第三节 圆周运动
- 格式:ppt
- 大小:1.12 MB
- 文档页数:34
火车、汽车拐弯的动力学问题一、考点突破:二、重难点提示:重点:1. 掌握火车、汽车拐弯时的向心力来源;2. 会用圆周运动的规律解决实际问题。
难点:能从供需关系理解拐弯减速的原理。
一、火车转弯问题1. 火车在水平路基上的转弯(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
(2)外轨对轮缘的弹力提供向心力。
(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
2. 实际弯道处的情况:外轨略高于内轨道(1)对火车进行受力分析:火车受铁轨支持力N的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G。
(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力N来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtan α=rv m 2①由于轨道平面和水平面的夹角很小,可以近似地认为 tan α≈sin α=h/d ② ②代入①得:mg dh=r v m 2d rgh v思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。
(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力 umg=mv 2/r 。
由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θtanrg当v >θtanrg,侧向下摩擦力的水平分力补充不足的合外力;v <θtanrg,侧向上摩擦力的水平分力抵消部分过剩的合外力;v =θtanrg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向心力。
一、考点突破:二、重难点提示:重点:掌握汽车过桥向心力的来源.点:从难供需关系理解过桥时的最大限速。
汽车过桥的动力学问题1。
拱形桥汽车过拱形桥受力如图,重力和支持力合力充当向心力,由向心力公式r v mFG21=-则rv mG F 21-=。
汽车对桥的压力与桥对汽车的支持力是一对作用力和反作用力,故压力F 1′=F 1=G-m 。
规律:①支持力F N 小于重力G.②v 越大,则压力越小,当v=gr 时,压力=0. ③v=gr 是汽车过拱形桥的最大速度。
2. 凹形桥设桥的半径为r ,汽车的质量为m ,车速为v,支持力为F N .由向心力公式可得:rv m mg F N 2=-所以rv m mg F N 2+=。
规律:①支持力F N 大于重力G②v 越大,则压力越大,故过凹形桥时要限速,否则会发生爆胎危险。
思考:从超失重角度怎样理解汽车过桥时压力和重力的关系?例题1 如图所示,在质量为的电动机上,装有质量为的偏心轮,偏心轮的重心距转轴的距离为r。
当偏心轮重心在转轴M m O 'O正上方时,电动机对地面的压力刚好为零。
求电动机转动的角速度ω。
思路分析:偏心轮重心在转轴正上方时,电动机对地面的压力刚好为零,则此时偏心轮对电动机向上的作用力大小等于电动机的重力,即: ①根据牛顿第三定律,此时轴对偏心轮的作用力向下,大小为,其向心力为:②由①②得电动机转动的角速度为:。
答案:例题2 一质量为1600 kg 的汽车行驶到一座半径为40m 的圆弧形拱桥顶端时,汽车运动速度为10m/s ,g=10m/s 2。
求:(1)此时汽车的向心加速度大小; (2)此时汽车对桥面压力的大小;(3)若要安全通过桥面,汽车在最高点的最大速度。
思路分析:(1)a=v 2/r=2。
5m/s 2(2)支持力F N ,mg-F N =ma , F N =12000N 由牛顿第三定律,压力F N ′=12000N(3)mg=mv m 2/r v m =20m/s答案:(1)2.5m/s 2 (2)12000N (3)v m =20m/s知识脉络:F Mg =F Mg '=注:汽车过拱形桥失重速度过大有飞起的危险,过凹形桥超重速度过大有爆胎的危险。
第三节圆周运动【知识清单】(一)匀速圆周运动的概念1、质点沿圆周运动,如果______________________________,这种运动叫做匀速圆周运动。
2、匀速圆周运动的各点速度不同,这是因为线速度的______时刻在改变。
