005 第五章 骨骼肌、心肌和平滑肌细胞生理
- 格式:ppt
- 大小:9.91 MB
- 文档页数:89
骨骼肌心肌平滑肌的共同点结构特点肌肉组织在人体中具有非常重要的功能,它们可以通过收缩来产生力量,并使我们的身体进行各种运动。
在人体内,常见的三种肌肉组织包括骨骼肌、心肌和平滑肌。
这些肌肉组织虽然在结构和功能上有所不同,但它们也有一些共同点。
下面我们将详细探讨骨骼肌、心肌和平滑肌的共同点结构特点。
首先,让我们来看看骨骼肌。
骨骼肌是人体内最常见的肌肉组织,它与骨骼相连并通过肌腱与骨骼连接。
骨骼肌的结构非常有序,由许多肌纤维束组成。
每个肌纤维束都包含许多肌纤维,而每个肌纤维却只包含一个细胞。
这些肌纤维内含有许多肌纤维蛋白,这些蛋白负责使肌纤维收缩并产生力量。
另外,骨骼肌内还含有许多血管和神经末梢,以确保肌肉组织能够获得足够的氧气和营养物质。
与骨骼肌相比,心肌是一种特殊的肌肉组织,它只存在于心脏中。
心肌具有自主收缩的特性,这意味着心肌可以在没有任何外部刺激的情况下自发地收缩。
心肌的结构也与骨骼肌略有不同。
心肌细胞呈分枝状且互相连接,形成心肌细胞网。
这种结构保证了心脏可以协调地收缩并将血液输送到全身各个部位。
此外,心肌细胞内富含许多线粒体,以确保持续的能量供应。
最后,我们来看看平滑肌组织。
平滑肌是一种内脏肌肉,存在于人体内各种器官和血管中。
相比于骨骼肌和心肌,平滑肌的结构更为简单。
平滑肌细胞呈长形,没有明显的横纹,因此被称为平滑肌细胞。
平滑肌细胞之间通过细胞间连接物质连接在一起,形成平滑肌组织。
平滑肌的收缩速度相对较慢,但可以持续较长时间,因此适合维持器官内的稳定环境。
尽管骨骼肌、心肌和平滑肌在结构和功能上存在差异,但它们也有一些共同点。
首先,三种肌肉组织都含有许多肌纤维,这些肌纤维内含有丰富的肌纤维蛋白,负责肌肉的收缩。
其次,三种肌肉组织都含有大量的线粒体,以提供肌肉细胞所需的能量。
线粒体是细胞内的能量生产工厂,通过产生三磷酸腺苷(ATP)为肌肉提供所需的能量。
最后,三种肌肉组织都富含血管和神经末梢,以确保肌肉组织能够获得充足的氧气和营养。
骨骼肌心肌平滑肌的异同点
骨骼肌、心肌和平滑肌是三种不同类型的肌肉组织。
它们在结构、功能和分布等方面都有一些不同。
以下是它们之间的异同点:
一、结构方面:
1. 骨骼肌:骨骼肌由横纹肌细胞组成,它们是多核的、长形的、有横纹的细胞。
骨骼肌细胞被包在肌腱中,连接骨头。
骨骼肌还包括血管、神经和结缔组织。
2. 心肌:心肌也是由横纹肌细胞组成,但它们是单核的、短形的,有横纹和纵纹的细胞。
心肌细胞连接在一起形成心肌组织,并由心脏的结缔组织包裹。
3. 平滑肌:平滑肌是由平滑肌细胞组成,它们是单核的、长形的,没有横纹。
平滑肌细胞可以形成平滑肌组织,分布在人体中的许多内脏器官中。
二、功能方面:
1. 骨骼肌:骨骼肌用于支撑身体、运动和产生力量。
它们是意志控制的,意味着我们可以通过自我控制来控制它们的收缩和放松。
2. 心肌:心肌用于泵血,以维持身体的血液循环。
它们是自主控制的,也就是
说,它们是自动地收缩和放松的,我们无法自主控制它们。
3. 平滑肌:平滑肌用于控制内脏器官的大小和形状,例如肠道、血管和子宫。
它们也是自主控制的,但可以被神经和荷尔蒙调节。
三、分布方面:
1. 骨骼肌:骨骼肌分布在人体的骨架系统中,例如肢体、躯干和颈部。
2. 心肌:心肌只分布在心脏中。
