理论力学课后习题答案第8章动量定理及其应用
- 格式:doc
- 大小:217.00 KB
- 文档页数:4
论力学课后习题答案-第8章--动量定理及其应用第8章 动量定理及其应用8-1 计算下列图示情况下系统的动量。
(1) 已知OA =AB =l ,θ=45°,ω为常量,均质连杆AB 的质量为m ,而曲柄OA 和滑块B 的质量不计(图a )。
(2) 质量均为m 的均质细杆AB 、BC 和均质圆盘CD 用铰链联结在一起并支承如图。
已知AB = BC = CD = 2R ,图示瞬时A 、B 、C 处于同一水平直线位置,而CD 铅直,AB 杆以角速度ω转动(图b )。
(3) 图示小球M 质量为m 1,固结在长为l 、质量为m 2的均质细杆OM 上,杆的一端O 铰接在不计质量且以速度v 运动的小车上,杆OM 以角速度ω绕O 轴转动(图c )。
解:(1)p = mv C =ωm l 25,方向同Cv (解图(a ));(2)p = mv C 1 + mv C 2 = mv B = 2Rm ω,方向同Bv ,垂直AC (解图(b )); (3)j i p )60sin 260sin ()]60cos 2()60cos ([2121︒+︒+︒-+︒-=ωωωωlm l m l v m l v m j i 423]42)[(212121m m l l m m v m m +++-+=ωω(解图(c ))。
习题8-1图ABOθω ABCDωOMvω 60˚(a)(b)(c)8-2 图示机构中,已知均质杆AB 质量为m ,长为l ;均质杆BC 质量为4m ,长为2l 。
图示瞬时AB 杆的角速度为ω,求此时系统的动量。
解:杆BC 瞬时平移,其速度为v Bωωωm l m l l m p p p BCAB 2942=+=+= 方向同v B 。
8-3 两均质杆AC 和BC 的质量分别为m 1和m 2,在C 点用铰链连接,两杆立于铅垂平面内,如图所示。
设地面光滑,两杆在图示位置无初速倒向地面。
问:当m 1= m 2和m 1= 2m 2时,点C 的运动轨迹是否相同。
高等教育出版社,金尚年,马永利编著的理论力学课后习题答案第一章1.2afG — sin0);殳上运动的质点的微写出约束在铅直平面内的光滑摆线afl - COS0)分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取0=0时,s=0H ( x = a(0-sine) * ly = —a(l — COS0)ds - J (dx)2 + (dy)2 二J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin|2a sin舟dO = 4 a (L co 马ee As=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向与dy cos 0 -1 tan <p =—=———〒dx sin 01聶siin<p = -cosI受力分析得:ms = —mg sin (p = mg cos-0 •・B・r a贝U2a sin二6 + a cos二6' = geos-,此即为质点的运动微分方程。
S = =(S = 4a)-(S 二4a) + —(s = 4a) =4a—周期性变化的函数,周期T=2TT产P e 该质点在平衡位置附近作振动时,振动周期与振幅无关,为2讥启.1.3证明:设一质量为m的小球做任一角度日0的单摆运动运动微分方程为m(2 + 2「日)=F gmrO = mg sin £给式两边同时乘以d9 r日d£=gsind8对上式两边关于6积分得护jgcog + c利用初始条件日=日0时日=0故c = -gcos£0由可解得0 =-{2& • J c 0 s-c 0 8o上式可化为-岸•J cos。
-cosgd日=dt两边同时积分可得 评J ; J co £o 页迅咼.1卑匸萼严进-步化简可得t 辟 J 站n r由于上面算的过程只占整个周期的1/4故由 s in 2/sin ¥=s z 两边分别对6 3微分可得cos % =s 碍C 。
理论力学(盛冬发)课后习题答案c h11(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)18. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+2213ml mr =+,式中m 为AB 杆的质量。
(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
24. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。
第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。
在理论力问题的简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。
非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