(二)描述匀速圆周运动的物理量1、匀速圆周运动的线速度大小是指做圆周运动的物体通过的弧长与所用时间的比值。
方向沿着圆周在该点的切线方向。
2、匀速圆周运动的角速度是指做圆周运动的物体与圆心所连半径转过的角度跟所用时间的比值。
3、匀速圆周运动的周期是指____________________________所用的时间。
(三)线速度、角速度、周期1、线速度与角速度的关系是V=ωr ,角速度与周期的关系式是ω=2π/T。
2、质点以半径r=0.1m绕定点做匀速圆周运动,转速n=300r/min,则质点的角速度为_______rad/s,线速度为_______m/s。
3、钟表秒针的运动周期为_______s,频率为_______Hz,角速度为_______rad/s。
(四)向心力、相信加速度1、向心力是指质点做匀速圆周运动时,受到的总是沿着半径指向圆心的合力,是变力。
2、向心力的方向总是与物体运动的方向_______,只是改变速度的_______,不改变线速度的大小。
3、在匀速圆周运动中,向心加速度的_______不变,其方向总是指向_______,是时刻变化的,所以匀速圆周运动是一种变加速曲线运动。
4、向心加速度是由向心力产生的,在匀速圆周运动中,它只描述线速度方向变化的快慢。
5、向心力的表达式_______________。
向心加速度的表达式_______________。
6、向心力是按照效果命名的力,任何一个力或几个力的合力,只要它的作用效果是使物体产生_______,它就是物体所受的向心力。
7、火车拐弯时,如果在拐弯处内外轨的高度一样,则火车拐弯所需的向心力由轨道对火车的弹力来提供,如果在拐弯处外轨高于内轨,且据转弯半径和规定的速度,恰当选择内外轨的高度差,则火车所需的向心力完全由__________和________的合力来提供。
第三节 圆周运动(建议用时:60分钟)一、单项选择题1.(2018·江西师大附中模拟)如图是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,如此自行车前进的速度为( )A.πnr 1r 3r 2B .πnr 2r 3r 1C.2πnr 2r 3r 1D .2πnr 1r 3r 2解析:选D.自行车前进的速度等于后轮的线速度,大小齿轮是同一条传送带相连,故线速度相等,故根据公式可得:ω1r 1=ω2r 2,解得ω2=ω1r 1r 2,小齿轮和后轮是同轴转动,所以两者的角速度相等,故线速度v =r 3ω2=2πnr 1r 3r 2,故D 正确.2.(2017·高考全国卷Ⅱ)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )A .一直不做功B .一直做正功C .始终指向大圆环圆心D .始终背离大圆环圆心解析:选A.由于大圆环是光滑的,因此小环下滑的过程中,大圆环对小环的作用力方向始终与速度方向垂直,因此作用力不做功,A 项正确,B 项错误;小环刚下滑时,大圆环对小环的作用力背离大圆环的圆心,滑到大圆环圆心以下的位置时,大圆环对小环的作用力指向大圆环的圆心,C 、D 项错误.3.(2015·高考福建卷)如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.假设小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小一样且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,如此( )A.t1<t2B.t1=t2C.t1>t2D.无法比拟t1、t2的大小解析:选A.在滑道AB段上取任意一点E,比拟从A点到E点的速度v1和从C点到E点的速度v2,易知,v1>v2.因E点处于“凸〞形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,如此摩擦力越小,可知由A滑到C比由C滑到A在AB段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC段的“凹〞形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C处开始滑动时,小滑块损失的动能更大.故综上所述,从A滑到C比从C滑到A在轨道上因摩擦造成的动能损失要小,整个过程中从A滑到C平均速度要更大一些,故t1<t2.选项A正确.4.如下列图,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动.