3. 平滑肌:平滑肌分布在人体中的内脏器官中,例如肠道、血管和子宫。
骨骼肌、心肌和平滑肌的异同点引言人体的运动和力量来源于不同类型的肌肉组织。
其中,骨骼肌、心肌和平滑肌是最为常见和重要的三种类型。
本文将从结构、功能、控制方式等方面对这三种类型的肌肉进行比较,以便更好地理解它们之间的异同点。
一、结构差异1. 骨骼肌•骨骼肌是由多个束状纤维组成的。
•每个束状纤维由许多长度相等且排列紧密的小颗粒组成,这些小颗粒称为肌原纤维。
•肌原纤维内部包含许多并行排列的微丝,这些微丝由蛋白质组成。
2. 心肌•心肌是由长而粗的纤维束组成的。
•心肌纤维间通过交叉连接形成网状结构。
•心肌纤维内含有许多线状蛋白质,使其具有更高的收缩力。
3. 平滑肌•平滑肌由长而细的细胞组成。
•平滑肌细胞排列松散,形成一种类似网状的结构。
•平滑肌细胞内含有少量线状蛋白质,使其收缩能力较弱。
二、功能差异1. 骨骼肌•骨骼肌负责人体的主动运动,例如行走、跑步和举重等。
•骨骼肌通过收缩产生力量,从而使骨骼运动。
2. 心肌•心肌是心脏的主要组成部分,负责泵血以供应全身。
•心肌具有自律性和自主性,在没有任何外界刺激的情况下也能保持收缩。
3. 平滑肌•平滑肌存在于内脏器官和血管壁中,负责调节这些器官的张力和蠕动。
•平滑肌的收缩速度较慢,但可以保持较长时间。
三、控制方式差异1. 骨骼肌•骨骼肌由神经系统控制。
•神经冲动通过神经元传递到肌肉纤维,引发肌肉收缩。
2. 心肌•心肌具有自律性,可以自主收缩。
•但心脏的节律由心脏起搏器调控,而起搏器受到神经系统的影响。
3. 平滑肌•平滑肌受到神经系统和内分泌系统的共同调控。
•神经冲动和激素可以刺激平滑肌收缩或放松。
四、结构与功能之间的关系骨骼肌、心肌和平滑肌在结构和功能上存在一定的关联。
•骨骼肌由于其束状纤维排列紧密,使其能够产生较大的力量,适合进行快速、短时间的运动。
•心肌由于其特殊的交叉连接结构和高度有序排列的线状蛋白质,使其具有更强大且持久的收缩力,适合持续地泵血。
•平滑肌虽然收缩能力较弱,但可以保持较长时间。
骨骼肌与平滑肌的生理学骨骼肌和平滑肌是人类体内两种重要的肌肉类型,它们在生理学上起着不同的作用。
骨骼肌主要负责支撑和运动身体,而平滑肌则参与内脏器官的运动和调节。
本文将探讨骨骼肌和平滑肌的结构、功能和特点,以及它们在不同生理过程中的作用。
一、骨骼肌的结构与功能骨骼肌是身体最常见的肌肉类型,它通过肌肉纤维的收缩来实现对骨骼的运动。
骨骼肌由肌肉纤维组成,肌肉纤维由肌原纤维、肌节和肌小束组成。
每个肌小束由多个肌纤维束组成,每个肌纤维束又由多个肌原纤维构成。
肌原纤维内含有许多肌原纤维,这是肌肉收缩的基本单位。
骨骼肌的主要功能是进行运动和维持姿势。
当神经系统发出运动指令时,肌原纤维收缩,导致整个肌肉纤维的收缩。
这种收缩产生的力量通过肌腱传递到骨骼上,实现身体的运动。
骨骼肌的收缩还涉及到能量的消耗和产生,这是通过三磷酸腺苷(ATP)的分解来完成的。
二、平滑肌的结构与功能平滑肌是人体内一种无意识控制的肌肉类型,其结构和骨骼肌有所不同。
平滑肌构成细长且没有明显横纹的肌细胞,这些细胞以排列紧密的方式连接在一起,形成平滑肌组织。
平滑肌存在于内脏器官的壁层,如消化道、血管、呼吸道和生殖道等。
平滑肌的收缩和舒张由神经系统、激素和其他生物活性物质调节。
与骨骼肌不同,平滑肌的收缩速度较慢,且能持续更长的时间。
