2x 1<x 2 为f x 的零点,由f f x =3a f x 2+2bf x +c =0得f x =x 1或f x =x 2,当a >0时,令f x >0,解得x <x 1或x >x 2;令f x <0,解得x 1<x <x 2;可知:f x 在-∞,x 1 ,x 2,+∞ 内单调递增,在x 1,x 2 内单调递减,则x 1为极大值点,x 2为极小值点,若x 1≥0,则-x 1≤0<x 2,因为f x 1 >f x 2 ,即-x 1>x 2,两者相矛盾,故x 1<0,则f x =x 2有2个根,f x =x 1有1个根,可知n =3,若f x 2 =x 2>0,可知m =1,mn =3,m +n =4;若f x 2 =x 2=0,可知m =2,mn =6,m +n =5;若f x 2 =x 2<0,可知m =3,mn =9,m +n =6;故A 正确;当a <0时,令f x >0,解得x 1<x <x 2;令f x <0,解得x <x 1或x >x 2;可知:f x 在x 1,x 2 内单调递增,在内-∞,x 1 ,x 2,+∞ 单调递减,则x 2为极大值点,x 1为极小值点,若x 2≤0,则-x 1>0≥x 2,因为f x 1 <f x 2 ,即-x 1<x 2,两者相矛盾,故x 2>0,若f x =-x >0,即x <0,可知m =1,n =3,mn =3,m +n =4;若f x 1 =-x 1=0,即x 1=0,可知m =2,n =4,mn =8,m +n =6;若f x 1 =-x 1<0,即x 1>0,可知m =3,n =5,mn =15,m +n =8;此时m +2=n ,故B 正确;综上所述:mn 的取值集合为3,6,8,9,15 ,m +n 的取值集合为4,5,6,8 ,故CD 错误;故选:AB .37(2024·湖北·二模)如图,棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为棱DD 1的中点,F 为正方形C 1CDD 1内一个动点(包括边界),且B 1F ⎳平面A 1BE ,则下列说法正确的有()A.动点F 轨迹的长度为2B.三棱锥B 1-D 1EF 体积的最小值为13C.B 1F 与A 1B 不可能垂直D.当三棱锥B 1-D 1DF 的体积最大时,其外接球的表面积为252π【答案】ABD【解析】对A ,如图,令CC 1中点为M ,CD 1中点为N ,连接MN ,又正方体ABCD -A 1B 1C 1D 1中,E 为棱DD 1的中点,可得B 1M ⎳A 1E ,MN ⎳CD 1⎳BA 1,∴B 1M ⎳平面BA 1E ,MN ⎳平面BA 1E ,又B 1M ∩MN =M ,且B 1M ,MN ⊂平面B 1MN ,∴平面B 1MN ⎳平面BA 1E ,又B 1F ⎳平面A 1BE ,且B 1∈平面B 1MN ,∴B 1F ⊂平面B 1MN ,又F 为正方形C 1CDD 1内一个动点(包括边界),∴F ∈平面B 1MN ∩平面C 1CDD 1,而MN =平面B 1MN ∩平面C 1CDD 1,∴F ∈MN ,即F 的轨迹为线段MN .由棱长为2的正方体得线段MN 的长度为2,故选项A 正确;对B ,由正方体侧棱B 1C 1⊥底面C 1CDD 1,所以三棱锥B 1-D 1EF 体积为V =13B 1C 1⋅S △D 1FE =23S △D 1FE ,所以△D 1FE 面积S △D 1FE 最小时,体积最小,如图,∵F ∈MN ,易得F 在N 处时S △D 1FE 最小,此时S △D 1FE =12ND 1⋅D 1E =12,所以体积最小值为13,故选项B 正确;对C ,当F 为线段MN 中点时,由B 1M =B 1N 可得B 1F ⊥MN ,又CC 1中点为M ,CD 1中点为N ,∴MN ⎳D 1C ,而A 1B ⎳D 1C ,∴B 1F ⊥A 1B ,故选项C 不正确;对D ,如图,当F 在M 处时,三棱锥B 1-D 1DF 的体积最大时,由已知得此时FD =FD 1=FB 1=5,所以F 在底面B 1DD 1的射影为底面外心,DD 1=2,B 1D 1=22,DB 1=23,所以底面B 1DD 1为直角三角形,所以F 在底面B 1DD 1的射影为B 1D 中点,设为O 1,如图,设外接球半径为R ,由R 2=OO 12+O 1B 12=OO 12+3,R +OO 1=FO 1=2,可得外接球半径R =524,外接球的表面积为4πR 2=252π,故选项D 正确.故选:ABD .38(2024·湖北·二模)我们知道,函数y =f (x )的图象关于坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数.