基本微分积分表
- 格式:pptx
- 大小:182.30 KB
- 文档页数:2
导数公式:(tgx)f = sec2 % (ctgx)f = -CSC2X (SeCXy = SeC X ∙%gx (CSCXy =-cscx∙ CtgX (a x), = a x lna(Ioga X)' = -γ-xlna (arcsin x)' = / 1Nl-X2 / V 1 (arccosx)=——1=/ 、, 1 {arctgx)=-―-1 + x, 、, 1 {arcctgx)= -------- --1 + x 微积分公式基本积分表:^tgxdx = - ln∣cosx∣ + Cdx = ln∣sin x∣ + Cʃsee xdx = ln∣sec x + ⅛Λ∣+C ʃese xdx = ln∣csc x -c⅛x∣ + C P ax f 2 j ∕-ι---- -= sec xdx = tgx j cos X Jr ax f 2 j「-= esc xdx = -ctgx + C J sin x JJsecx√gΛzZx= SeCX +Cdx2a +x'dx2 x -a,2∣∙ dxJ -2 2J a -xdx2 -X2Leg-a a1 1x — a C —— ----- +C 2a x + a1 1 a + x C —— ----- + C 2a a-x•X C =arcsin—+ C2a ʃese x ∙ ctgxdx = - esc x + C∖a x dx = ———I-CJ InQ^shxdx = chx +Cfc/zxt/x = ShX +Cπ2^ π2^I n= ∫sinπXdX= ∫cos n xdx =F1n-2n_________ ____________________ 2 __________ JJ/ + 〃2 dχ = — NX2+ ɑ` + In(X + Jx.+ a?) + CI_________ U I __________________ C 2 I _________JJχ2 —a1dx = jʌ/ɪɪJΛ∕G,2 -X2dx= ɪvɑɪ三角函数的有理式积分:2_____ 22 a . 工 .-x H ----- arcsin—+ C. 2ιι 1 — U2 smx = ------ -, cos% =------- y1 + 〃 1 + w7 2duax = ---- -I + /l-x2和差角公式: •和差化积公式:sin(a ± /?) = SinaCOs 〃 ± cos a sin β COS(O ±β) = cos a cos β μsina sin βfg(a±0 =产吗 lμtga -tgβ ct g (a±^=ctga -ctgβμi ctgβ±ctgasin a + sin 尸=2 sin ,+ 2 cos —~~—2 2• ∙ n ɔ a-∖-β . a -βsin a-smp =2 cos ------- - sin ....... -2 2 o C CC + βCC- β cos a + cos p = 2 cos --- - cos ....... -2 2 .a-∖- β . a — βcos a - cos p = 2 sin ------ sin -------2 2一些初等函数: 两个重要极限:双曲正弦:MX=e 1 2 双曲余弦:MX= e'+e '2 r/y Y PX -f> ~x双曲正切:防X =更竺=chx e x +e xarshx = ln(x + √x 2 +1) archx = ±ln(x + √x 2 -1) Iim x→0sιnx =1lim(l + ⅛ = e = 2.718281828459045 (x)→∞ x三角函数公式:•诱导公式:•倍角公式:Jl•反三角函数性质: arcsinx = ------ a rccosx2高阶导数公式——莱布尼兹(LeibniZ)公式:(MV )⑺=£c ;a (T )v ⑹ k=0=+ + 〃(〃 T )M ("-2)V 〃 +A + 〃(〃 T )A (〃T +1) Ii fG ) +A+uv wk ∖中值定理与导数应用:拉格朗日中值定理:/(⅛)-∕(α) = ∕W(⅛-α) 柯西中值定理:‘3卜=/地F(b)-F(a) Pe)当F(X) = X 时,柯西中值定理就是拉格朗日中值定理。
微積分常用公式及常用述語中英文對照一、基本微分法則L 头Y ,疔爲常數ax S =曲"、応R dx3. ? 1/00 士呂⑴]二?/(或士?匮㈤ ax ax ax红? [fMsM ]二f (力或对+ f^g (对dx5- 土1/(斗)嵐(兀)城盂)卜八小呂(龙护⑴+/(初才(兀)血(尢)十/(尢)呂⑺为S )二、三角函數之微分1. ——sin & - cos 92. —cos 9= — sni 9 d86.d T/W ^x|_ g(x)5. —sec 9= tan Osec 0 dB6. -c E ce = -cotecsce4. 二、心dx 1 + x2四T旨數函數與對數函數之微分d vax三、反三角函數之微分X < 13. —tan_1x =dx6.兰csc-i耳=..-zL_ 必k|g-i3. —ln|x| =丄dx xdx 1 xln a五、舉必達法則udv = uv - J vdu七、Gamma 函數h 厂⑴二‘严沪成,>02. F(x + l)=zr (x)3. 厂(科 +1) = «1A 、Beta 函數1. |3(戸卫)=J :疋J(l-x)E 必 J p>O r q >1)若範需為和瑞證1且旦鴿存在?削旦塔也翁2, 0(?g) =厂3)厂⑷ 厂@ + g)九、施轉體之體積L薄片法:f ,其中力⑴爲立龍在卜⑻中的每一兀處垂直於畫軸之截面積2.囿盤法:7 =兀]严(劝佥3.墊圈法:沧咱严⑴弋乞加4・圓柱殼法:卩=『2耐g十、孤長L £ =打1 + [八>)]咯十一、泰勒級數L金“⑷打3—+響("+•+即〔…)+•十二、長見的馬克勞林辗數2^+1(2«4-1)!2+ 2«3.山…亍亍…+(»莎4.cosh x =----------- 二1 + —+—+、*• ++ --、葢已R2 2J 4! (加)|5* ——= 1 - + X2- Z3 + JL+- Z5 +"・ 3 -1 < <11+X氐叫1+对="訐百亏+…—1M紳2 令+务冷+…一JC X jjr8.呗一・“ +三+ 了+ 丁 +…一十三'質量與質心坐標L若障片爲均勻密度1該薄片的面積爲丄,則其質量爲p‘4。