现使小球A改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B在桌面上始终保持静止,如此后一种情况与原来相比拟,下面的判断中正确的答案是( )A.金属块B受到桌面的静摩擦力变大B.金属块B受到桌面的支持力减小C.细线的张力变大D.小球A运动的角速度减小解析:选D.设A、B质量分别为m、M,A做匀速圆周运动的向心加速度为a,细线与竖直方向的夹角为θ,对B研究,B受到的静摩擦力f=T sin θ,对A,有:T sin θ=ma,T cos θ=mg,解得a=g tan θ,θ变小,a减小,如此静摩擦力大小变小,故A错误;以整体为研究对象知,B受到桌面的支持力大小不变,应等于(M+m)g,故B错误;细线的拉力T =mgcos θ,θ变小,T 变小,故C 错误;设细线长为l ,如此a =g tan θ=ω2l sin θ,ω=g l cos θ,θ变小,ω变小,故D 正确.5.(高考全国卷Ⅱ)如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C.设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F ′N =F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F ′N =Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,应当选项C 正确,选项A 、B 、D 错误.6.如下列图,放置在水平转盘上的物体A 、B 、C 能随转盘一起以角速度ω匀速转动,A 、B 、C 的质量分别为m 、2m 、3m ,它们与水平转盘间的动摩擦因数均为μ,离转盘中心的距离分别为0.5r 、r 、1.5r ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,如此当物体与转盘间不发生相对运动时,转盘的角速度应满足的条件是( )A .ω≤μgrB .ω≤2μg3rC .ω≤2μgrD .μgr≤ω≤ 2μgr解析:选B.当物体与转盘间不发生相对运动,并随转盘一起转动时,转盘对物体的静摩擦力提供向心力,当转速较大时,物体转动所需要的向心力大于最大静摩擦力,物体就相对转盘滑动,即临界方程是μmg =mω2l ,所以质量为m 、离转盘中心的距离为l 的物体随转盘一起转动的条件是ω≤μgl,即ωA ≤2μgr,ωB ≤μgr ,ωC ≤2μg3r,所以要使三个物体都能随转盘转动,其角速度应满足ω≤2μg3r,选项B 正确. 二、多项选择题7.公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.如此在该弯道处( )A .路面外侧高内侧低B .车速只要低于v 0,车辆便会向内侧滑动C .车速虽然高于v 0,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v 0的值变小解析:选AC.当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力提供向心力,所以路面外侧高内侧低,选项A 正确;当车速低于v 0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,但并不一定会向内侧滑动,静摩擦力向外侧,选项B 错误;当车速高于v 0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C 正确;由mg tanθ=m v 20r可知,v 0的值只与斜面倾角和圆弧轨道的半径有关,与路面的粗糙程度无关,选项D错误.8.(2018·浙江杭州五校联考)质量为m 的物体沿着半径为r 的半球形金属球壳滑到最低点时的速度大小为v ,如下列图,假设物体与球壳之间的动摩擦因数为μ,如此物体在最低点时的( )A .向心加速度为v 2rB .向心力为m ⎝ ⎛⎭⎪⎫g +v 2r C .对球壳的压力为mv 2rD .受到的摩擦力为μm ⎝ ⎛⎭⎪⎫g +v 2r 解析:选AD.物体滑到半径为r 的半球形金属球壳最低点时,速度大小为v ,向心加速度为a 向=v 2r ,故A 正确.根据牛顿第二定律可知,物体在最低点时的向心力F n =m v 2r ,故B错误.根据牛顿第二定律得N -mg =m v 2r ,得到金属球壳对物体的支持力N =m ⎝ ⎛⎭⎪⎫g +v 2r ,由牛顿第三定律可知,物体对金属球壳的压力大小N ′=m ⎝ ⎛⎭⎪⎫g +v 2r ,故C 错误.