8理论力学
- 格式:doc
- 大小:212.50 KB
- 文档页数:9
1第一章 静力学公理和物体的受力分析§ 1-11-1 静力学公理§ 1-21-2 约束和约束力§ 1-3 1-3 物体的受力分析和受力图例题2(1) 二力平衡公理:二力杆(二力构件): 受两力作用而平衡的构件或直杆.A BA F 1F 2F 2F 1B作用在同一刚体上的两个力使物体平衡的必要和充分条件是: 两个力的大小相等,方向相反,作用在同一条直线上.§ 1-1 静力学公理3(2) 加减平衡力系公理:推论: 力的可传性右图中 F = F 1 = F 2A FF 2F 1AB F (F 1 , F 2)(F 2 , F )作用在刚体上的力是滑移矢量.在作用于刚体上的任意一个力系中,加上或去掉任何一个平衡力系,并不改变原力系对刚体的作用.作用在刚体上的力可沿其作用线移动而不改变力对刚体的效应.4(3)力的平行四边形法则R = F 1 + F 2o F 1F 2o F 1F 2o F 1F 2力三角形法则F 1F io力多边形法则R = F 1 + F 2∑==ni iF R 1RR RR 5(4)作用与反作用定律两物体间相互作用的一对力,总是大小相等,方向相反,沿同一直线,并分别作用在这两个物体上.§ 1-21-2 约束和约束力约束反力的方向总是与约束所能阻止的物体的运动或运动趋势的方向相反.其作用点则是约束与物体的接触点.(1)柔体绳索,钢丝绳,胶带,链条等都是柔体.6柔体的计算简图是直线,光滑曲线.(2)光滑接触面柔体的约束反力沿着柔体的中心且背离被约束的物体.光滑接触面的计算简图是平面,光滑曲面. 光滑接触面的约束反力通过接触点,方向沿接触面的公法线并指向被约束的物体.计算简图:约束反力:o X OY O (3) 光滑圆柱铰链7(4)固定铰支座计算简图:A约束反力:AX AY A(5)活动铰支座计算简图:约束反力:AAA R AR AAA8(6)链杆计算简图:约束反力:A AR AR AR BR BB B § 1-3 1-3 物体的受力分析和受力图确定研究对象并解除其全部约束,将作用于其上的主动力和约束反力用力矢量表示在研究对象的计算简图上.其过程为受力分析,其图形为受力图.B A9例题1-1. 重为W 的直杆AB 搁在台阶上 , 与地面上A , D 两点接触 ,在E 点用绳索 E F 与墙壁相连.如图所示 , 略去摩擦.试作直杆的受力图.ABECDFW10A BE C DFW解: 取杆A B 为研究对象.T E N AEF 为柔绳约束.约束反力为T EA 为光滑面约束,公法线垂直于地面,约束反力为N AD 为光滑面约束,公法线垂直于直杆表面,约束反力为N DN D11例题1-2. 由水平杆AB 和斜杆BC 构成的管道支架如图所示.在AB 杆上放一重为P 的管道. A ,B ,C 处都是铰链连接 .不计各杆的自重 ,各接触面都是光滑的.试分别画出管道O ,水平杆AB ,斜杆BC 及整体的受力图.ACBDOP12A CBD OP解:(1)取管道O 为研究对象.OPN D(2)取斜杆BC 为研究对象.CBR CR BABDN D ′R B ′X AY A(3)取水平杆AB 为研究对象.(4)取整体为研究对象.Y AR CX A。
第八章 作业解答参考8-1 椭圆规尺AB 由曲柄OC 带动,曲柄以角速度ω0绕O 轴匀速转动,如图所示。
如OC = BC = AC = r ,并取C为基点,求椭圆规尺AB 的平面运动方程。
解:依题意取C 为基点,将规尺AB 的平面运动分解为随基点C 的平移和绕基点C 的定轴转动。
∵ OC = BC = AC = r∴ ∠CBO = ∠COB设 ∠CBO = φ,则:φ= ω0 t因此,规尺AB 的平面运动方程为:000cos sin C C x r t y r t t ωωϕω===,,8-5 如图所示,在筛动机构中,筛子的摆动是由曲柄连杆机构所带动。