有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数.已知函数f (x )=42x +2,则下列结论正确的有()A.函数f (x )的值域为(0,2]B.函数f (x )的图象关于点(1,1)成中心对称图形C.函数f (x )的导函数f (x )的图象关于直线x =1对称D.若函数g (x )满足y =g (x +1)-1为奇函数,且其图象与函数f (x )的图象有2024个交点,记为A i (x i ,y i )(i =1,2,⋯,2024),则2024i =1(x i +y i ) =4048【答案】BCD【解析】对于A ,显然f (x )的定义域为R ,2x >0,则0<42x +2<2,即函数f (x )的值域为(0,2),A 错误;对于B ,令h (x )=f (x +1)-1=42x +1+2-1=22x +1-1=1-2x 1+2x ,h (-x )=1-2-x 1+2-x =2x -12x+1=-h (x ),即函数y =f (x +1)-1是奇函数,因此函数f (x )的图象关于点(1,1)成中心对称图形,B 正确;对于C ,由选项B 知,f (-x +1)-1=-[f (x +1)-1],即f (1-x )+f (1+x )=2,两边求导得-f (1-x )+f (1+x )=0,即f (1-x )=f (1+x ),因此函数f (x )的导函数f (x )的图象关于直线x =1对称,C 正确;对于D ,由函数g (x )满足y =g (x +1)-1为奇函数,得函数g (x )的图象关于点(1,1)成中心对称,由选项B 知,函数g (x )的图象与函数f (x )的图象有2024个交点关于点(1,1)对称,因此2024i =1(x i +y i ) =2024i =1x i +2024i =1y i =1012×2+1012×2=4048,D 正确.故选:BCD。
一、单选2023年新高考数学选填压轴题汇编题1.(2022.江苏盐城市第一中学高三阶段练习)f(x)的定义域是(0,+o),其导函数为,其导数为g'(x),若,且f(e)=e²(其中e是自然对数的底数),则()A .g (2)<g (1)B .g (3)<g (4)C .f (e )=0D .f (x )-ex ≤0【答案】D,所以由g(x )>0可得x ∈(0,e),由g(x)<0可得x ∈(e,+co)【解析】因为所以g(x)在(0,e)上单调递增,在(e,+oo)上单调递减所以g(2)>g (1),g(3)>g(4),故A、B错误所以f(x)≤ex ,即f(x )-ex≤0,所以D正确,g '(e )=0,所以,解得f'(e)=e ,故C错误故选:D ,则f (-1)、2.(2022·江苏·盐城市第一中学高三阶段练习)已知函娄f(e²)、f(2°)的大小关系是()A .f (-1)<f (2°)<f (e ²)B .f (-1)<f (e²)<f (2)C .f (e ²)<f (-1)<f (2°)D .f (2)<f (e ²)<f (-1)【答案】A 对任意的x ∈(-co,2)U(2,+oo),所以,函数f (x)的图象关于直线x=2对称,f(-1)=f (5),当x >2时,因为二次函数y =(x -2)+1在(2,+oo)上为增函数,且y =(x -2)²+1>0,在(2,+oo )上为增函数,所以,函数y =l n (x -1)、所以,函数f (x )在(2,+co )上为增函数,,其中O <x≤e,则故函数g(x)在(0,e)上为减函数,所以,g(2)<g(e),即所以,eln2=1n 2⁶<2ln e =lne ²,所以,e²>2°,又因为2>2¹=4√2>5,即e ²>2°>5,所以,f(e²)>f(2°)>f(5)=f(-1).故选:A .3.(2022.河北沧州·高三阶段练习)已知双曲线的左、右焦点分别是F,F2,过点F 且垂直于x轴的直线与双曲线交于A,B两点,现将平面AFF2沿FF所在直线折起,点A到达点P处,使。