习题9-2图习题20-3图习题20-3解图OxF Oy F gm Ddα第9章 动量矩定理及其应用9-1 计算下列情形下系统的动量矩。
1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。
2. 图示质量为m 的偏心轮在水平面上作平面运动。
轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。
(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。
解:1、2s m L O ω=(逆)2、(1))1()(Remv e v m mv p A A C +=+==ωRv me J R e R mv J e R mv L A A A C C B)()()(22-++=++=ω(2))(e v m mv p A C ω+==ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++=9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。
解:ω)(22r m R m J L B A O O ++=9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。
若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。
不计铰链摩擦。
解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6565===l OD d 刚体作定轴转动,初瞬时ω=0l mg lmg J O ⋅+⋅=22α222232)2(212131ml ml l m ml J O =+⋅⋅+=即mgl ml 2532=α2rad/s 17.865==g l α gl a D 362565t =⋅=α 由质心运动定理: Oy D F mg a m -=⋅33t4491211362533==-=mg g mmg F Oy N (↑) 0=ω,0n=D a , 0=Ox F习题9-1图(a)v (b)(b ) 习题9-5解图习题9-5图J 9-4 卷扬机机构如图所示。
理论力学(金尚年-XXX编著)课后习题答案详解高等教育出版社的《理论力学课后题答案》一书中,第一章包含了以下三个问题的解答:1.2 题目要求写出在铅直平面内的光滑摆线,并分方程。
解答中使用了微积分和力学原理,得出了运动微分方程。
最后证明了质点在平衡位置附近作振动时,振动周期与振幅无关。
1.3 题目要求证明单摆运动的振动周期与摆长无关。
解答中使用了微积分和力学原理,得出了运动微分方程。
最后通过进一步计算,得出了单摆运动的振动周期公式。
1.5 题目要求使用拉格朗日方程计算质点的运动。
解答中使用了拉格朗日方程,并通过进一步计算得出了质点的运动轨迹。
如图,在半径为R时,地球表面的重力加速度可以由万有引力公式求得:g=\frac{GM}{R^2}$$其中M为地球的质量。
根据广义相对论,地球表面的重力加速度还可以表示为:g=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)$$其中c为光速。
当半径增加到R+ΔR时,总质量仍为M,根据XXX展开,可以得到:frac{1}{(R+\Delta R)^2}=\frac{1}{R^2}-\frac{2\DeltaR}{R^3}+\mathcal{O}(\Delta R^2)$$代入上式可得:g'=\frac{GM}{R^2}\left(1-\frac{2GM}{c^2R}\right)\left(1+\frac{2\Delta R}{R}\right)$$ 化简后得:g'=g-\frac{2g\Delta R}{R}$$因此,当半径改变时,表面的重力加速度的变化为:Delta g=-\frac{2g\Delta R}{R}$$2.在平面极坐标系下,设质点的加速度的切向分量和法向分量都是常数,即$a_t=k_1$,$a_n=k_2$(其中$k_1$和$k_2$为常数)。
根据牛顿第二定律,可以得到质点的运动方程:r\ddot{\theta}+2\dot{r}\dot{\theta}=k_2$$ddot{r}-r\dot{\theta}^2=k_1$$其中$r$为极径,$\theta$为极角。
理论力学Ⅰ第 8 版课后习题答案目录:
第一章静力学公理和物体的受力分析
第二章平面力系
第三章空间力系
第四章摩擦
第五章点的运动学
第六章刚体的简单运动
第七章点的合成运动第
八章刚体的平面运动
第九章质点动力学的基本方程
第十章动量定理
第十一章动量矩定理
第十二章动能定理
第十三章达朗贝尔定理
第十四章虚位移定理
第一章
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
第二章
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕。