平滑肌的功能包括促进蠕动运动、调节血管的直径、控制消化道的蠕动和收缩、参与呼吸等。
平滑肌还能对外界刺激作出反应,如内脏器官的伸缩、血管的收缩和扩张等。
三、骨骼肌和平滑肌在不同生理过程中的作用骨骼肌和平滑肌在生理过程中发挥着重要的作用,各有其特点。
1. 运动和姿势控制骨骼肌是实现身体运动和维持姿势的主要肌肉类型。
它通过收缩和松弛来实现对骨骼的运动,使我们能够行走、跑跳和完成其他各种动作。
骨骼肌的收缩还与姿势的维持密切相关,即使在休息时也需要一定程度的肌肉紧张来保持身体的平衡。
2. 内脏器官的运动和调节平滑肌在内脏器官的运动和调节中起着重要作用。
骨骼肌心肌平滑肌细胞形态及排列特点
骨骼肌、心肌和平滑肌是人体内三种不同类型的肌肉组织,它们在形态和排列特点上也各具特色。
骨骼肌是人体内最常见的肌肉类型,它们通常与骨骼相连,能够控制身体的运动。
骨骼肌细胞形态呈长条状,长度可达数厘米,直径约为0.1毫米。
每个骨骼肌细胞内含有多个细胞核,
并且细胞内有大量的线粒体和肌原纤维。
这些肌原纤维是由许多小的肌纤维束组成的,每个肌纤维束都由许多小的肌原纤维单元组成。
这些肌原纤维单元内含有许多肌小球蛋白和肌动蛋白,能够使骨骼肌产生收缩。
心肌是构成心脏的主要组织,它们具有自主收缩和自主传导的能力,能够推动血液循环。
心肌细胞形态呈长条形,长度约为0.1毫米,直径约为0.02毫米。
每个心肌细胞内含有一个或两
个细胞核,并且细胞内有大量的线粒体和肌原纤维。
心肌细胞之间通过间质连接紧密相连,这种连接方式能够使心脏产生协调的收缩。
平滑肌是人体内最常见的内脏器官组织,它们能够控制内脏器官的收缩和松弛。
平滑肌细胞形态呈长条形,长度可达数毫米,直径约为0.01毫米。
每个平滑肌细胞内含有一个中央位于细
胞中央的细胞核,并且细胞内有大量的线粒体和微小的肌原纤
维。
平滑肌细胞之间通过间质连接相连,能够使内脏器官产生协调的收缩。
总之,骨骼肌、心肌和平滑肌在形态和排列特点上各具特色,在人体内发挥着不同的生理功能。
1.细胞跨膜物质转运方式:(1)单纯扩散:一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。
如O2、CO2、NH3等脂溶性物质的跨膜转运,也称简单扩散。
(2)膜蛋白介导的跨膜转运:①主动运输:指物质逆浓度梯度或电位梯度的转运过程。
特点:①需要消耗能量,能量由分解ATP来提供;②依靠特殊膜蛋白质(泵)的“帮助”;③是逆电-化学梯度进行的。
分类: A原发性主动转运(泵转运):如K+、Na+、Ca2+逆浓度梯度或电位梯度的跨膜转运。
B继发性主动转运:如小肠粘膜和肾小管上皮细胞吸收和重吸收葡萄糖时跨管腔膜的主动转运。
②被动运输:物质顺电位或化学梯度的转运过程。
特点:①不耗能(转运动力依赖物质的电-化学梯度所贮存的势能)。
②依靠或不依靠特殊膜蛋白质的“帮助”。
③顺电-化学梯度进行。
归属: A 单纯扩散:上已提B易化扩散:一些非脂溶性或脂溶解度甚小的物质,需特殊膜蛋白质的“帮助”下,由膜的高浓度一侧向低浓度一侧移动的过程。
此过程不需消耗细胞能量。
分类: A经载体介导的易化扩散:如葡萄糖由血液进入红细胞B经通道介导的易化扩散:如K+、Na+、Ca2+顺浓度梯度跨膜转运。
经载体介导的易化扩散的特点:特异性、饱和现象、竞争性抑制。