Ch2、导数与微分§1、导数概念一、引例1、 瞬时速度平均速度00000)()(t t t f t f t t s s vtt --=--=,0t 时刻瞬时速度00)()(lim 00t t t f t f v t t t --=→ 2、切线斜率割线斜率为x x y y --,由切线定义, 切线斜率0000)()(limlim0x x x f x f x x y y k x x MN --=--=→→ 两者的共同点是xyx ∆∆→∆0lim(函数变化率)二、导数定义定义1:设)(x f y =在0x 的某邻域内有定义,如极限00)()(limx x x f x f x x --→存在,则称)(x f y =在0x 处可导,并称此极限为)(x f y =在0x 处的导数,记为0)(0x x dxdy x f ='或。
①导数还有如下形式的定义:xx f x x f x f x yx f x x ∆-∆+='∆∆='→∆→∆)()(lim )(lim)(000000或②导数的几何意义由引例2和定义1可知,导数)(0x f '即曲线)(x f y =在点0x 处切线的斜率。
例1、)(x f 在0x 处可导,求 ①[])()()()(lim )()(lim0000000x f x x f x x f x x f x x f x x '-=∆--∆-+-=∆-∆-→∆→∆②[][]hx f h x f x f h x f h h x f h x f x h )()()()(lim )()(lim00000000----+=--+→∆→ [])(2)()()()()(lim )()(lim000000000x f x f x f h x f h x f h x f h x f x x '='+'=---++-+=→∆→∆定义2:若)(x f y =在开区间()b a ,内每上点均可导,则对任一()b a x ,∈,都有唯一导数值)(x f '与之对应,这构成了()b a ,内的一个函数,称为)(x f y =的导函数,简称导数,记为dxdyx f 或)(切记:()'=''='=)()(,)()(0000x f x f x f x f x x 而不是三、常用导数1、()0)(='=C C x f (1)解:0lim )()(lim)(00=∆-=∆-∆+='→∆→∆xCC x x f x x f x f x x2、()1)()(-='∈=μμμμμx x R x x f (2)解:xx x x x x x x x x f x x f x f x x x ∆⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛∆+=∆-∆+=∆-∆+='→∆→∆→∆11lim )(lim )()(lim )(000μμμμ10lim-→∆=∆∆⋅=μμμμx xx xx x 3、()x x xx f cos sin sin )(='= (3)解:xx x x x x x x x x f x x f x f x x x ∆∆⎪⎭⎫ ⎝⎛∆+=∆-∆+=∆-∆+='→∆→∆→∆2sin 2cos 2lim sin )sin(lim )()(lim )(000 x x x x cos 2cos lim 0=⎪⎭⎫ ⎝⎛∆+=→∆ 同理 ()x x sin cos -='(4)4、()a aa a x f xxxln )(='= (9)解:xa a x a a x x f x x f x f x x xx x x x x ∆-=∆-=∆-∆+='∆→∆∆+→∆→∆1lim lim )()(lim )(000a a x ax a x x x ln ln lim0=∆∆=→∆特别地,()x x e e ='(10)5、()ax x xx f a a ln 1log log )(='= (11)解:x x x x x x x x x f x x f x f a x a a x x ∆⎪⎭⎫ ⎝⎛∆+=∆-∆+=∆-∆+='→∆→∆→∆1log limlog )(log lim )()(lim )(000 ax a x x x a x x x x x ln 1ln lim ln 1ln lim 00=∆∆=∆⎪⎭⎫ ⎝⎛∆+=→∆→∆ 特别地, ()xx 1ln =' (12)四、左右导数定义:如左(右)极限⎪⎭⎫ ⎝⎛∆∆∆∆+-→∆→∆x y x y x x 00lim lim 存在,则分别称之为)(x f y =在点0x 处的左(右)导数,记为())()(0'0'x f x f +-。
基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x=++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+⎰(19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