11.已知函数f (x )=cos x (x ∈(0,2π))有两个不同的零点x 1,x 2,且方程f (x )=m 有两个不同的实根x 3,x 4.若把这四个数按从小到大排列构成等差数列,则实数m 的值为 ( )A.12B .-12C.32D .-32答案 D解析 假设方程f (x )=m 的两个实根x 3<x 4. 由函数f (x )=cos x (x ∈(0,2π))的零点为π2,3π2,又四个数按从小到大排列构成等差数列, 可得π2<x 3<x 4<3π2,由题意得x 3+x 4=π2+3π2=2π,① 2x 3=π2+x 4,②由①②可得x 3=5π6,所以m =cos5π6=-32. 12.已知椭圆x 2a 2+y 2b2=1 (a >b >0),A (2,0)为长轴的一个端点,弦BC 过椭圆的中心O ,且AC →·BC→=0,|OC →-OB →|=2|BC →-BA →|,则其焦距为 ( )A.263B.433 C.463D.233答案 C解析 由题意可知|OC →|=|OB →|=12|BC →|,且a =2,又∵|OC →-OB →|=2|BC →-BA →|, ∴|BC →|=2|AC →|.∴|OC →|=|AC →|. 又∵AC →·BC →=0,∴AC →⊥BC →. ∴|OC →|=|AC →|= 2.如图,在Rt △AOC 中,易求得C (1,-1),代入椭圆方程得124+(-1)2b 2=1⇒b 2=43,∴c 2=a 2-b 2=4-43=83.∴c =263,2c =463.故选C.15.若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为________.答案 6解析 由a ⊥b 得,4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232=6.当且仅当“32x =3y ”时, 即y =2x 时,上式取“=”. 此时x =12,y =1.16.给出以下四个命题,所有真命题的序号为________.①从总体中抽取样本(x 1,y 1),(x 2,y 2),…,(x n ,y n ),若记x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,则回归直线y ^=b ^x +a ^必过点(x ,y );②将函数y =cos 2x 的图象向右平移π3个单位,得到函数y =sin ⎝⎛⎭⎫2x -π6的图象; ③已知数列{a n },那么“对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上”是“{a n }为等差数列”的充分不必要条件;④命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |≥2,则-2<x <2”. 答案 ①②③解析 y =cos 2x 向右平移π3得y =cos 2⎝⎛⎭⎫x -π3=cos ⎝⎛⎭⎫2x -2π3 =cos ⎣⎡⎦⎤⎝⎛⎭⎫2x -π6-π2=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x -π6 =sin ⎝⎛⎭⎫2x -π6. 11.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有A .12种 B. 18种 C .36种 D .54种12.函数[]11,0,2()1(2),(2,)2x x f x f x x ⎧--∈⎪=⎨-∈+∞⎪⎩,则下列说法中正确命题的个数是①函数()ln(1)y f x x =-+有3个零点;②若0x >时,函数()k f x x ≤恒成立,则实数k 的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭; ③函数()f x 的极大值中一定存在最小值,④()2(2),()f x kf x k k N =+∈,对于一切[)0,x ∈+∞恒成立. A .1 B .2 C .3 D .415.已知四面体P- ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC =, 若四面体P - ABC 的体积为32,则该球的表面积为_________. 16.已知2122sin,,,3n n n n a n n N S a a a π*=∈=++⋅⋅⋅+,则30S =________. 11.B 12.C 13.12π 16.45011、设点P 在ABC ∆内部及其边界上运动,并且AP xAB y AC =+,则22(1)(1)x y -+-的最小值为A B .12C .1D .2 12、已知函数2342013()12342013x x x x g x x =+-+-++,则函数(3)g x +的零点所在的区间为A .(1,0)-B .(4,3)--C .(3,2)--或(2,1)--D .