1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lk lk l y v ====θθθ938cos sin 2232lk lk y a =-==θθ1-6证明:质点做曲线运动,所以质点的加速度为:n t a a a +=,设质点的速度为v ,由图可知:a a v v yn cos ==θ,所以: yv va a n =将c v y =,ρ2n va =代入上式可得 ρc v a 3=证毕 1-7证明:因为n2a v =ρ,v a a v a ⨯==θsin n所以:va ⨯=3v ρ证毕1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s-= ,x x s s 22= xyoan avy vθθtayzoan aθxovovF N Fg myθ由此解得:xsv x 0-= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得:2002v v s x x x=-=+ (b)将(a)式代入(b)式可得:3220220xlv x x v x a x -=-== (负号说明滑块A 的加速度向上)取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的运动微分方程:N F F ym F mg xm +-=-=θθsin cos其中:2222sin ,cos l x l lx x +=+=θθ0,3220=-=yx l v x将其代入直角坐标形式的运动微分方程可得:23220)(1)(x lxl v g m F ++=1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即:θcos A B v v = (a ) 因为x R x 22cos -=θ (b )将上式代入(a )式得到A 点速度的大小为:22R x xRv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得:222222)(x R R x xω=-将上式两边对时间求导可得:x x R x x R x xx 2232222)(2ω=--将上式消去x 2后,可求得:22242)(R x xR x--=ω (d)由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:g F F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的 运动微分方程:mg F F ym F xm N -+=-=θθsin cos其中:x R x xR22cos ,sin -==θθ, 0,)(22242=--=y R x x R x ω将其代入直角坐标形式的运动微分方程可得2525)(,)(225222242R x x R m mg F R x x R m F N --=-=ωω1-13解:动点:套筒A ;动系:OC 杆;定系:机座;xθ AvAω ONF BRg mFyavevr v运动分析:绝对运动:直线运动;相对运动:直线运动;牵连运动:定轴转动。
理论力学课后习题答案-第10章--动能定理及其应用-)(a)v ϕABC rv 1v 1v 1ωϕ(a)CCωCvωO第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.222222163)2(2121)2(212121BBB CCCmv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m vm T +=⋅++= 3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a ) B AT T T +=)2121(21222211ωC CJ vgWv g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
理论力学第8章习题解答第八章质点系动力学:矢量方法习题解答8-1 一个质量为5 kg 弹头M 以水平速度v = 60 m/s 飞行,在D 处爆炸成位于同一水平面内如图示速度方向的两块碎片A 和B 。
已知碎片A 的速度大小v A = 90 m/s 。
试求:(1) 碎片A 的质量m A ;(2) 碎片B 的速度大小v B 。
解:取弹头M 为研究对象,弹头爆炸前后动量守恒 () 30cos B A v m M Mv -= () 30sin 0B A A A v m M v m --=解得M v vm A A 33=,AA B v v vv v 32--=,代入数据得:kg 92.1=A m ,m/s 64.112=B v .8-2 一个质量为m 1的人手里拿着质量为m 2的物体,以仰角θ,速度v 0向前跳起。
当他到达最高点时将物体以相对速度u 水平地向后抛出。
如果不计空气阻力,问由于物体的抛出,跳远距离增加了多少?解:取m 1和m 2物体系统为研究对象,人跳至最高点时只有水平速度 ?c o s 01v v =,所费时间 gv t ?sin 0=。
抛物前后系统水平动量守恒,即 ()()u v m v m v m m -+=+1211021c o s ?,式中1v 为抛物后人的速度。