已知曲柄OA 的转速 n OA = 40 r /min ,OA= 0.3 m 。
当筛子BC 运动到与点O 在同一水平线上时,∠BAO = 90°,求此瞬时筛子BC 的速度。
解:由题意可知,此机构中的OA 杆作定轴转动、AB 杆作平面运动、筛子BC 作平移运动;以B 点的速度v B 代替筛子BC 的运动速度,当筛子BC 运动到与点O 在同一水平线上时,A 、B 两点的速度分析如右下图所示,其中v B 与CB 间的夹角为30°、与AB 延长线间的夹角为60°,且:()π4πrad/s 303n ω== (逆转) ()()0.4π m/s A OA v OA ω=⋅= 由速度投影定理可得:cos60A B v v =︒∴ ()()0.8π 2.51 m/s cos60A B v v ==≈︒即:当筛子BC 运动到与点O 在同一水平线上时,筛子BC 的运动速度为2.51 m/s ,方向与水平方向成30°夹角指向左上方。
8-11 使砂轮高速转动的装置如图所示,杆O 1O 2 绕O 1 轴转动,转速为n 4,O 2 处用铰链接一半径为r 2 的活动齿轮Ⅱ,杆O 1O 2 转动时轮Ⅱ在半径为r 3 的固定内齿轮上滚动,并使半径为r 1 的轮Ⅰ绕O 1 轴转动。
理论力学8章作业题解8-2 半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
如曲柄OA 以匀角加速度a 绕O 轴转动,且当运动开始时,角速度00=w ,转角0=j 。
求动齿轮以中心A为基点的平面运动方程。
解:图示,A 轮平面运动的转角为=A j ∠C 3AC 2=j +∠CAC 2由于弧长CC 1=CC 2,故有 ∠CAC 2=r R /j ,所以22/t rr R r r R r R A a j j j j +=+=+=A 轮平面运动方程为ïïîïïíì+=+=+=+=+=22212212)sin()()sin()()cos()(cos )(tr r R t r R r R y t r R r R x A A A a j a j a j8-6两刚体M ,N 用铰C 连结,作平面平行运动。
已知AC=BC=600mm ,在题附图所示位置s mm v s mm v B A /100,/200==,方向如图所示。
试求C 点的速度。
解:由速度投影定理得()()0==BC C BC B v v 。
则v C 必垂直于BC 连线,v C 与AC 连线的夹角为30°。
由()()AC A AC C v v = 即得:s mm v v A C /200== ,方向如题4-6附图示。
解毕。
8-9 图所示为一曲柄机构,曲柄OA 可绕O 轴转动,带动杆AC 在套管B 内滑动,套管B 及与其刚连的BD 杆又可绕通过B 铰而与图示平面垂直的水平轴运动。
已知:OA =BD =300mm ,OB =400mm ,当OA 转至铅直位置时,其角速度ωo =2rad/s ,试求D 点的速度。
C 12Aj C解 (1)平面运动方法: 由题可知:BD AC w w =确定AC 杆平面运动的速度瞬心。
套筒中AC 杆上一点速度沿套筒(为什么?)s rad IAOA IA v A AC /72.00=´==w w , s mm BD BD v AC BD D /216=´=´=w w D 点加速度如何分析?关键求AC 杆角加速度(=BD 杆角速度) 基点法,分析AC 杆上在套筒内的点(B’):(1) tA B n A B A B a a a a ¢¢¢++=r r r r大小:× ∠ ∠ × 方位:× ∠ ∠ ∠ 再利用合成运动方法:动点:套筒内AC 杆上的点B’,动系:套筒。