(1,2) 15、设2,0a b b +=>, 则当a = ______时, 1||2||a a b+取得最小值. 16、下列说法:(1)命题“,20x x R ∃∈≤”的否定是“,20x x R ∀∈>”; (2)关于x 的不等式222sin sin a x x<+恒成立,则a 的取值范围是3a <; (3)对于函数()(0)1||axf x a R a x =∈≠+且,则有当1a =时,(1,)k ∃∈+∞,使得函数 ()()g x f x kx =-在R 上有三个零点;(4)dx xdx x ⎰⎰≤-e11211(5)已知,,,,25,9,m nm n s t R m n n m s t+∈+=+=>,且,m n 是常数,又2s t +的最小值是1,则3m n +=7.其中正确的个数是 。
专题07 指数型函数的单调性、对称性【巩固练习】1.已知函数1()21x f x a =+-的图象关于坐标原点对称,则实数a 的值为_____. 2. 已知函数31()231x x f x x -=++,则满足不等式()(32)0f a f a ++>的实数a 的取值范围是 . 3.已知4()42xx f x =+,则12310001001100110011001f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为 . 4. 已知函数12()221x x f x x +=-+在区间[-k ,k ]上的值域为[m ,n ],则m +n=________. 5. 已知函数2()21xx f x a =-+是定义域为R 的奇函数,当[3,9]x ∈时,不等式233(log )(2log )0f x f m x +-≥恒成立,则实数m 的取值范围是 .【答案与提示】1.【答案】-1【提示】由(1)(1)0f f -+=立得.2.【答案】12⎛⎫-+∞ ⎪⎝⎭【提示】313122()2212313131x x x x x f x x x x -+-=+=+=-++++的对称中心是(0,0),其定义域为R 且单增. 3.【答案】500【思路一】从所求式中自变量的特征,被动发现函数的对称性.设若01a <<,尝试去求()(1)f a f a +-的值,易得()(1)1f a f a +-=. 【思路二】主动发现函数的对称性,42()14242x x x f x ==-++,设2()42x g x =+,则其对称中心为11,22⎛⎫ ⎪⎝⎭,则()f x 的对称中心也为11,22⎛⎫ ⎪⎝⎭,故()(1)1f x f x +-=. 4. 【答案】2 【提示】21()2121x x f x x -=-++,21()221x x g x x -=-+奇,单增. 5. 【答案】[)3,+∞.【解析】∵函数是定义域为R 的奇函数,∴()0020021f a =-=+,解得12a =. 经检验,当12a =时,函数()f x 为奇函数,即所求实数a 的值为12. 设12,x x R ∀∈且12x x <,则()()1212121212221221x x x x f x f x ⎛⎫-=--- ⎪++⎝⎭()()()()2112122212212121x x x x x x +-+=++()()2112222121x x x x -=++, ∵12x x <,∴21220x x ->,()()1221210x x ++>, ∴()()120f x f x ->,即()()12f x f x >,所以()f x 是R 上的减函数.由()()233log 2log 0f x f m x +-≥,可得()()233log 2log f x f m x ≥--.∵()f x 是R 上的奇函数,∴()()233log log 2f x f m x ≥-,又()f x 是R 上的减函数,所以233log log 20x m x -+≤对[]3,9x ∈恒成立,令3log t x =,∵[]3,9x ∈,∴[]1,2t ∈,∴220t mt -+≤对[]1,2t ∈恒成立,思路一:(转化为二次函数区间上的最大值≤0)令()22g t t mt =-+,[]1,2t ∈,该函数开口朝上,故=1t 或=2t 取得最大值 ∴()()1302620g m g m ⎧=-≤⎪⎨=-≤⎪⎩,解得3m ≥,所以实数m 的取值范围为[)3,+∞. 思路二:(分离变量)即2m t t ≥+对[]1,2t ∈恒成立,设2g()t t t =+,则g()t 在区间⎡⎣上单减,在区间2⎤⎦上单增所以{}max g()max g(1),g(2)3t ==所以3m ≥,故实数m 的取值范围为[)3,+∞.。