解得21201c o s m m um v v ++=?,可见,人的速度增量为2121Δm m um v +=,从而跳远距离增加()gm m uv m v t s 21021sin ΔΔ+==?.8-3质量为m 1的平台AB 放在水平面上,平台与水平面间的滑动摩擦因数为f 。
质量为m 2的小车D 由绞车拖动,相对平台的运动规律为221bt s =,其中b 为已知常数。
不计绞车质量,求平台的加速度。
解:1)设平台与水平面间的滑动摩擦因数比较小,当小车D 相对平台运动时,平台AB 的有速度1v (向左),小车D 的相对速度bt sv == r ,(向右),小车D 的绝对速度bt v v v v +-=+-=1r e a ,(向右),滑动摩擦力为 N fF F = 题8-3图题8-3受力图题8-1图由动量定理,()[]F v bt m v m t=-+-1211d d()021=++-N F g m m解得()212121m m g m m f b m a ++-=, ()g m m bm f 212+≤.当()gm m bm f 212+>时,01=a .8-4 质量为m 1的矩形板可在如图所示的光滑水平面上运动。
理论力学习题册答案班级________姓名________学号________第1章 受力分析概述1-3 试画出图示各物体的受力图。
或(a-2)(a-1)(b-1)(c-1)或(b-2) (d-1)(e-1)(e-2)(f-1)(e-3)(f-2)(f-3)F AF BF A(b-3)(a-3)(a-2)(b-2)(b-1)(a-1)1-4* 图a 所示为三角架结构。
荷载F 1作用在铰B 上。
杆AB 不计自重,杆BC 自重为W 。
试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。
习题1-4图1-7 画出下列每个标注字符的物体的受力图,各题的整体受力图未画重力的物体的自重均不计,所有接触面均为光滑面接触。
abe(d-2)(c-1)(b-1)(b-2) (b-3)(c-2)(d-1)i gj第2章 力系的等效与简化2-3 图示正方体的边长a =,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。
解:)(2)()(j i k i Fr F M +-⨯+=⨯=Fa A O m kN )(36.35)(2⋅+--=+--=k j i k j i Fam kN 36.35)(⋅-=F x M2-9 图示平面任意力系中F 1 = 402N ,F 2 = 80N ,F 3 = 40N ,F 4 = 110M ,M = 2000 N ·mm 。
各力作用位置如图所示,图中尺寸的单位为mm 。
求力系向O 点简化的结果。
FFFF (0,30)(20,20)(20,-30)(-50,0)45yxRF 'ooM yxoRF (0,-6)解:N 15045cos 421R -=--︒=∑=F F F F F x x 045sin 31R =-︒=∑=F F F F y yN 150)()(22'R =∑+∑=y x F F Fm m N 900305030)(432⋅-=--+=∑=M F F F M M O O F向O 点简化结果如图(b );合力如图(c ),其大小与方向为N 150'R R i F F -==Ar A(a)(b)(c)(d)第3章静力学平衡问题3-2图示为一绳索拔桩装置。
高等教育出版社,金尚年,马永利编著的理论力学课后习题答案第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取=0时,s=0 S== 4 a (1) XY设为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。
该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m 的小球做任一角度0θ的单摆运动运动微分方程为θθθF r r m =+)2( θθsin mg mr = ①给①式两边同时乘以d θ θθθθd g d r sin = 对上式两边关于θ积分得 c g r +=θθcos 212 ② 利用初始条件0θθ=时0=θ 故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ-•=lg 上式可化为dt d lg=⨯-•θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121 由于上面算的过程只占整个周期的1/4故⎰-==0222sin 2sin 124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin022θ=K 通过进一步计算可得glπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K K1.5zp点yx解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加,R2=R+,此时总质量不变,仍为M,此时表面的重力加速度可求:④Be ө e tөy由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。