物体在最低点时,受到的摩擦力为f =μN ′=μm ⎝ ⎛⎭⎪⎫g +v 2r ,故D 正确. 9.如下列图,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.如此( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N解析:选AC.根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,如此B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR,v B=v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.10.如下列图,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,如此要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥25m/sD .v 0≤22m/s解析:选CD.解决此题的关键是全面理解“小球不脱离圆轨道运动〞所包含的两种情况:(1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.对于第(1)种情况,当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤mv 2r ,又根据机械能守恒定律有mv 22+2mgr =mv 22,可求得v 0≥2 5 m/s ,应当选项C 正确;对于第(2)种情况,当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr =mv 22,可求得v 0≤2 2 m/s ,应当选项D 正确.三、非选择题11.(2018·江西丰城中学段考)如下列图,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合,转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为45°.重力加速度大小为g ,小物块与陶罐之间的最大静摩擦力大小为F f =24mg .(1)假设小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)假设小物块一直相对陶罐静止,求陶罐旋转的角速度的范围.解析:(1)当摩擦力为零,支持力和重力的合力提供向心力,有:mg tan 45°=mR sin 45°·ω20解得:ω0=2g R.(2)当ω>ω0时,重力和支持力的合力不够提供向心力,当角速度最大时,摩擦力方向沿罐壁切线向下达最大值,设此最大角速度为ω1,受力如图:由牛顿第二定律得,F f cos 45°+F N cos 45°=mR sin 45°ω21F f sin 45°+mg=F N sin 45°联立解得:ω1=32g 2R当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2由牛顿第二定律得,F N cos 45°-F f cos 45°=mR sin 45°ω22F f sin 45°+F N sin 45°=mg联立解得:ω2=2g 2R所以2g2R≤ω≤32g2R.答案:(1)2gR(2)2g2R≤ω≤32g2R12.如下列图,A 、B 两物体用轻绳连接,并穿在水平杆上,可沿杆滑动.水平杆固定在可绕竖直轴PQ 转动的框架上,A 、B 的质量分别为m 1和m 2,水平杆对物体A 、B 的最大静摩擦力均与各物体的重力成正比,比例系数为μ,物体A 离转轴PQ 的距离为R 1,物体B 离转轴PQ 的距离为R 2,且有R 1<R 2和m 1<m 2.当框架转动的角速度缓慢增大到ω1时,连接两物体的轻绳开始有拉力;角速度增大到ω2时,其中一个物体受到杆的摩擦力为零.如此:(1)角速度ω1多大?此时两物体受到的摩擦力各多大? (2)角速度ω2多大?此时轻绳拉力多大?解析:(1)对物体受力分析,开始角速度较小时靠静摩擦力就能提供做圆周运动所需向心力,因此有F f =mω2R ,当静摩擦力达到最大后轻绳才提供拉力.设当物体受到的静摩擦力达到最大值μmg 时,框架的角速度为ω0,如此有μmg =mω20R①由此得ω0=μgR. ①式说明物体离转轴越远,受到静摩擦力越先达到最大值,所以,当角速度为ω1=μg R 2时,轻绳开始有拉力,此时两物体受到摩擦力分别为F f A =m 1ω21R 1=μm 1gR 1R 2, F f B =μm 2g .