(3)胞吞和胞吐:如白细胞吞噬细菌、异物的过程为入胞作用;腺细胞的分泌,神经递质的释放则为出胞作用。
2.细胞间通讯和信号传导的类型:(1)离子通道受体介导的跨膜信号传导①化学门控通道②电压门控通道③机械门控通道(2)G蛋白耦联受体介导的跨膜信号转导① cAMP-PKA途径②磷脂酰肌醇代谢途径(3)激酶相关受体介导的跨膜信号转导①激酶受体: A酪氨酸激酶受体 B鸟甘酸环化酶受体② JAK相关激酶受体1. 静息电位:细胞在没有受到外来刺激时,处于静息状态下的细胞内、外侧所存在的电位差称静息电位。
特点:①在大多数细胞是一种稳定的直流电位。
②细胞内电位低于胞外,即内负外正。
③不同细胞静息电位的数值可以不同。
摘要:本文通过对兔子离体组织器官至于模拟体内环境的溶液中,以台氏液作灌流液,在体外观察及记录家兔离体肠段的一般生理特性,以及对蛙骨骼肌的电刺激,心肌的电刺激和蛙心灌流,收集它们的生理信号,分析并比较兔子平滑肌、蛙骨骼肌和心肌的生理特性的异同。
结果表明,平滑肌兴奋性较低,具有自动节律性,对化学、温度和机械牵张刺激较敏感,骨骼肌的不应期很短,会发生强直收缩。
心肌的不应期很长,不会发生强直收缩,但会出现期外收缩和代偿间歇。
关键词:动物生理;平滑肌;骨骼肌;心肌;生理特性;取离体兔肠段置于台氏液中,用计算机采集系统扫描其收缩曲线,加入肾上腺素、乙酰胆碱、阿托品等不同的化学药物,观察他们对于离体肠段收缩的影响。
通过这种观察,学习离体肠段平滑肌的实验方法,分析消化管平滑肌组织的特性,如兴奋性、传导性和收缩性等。
制备蛙坐骨神经及腓肠肌标本,采用生理信号采集处理系统,通过改变电流对标本的刺激强度找出阈刺激、阈上刺激和最适刺激,了解刺激强度与肌肉收缩反应大小的一般关系,掌握骨骼肌收缩的总和现象,认识骨骼肌的能够产生强直收缩这一重要生理特性。
同步记录蛙心搏过程(心脏收缩)曲线和心电图曲线,了解心脏电活动与机械活动的时相关系,通过对心电图的分析掌握期前收缩与代偿间歇,并比较心肌和骨骼肌的不同收缩特点。
通过实验,研究这三种肌肉的生理特性,可以更好的分析这三种肌肉在不同温度离子浓度下的收缩状态,从而在生活中运用其中的机理,如在医学、运动比赛、和物理力学。
1 材料与方法1.1实验材料以及仪器家兔、蛙;恒温平滑肌浴管、生理信号采集处理系统、肌张力传感器、万能支架、大铁夹、螺旋夹、双凹夹2个、温度计、烧杯、常用手术器械、玻璃分针、神经-肌肉标本屏蔽盒、刺激电极线、引导电极线、双针刺激电极、滴管、蛙心夹,蛙板,玻璃板,废物缸,培养皿,滑轮,棉花,线;任氏液、台氏液、无钙台氏液、1:50000肾上腺素、1:50000乙酰胆碱、1:50000阿托品。
人体及动物生理学课后习题答案第二章和第三章第二章细胞膜动力学和跨膜信号转导1.哪些因素影响可通透细胞膜两侧溶质的流动?①脂溶性越高,扩散通量越大。
②易化扩散:膜两侧的浓度梯度或电势差。
由载体介导的易化扩散:载体的数量,载体越多,运输量越大;竞争性抑制物质,抑制物质越少,运输量越大。
③原发性主动转运:能量的供应,离子泵的多少。
④继发性主动转运:离子浓度的梯度,转运①单纯扩散:膜两侧物质的浓度梯度和物质的脂溶性。
浓度梯度越大蛋白的数量。
⑤胞膜窖胞吮和受体介导式胞吞:受体的数量,ATP的供应。
⑥胞吐:钙浓度的变化。
2.离子跨膜扩散有哪些主要方式?①易化扩散:有高浓度或高电势一侧向低浓度或低电势一侧转运,不需要能量,需要通道蛋白介导。