高等教育出版社,金尚年,马永利编著理论力学课后习题答案第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取=0时,s=0XYF Nmg sinφmgmg cosφφS== 4 a (1)设为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。
该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m 的小球做任一角度0θ的单摆运动运动微分方程为θθθF r r m =+)2( θθsin mg mr = ①给①式两边同时乘以d θ θθθθd g d r sin = 对上式两边关于θ积分得 c g r +=θθcos 212 ② 利用初始条件0θθ=时0=θ 故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ-•=lg 上式可化为dt d lg=⨯-•θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121 由于上面算的过程只占整个周期的1/4故⎰-==0222sin 2sin 124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin022θ=K 通过进一步计算可得glπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K K1.5zp点yx解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度 g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加 ,R2=R+ ,此时总质量不变,仍为M,此时表面的重力加速度可求:④e өe tөy由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。
第8章 动量定理及其应用
8-1 计算下列图示情况下系统的动量。
(1) 已知OA =AB =l ,=45°,为常量,均质连杆AB 的质量为m ,而曲柄OA 和滑块B 的质量不计(图a )。
(2) 质量均为m 的均质细杆AB 、BC 和均质圆盘CD 用铰链联结在一起并支承如图。
已知AB = BC = CD = 2R ,图示瞬时A 、B 、C 处于同一水平直线位置,而CD 铅直,AB 杆以角速度ω转动(图b )。
(3) 图示小球M 质量为m 1,固结在长为l 、质量为m 2的均质细杆OM 上,杆的一端
O 铰接在不计质量且以速度v 运动的小车上,杆OM 以角速度ω绕O 轴转动(图c )。
解:(1)p = mv C =ωml 2
5
,方向同C v (解图(a )
); (2)p = mv C 1 + mv C 2 = mv B = 2Rm ,方向同B v ,垂直AC (解图(b ));
(3)j i p )60sin 2
60sin ()]60cos 2()60cos ([2121︒+︒+︒-+︒-=ωωωωl m l m l v m l v m
j i 4
23]42)[(2
12121m m l l m m v m m +++-
+=ωω(解图(c )
)。
8-2 图示机构中,已知均质杆AB 质量为m ,长为l ;均质杆BC 质量为4m ,长为2l 。
图示瞬时AB 杆的角速度为ω,求此时系统的动量。
解:杆BC 瞬时平移,其速度为v B
ω
ωωml ml l m p p p BC
AB 29
42=+=+= 方向同
v B 。
A
B
O
θ
ωC
v C
O 1
A B C
D
ω v B
C 1
C 2 v C 1
v C 2
O
M v
ω 60˚
v
v r
习题8-1解图
(a)
(b)
(c)
x
y
习题8-1图
A
B
O
θ
ω A
B
C
D
ω
O
M
v
ω 60˚
(a)
(b)
(c)
A
B
C
O ω
45˚ 45˚
习题8-2解图
v B
8-3 两均质杆AC 和BC 的质量分别为m 1和m 2,在C 点用铰链连接,两杆立于铅垂平面内,如图所示。
设地面光滑,两杆在图示位置无初速倒向地面。
问:当m 1= m 2和m 1= 2m 2时,点C 的运动轨迹是否相同。
解:根据受力分析知:∑
=0x F ,故系统的质心在水平方向运动守恒。
当m 1= m 2时,系统关于y 轴对称,质心位于y 轴上,且沿y 轴作铅垂直线运动,点C 的运动轨迹亦为铅垂直线。
当m 1= 2m 2时,质心位于y 轴左侧,且作铅垂直线运动,点C 的运动轨迹必为曲线。
故两种情况下,点C 的运动轨迹不相同。
8-4 图示水泵的固定外壳D 和基础E 的质量为m 1,曲柄OA =d ,质量为m 2,滑道B 和活塞C 的质量为m 3。
若曲柄OA 以角速度ω作匀角速转动,试求水泵在唧水时给地面的动压力(曲柄可视为匀质杆)。
解:以整个水泵为研究对象,受力如图(a ): 解法1:用动量定理求解 瞬时t ,系统动量 p = p 2+p 3