(2)当角速度ω>ω1时,设轻绳拉力为F T ,对于A 物体有F T +F f A =m 1ω2R 1 ② 对于B 物体有F T +μm 2g =m 2ω2R 2③联立②③式得A 物体受到的静摩擦力为F f A =μm 2g -(m 2R 2-m 1R 1)ω2④由于R 1<R 2和m 1<m 2,如此A 物体受到静摩擦力随角速度增大而减小,当减为零时,框架的角速度为ω2=μm 2gm 2R 2-m 1R 1⑤将⑤式代入③式得轻绳拉力为F T =μm 1m 2gR 1m 2R 2-m 1R 1.答案:(1)ω1=μgR2F f A=μm1gR1R2F f B=μm2g(2)ω2=μm2gm2R2-m1R1F T=μm1m2gR1m2R2-m1R1。
第3节圆周运动的实例分析1.汽车通过拱形桥的运动可看做竖直平面内的圆周运动,在拱形桥的最高点,汽车对桥的压力小于汽车的重力。
2.旋转秋千、火车转弯、鸟或飞机盘旋均可看做在水平面上的匀速圆周运动,其竖直方向合力为零,水平方向合力提供向心力。
3.当合外力提供的向心力消失或不足时,物体将沿圆周运动的切线方向飞出或远离圆心而去的运动叫做离心运动。
一、汽车过拱形桥汽车过凸桥汽车过凹桥受力分析牛顿第二定律mg-N=mv2RN-mg=mv2R牛顿第三定律F压=N=mg-mv2RF压=N=mg+mv2R讨论v增大,F压减小;当v增大到gR时,v增大,F压增大“旋转秋千”运动可简化为圆锥摆模型,如图231所示。
图2311.向心力来源物体做匀速圆周运动的向心力由物体所受的重力和悬线对它的拉力的合力提供。
2.动力学关系mg tan_α=mω2r,又r=l sin_α,则ω=gl cos α,周期T=2π l cos αg,所以cos α=gω2l,由此可知,α角度与角速度ω和绳长l有关,在绳长l确定的情况下,角速度ω越大,α越大。
三、火车转弯1.运动特点火车转弯时实际是在做圆周运动,因而具有向心加速度,由于其质量巨大,所以需要很大的向心力。
2.向心力来源在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和支持力N的合力提供。
如图232所示。
图232四、离心运动1.定义物体沿圆周运动的切线方向飞出或远离圆心而去的运动。
2.原因合外力提供的向心力消失或不足。
3.应用(1)离心机械:利用离心运动的机械。
(2)应用:洗衣机的脱水筒;科研生产中的离心机。
1.自主思考——判一判(1)汽车行驶至凸形桥顶时,对桥面的压力等于车的重力。
(×)(2)汽车过凹形桥底部时,对桥面的压力一定大于车的重力。
第三节 生活中的圆周运动第四节 离心现象及其应用学习目标:1.[科学思维]会分析汽车通过公路弯道和火车通过铁路弯道的受力情况。
2.[科学思维]会分析汽车通过拱形和凹形路面时的受力情况。
3.[科学态度与责任]理解离心现象,知道离心现象的应用和防止。
一、公路弯道1.汽车在水平公路上转弯时,向心力由车轮与路面间的静摩擦力来提供。
2.汽车在内低外高的倾斜路面上转弯时,重力和支持力的合力恰好可以提供汽车转弯所需的向心力。
二、铁路弯道1.火车车轮的特点:火车车轮有突出的轮缘,它在铁轨上可以起到限定方向的作用。
2.火车在水平轨道上转弯时,外侧车轮的轮缘挤压外轨,车轮受外轨的横向力作用,使火车获得转弯时所需的向心力。
3.火车在外轨略高于内轨的弯道上转弯时,借助火车受到的支持力和重力的合力提供部分向心力,减轻轮缘对轨道的挤压。
三、拱形与凹形路面汽车过拱形桥 汽车过凹形桥受力分析向心力F =mg -F N =m v 2r F =F N -mg =m v 2r 对桥的压力 F N ′=mg -m v 2r F N ′=mg +m v 2r 结 论 汽车对桥的压力小于汽车的重力,而且汽车速度越大,对桥的压力越小汽车对桥的压力大于汽车的重力,而且汽车速度越大,对桥的压力越大1.离心现象的概念做圆周运动的物体,在所受合力突然消失或不足以提供圆周运动所需要的向心力的情况下,就会做逐渐远离圆心的运动,这种现象称为离心现象。
2.离心现象的应用利用离心现象工作的机械叫做离心机械。
离心分离器、洗衣机脱水筒都是这样的机械。
3.离心运动的危害(1)由于离心现象,车辆转弯时易出现交通事故,因此在弯道处,都要对车辆进行限速。
(2)高速旋转的砂轮或材料破裂,会因碎片飞出造成事故,所以砂轮的外侧都需要加防护罩。
1.思考判断(正确的打“√”,错误的打“×”)(1)做离心运动的物体一定受到离心力的作用。
(×)(2)离心运动的轨迹可能是直线也可能是曲线。