如:钾离子通道、钠离子通道等。
②原发性主动转运:由低浓度或低电势一侧向高浓度或高电势一侧转运,需要能量的供应,需要转运蛋白的介导。
如:钠钾泵。
③继发性主动转运:离子顺浓度梯度形成的能量供其他物质的跨膜转运。
需要转运蛋白参与。
3.阐述易化扩散和主动转运的特点。
①易化扩散:顺浓度梯度或电位梯度,转运过程中需要转运蛋白的介导,通过蛋白的构象或构型改变,实现物质的转运,不需要消耗能量,属于被动转运过程。
由载体介导的易化扩散:特异性、饱和现象和竞争性抑制。
由通道介导的易化扩散:速度快。
②主动转运:逆浓度梯度或电位梯度,由转运蛋白介导,需要消耗能量。
原发性主动转运:由ATP直接提供能量,通过蛋白质的构象或构型改变实现物质的转运。
如:NA-K泵。
继发性主动转运:由离子顺浓度或电位梯度产生的能量供其他物质逆浓度的转运,间接地消耗ATP。
如:NA-葡萄糖。
4.原发性主动转运和继发性主动转运有何区别?试举例说明。
前者直接使用ATP的能量,后者间接使用ATP。
①原发性主动转运:NA-K泵。
过程:NA-K泵与一个ATP结合后,暴露出NA-K泵上细胞膜内侧的3个钠离子高亲结合位点;NA-K泵水解ATP,留下具有高能键的磷酸基团,将水解后的ADP游离到细胞内液;高能磷酸键释放的能量,改变了载体蛋白的构型。
骨骼肌和平滑肌的生理学差异骨骼肌和平滑肌是人体中两种主要肌肉类型,它们在结构和功能上存在明显的差异。
了解骨骼肌和平滑肌的生理学差异,有助于我们深入了解肌肉的运作机制以及相关疾病的发生原因。
一、结构差异骨骼肌是一种多核肌肉,由肌纤维束组成。
每个肌纤维束内,有许多长而细的肌纤维,其中含有许多排列有序的肌纤维束(肌小束)。
每个肌小束都由一个束膜包裹,束膜内含有许多肌纤维。
相比之下,平滑肌细胞结构更为简单。
平滑肌细胞呈长条状,没有交叉带(即没有明显的条纹)。
它们是单核的,每个细胞内只有一个细胞核。
二、控制机制骨骼肌的收缩是由神经冲动控制的。
神经冲动从运动神经元传入骨骼肌,释放乙酰胆碱(ACh),激活神经肌肉接头,导致肌纤维收缩。
这种神经-肌肉连接机制被称为神经传导作用,也是骨骼肌能够快速而有力地收缩的原因。
平滑肌的收缩是通过自主神经系统调节的。
自主神经系统分为交感神经和副交感神经两个部分。
交感神经系统通过释放肾上腺素激活平滑肌收缩,而副交感神经系统则通过释放乙酰胆碱来导致平滑肌松弛。
三、收缩速度骨骼肌的收缩速度非常快,能够在短时间内产生较大的力量。
这种快速收缩的能力使骨骼肌适合进行爆发力的活动,如奔跑、跳跃等。
相比之下,平滑肌的收缩速度较慢,力量也较小。
这主要是由于平滑肌细胞内的肌丝结构不同,导致收缩速度较慢。
由于其缓慢而持久的收缩能力,平滑肌适合进行持久性的工作,如消化道蠕动、血管收缩、子宫收缩等。
四、运动调节骨骼肌的运动是由中枢神经系统控制的。
大脑和脊髓接收外部刺激后,发送信号到骨骼肌,调节运动的幅度和速度。
这种神经系统对骨骼肌的调节,使我们能够进行精确的动作控制。
平滑肌的运动则主要受到自主神经系统的调节。
自主神经系统是无意识的,负责调节身体内部的平滑肌活动。
它可以通过调节交感神经和副交感神经的活动来达到激活或抑制平滑肌的效果。
总结:骨骼肌和平滑肌在结构、功能和调节机制上存在许多显著差异。
骨骼肌适合进行快速而有力的运动,受到自主神经系统的控制;而平滑肌适合进行缓慢而持久的运动,受到自主神经系统的调节。