ω2
2222d m v m p C ⋅==,方向如图 ϕωsin 3333 d m v m p C ==,方向如图 由质系动量应理:
∑==y y y
F F t p d d (1)
∑==x x x F F t
p
d d
(2)
ϕωϕωsin sin 23232d m d m p p p y y y +⋅=+= ϕωcos 2
232d
m p p p x
x x ⋅=+=
x x x F F F ==∑
g m m m F F F )(321++-==∑y y y 代入(1)、(2),并注意到t ωϕ=得:
g m m m F t d m t d m t y )(sin sin 2d d 32132++-=⎪⎭⎫
⎝⎛+⋅ωωωω
x F t d m t =⎪⎭
⎫
⎝⎛⋅ωωcos 2d d 2
得t ωd m m g m m m F 2y ωcos 2
2)(3
2321++++= (3) t m d F 2x ωωsin 2
2-= (4)
解法2:用质心运动定理解 研究对象及受力同前: R F a =C M 32p p p +=
3
322C C C m m M v v v +=
习题8-4图
A
B
C
m 1g
m 2g
d
习题8-3解图
N A
F N B
y
O
A g 2m C
x
F y
F
g
1m g 3m D
B 3
p
p
(a)
C 2
C 3
ϕ
习题8-6图
t
d d
:3322C C C a a a m m M += 2
22
ωd a =
C ,方向指向O 点; t d a C ωωcos 23=,方向向上。
写出质心运动定理的投影形式:
g m m m F t d m t d m y 2)(cos cos 2
321322++-=+ωωωω x F t d m -=⋅ωωsin 2
22
t d
-m F x ωωsin 2
22⋅=
t d m m g m m m F 2y ωωcos 2
2)(3
2321++++= 结果同解法1。
8-5 图示均质滑轮A 质量为m ,重物M 1、M 2质量分别为m 1和m 2,斜面的倾角为,忽略摩擦。
已知重物M 2的加速度a ,试求轴承O 处的约束力(表示成a 的函数)。
解:以系统整体为研究对象,应用动量定理 θθsin cos d d N 2F F a m t p Ox x
+== g
m m m F F a m a m t
p Oy y )(cos sin d d 21N 21++-+=-=θθ分析M 2可知:θ
cos 2N g m F =
则有
θθθθθcos )sin (sin cos cos 222m g a g m a m F Ox -=-= g m m m g m a m m F Oy )(cos )sin (212221+++--=θθ
8-6 板AB 质量为m ,放在光滑水平面上,其上用铰链连接四连杆机构OCDO 1(如图示)。
已
知OC = O 1D = b ,CD = OO 1,均质杆OC 、O 1D 质量皆为m 1,均质杆CD 质量为m 2,当杆OC 从与铅垂线夹角为由静止开始转到水平位置时,求板AB 的位移。
解:以系统整体为研究对象,根据受力分析知:
∑=0x
F
,
故系统的质心在水平方向运动守恒。
若初始时(设CD = l ):
m
m m l b
m l m l b m b m x C +++++++=
211210
2)sin 2(2)2sin (sin 2θθθ A
B
D
C
O
O 1 θ
习题8-5图
O A
M
M 2
θ
a
习题8-5解图
O
A M 1
M 2
θ
a m 1g m 2g
F N
F Ox
F Oy
m g
习题8-6解图
A
B
D
C
O O 1 θ
A
B
s O 1
习题8-7图
v x
习题8-8图
设杆OC 转到水平位置时板AB 的位移为s ,
m
m m l s b
m s l m l s b m s b m x C +++-+-++-+-=
211212)2()2()2()2(x C 0 = x C )sin 1(2212
1θ-+++=
b m
m m m m s
8-7 匀质杆AB 长2l ,B 端放置在光滑水平面上。
杆在图示位置自由倒下,试求A 点轨迹方程。
解:杆水平受力为零,水平动量守恒;初始静止、质心位置C x 守恒: 0cos αl x C =
ϕcos l x x C A +=
ϕsin 2l y A =由(1),
ϕcos l x x C A =- 即 ϕαcos cos 0l l x A =- (3) 由(2)
ϕsin 2
l y A
= (4)
(3)、(4)两边平方后相加,得
222
04
)cos (l y l x A A =+-α
此为椭圆方程。
*8-8自动传送带如图所示,其运煤量恒为20kg/s ,传送带速度为1.5m/s 。
试求匀速传送时传送带作用于煤块的总水平推力。
解:设皮带作用煤块的总水平推力为F x ,皮带在d t 时间内输送量为t q V d ,由动量定理微分形式:
t F v t q x V d d =⋅
305120=⨯==.v q F V x N
(注:文档可能无法思考全面,请浏览后下载,供参考。
)。