(完整word版)积分公式2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后⾯真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下⾯我们要学习不定积分的计算⽅法,⾸先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是⾮零常数.现在可利⽤这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成⼀个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分⼦次数不低于分母次数的分式,称为有理假分式.先将其分出⼀个整式x2-1,余下的分式为有理真分式,其分⼦次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利⽤三⾓函数公式将被积函数化简成简单函数以便使⽤基本积分公式.例2.5.8求.解.原式==+C .为了得到进⼀步的不定积分计算⽅法,我们先⽤微分的链锁法则导出不定积分的重要计算⽅法??换元法.思考题.被积函数是有理假分式时,积分之前应先分出⼀个整式,再加上⼀个有理真分式,⼀般情形怎样实施这⼀步骤?4.第⼀换元法(凑微分法)我们先看⼀个例⼦:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分⼦只差常数倍数2,如果将分⼦补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).⼀般地在F'(u)=f(u),u=?(x)可导,且?' (x)连续的条件下,我们有第⼀换元公式(凑微分):u=? (x) 积分代回u=? (x)∫f[?(x)]?' (x)d x=∫f[?(x)]d?(x)=∫f(u)d u=F(u)+C=F[?(x)]+C其中函数?(x)是可导的,且F(u)是f(u)的⼀个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元' (x)d x=d(x) u=(x) 得F(u)+C得F[?(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[?(x)]+C]' =F '[?(x)]?' (x)=f[?(x)]?' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=?(x)可省略不写,显得计算过程更简练,但要做到⼼中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第⼀种形式,其另⼀种形式是下⾯的第⼆换元法.5.第⼆换元法不定积分第⼀换元法的公式中核⼼部分是∫f[?(x)]?'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=?(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另⼀种形式,称为第⼆换元法.即若f(u),u=?(x),?'(x)均连续,u=?(x)的反函数x=?-1(u)存在且可导,F(x)是f[?(x)]?'(x)的⼀个原函数,则有∫f(u)d u=∫f[?(x)]?'(x)d x=F(x)+C=F[?-1(u)]+C .第⼆换元法常⽤于被积函数含有根式的情况.例2.5.18求解.令(此处?(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的⽬的在于将被积函数中的⽆理式转换成有理式,然后积分.第⼆换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,⽤到反函数t=arcsec,但这种做法较繁.下⾯介绍⼀种直观的便于实施的图解法:作直⾓三⾓形,其⼀锐⾓为t及三边a,x,满⾜:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有⼀个重要的积分公式,即分部积分公式.思考题.在第⼆换元法公式中,请你注意加了⼀个条件“u=?(x)的反函数x=?1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下⾯通过例⼦说明公式的⽤法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (⽤分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第⼆次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第⼆次⽤分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(⽤分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第⼆次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第⼆次⽤分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第⼆次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第⼆次凑微分时,必须与第⼀次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产⽣恶性循环,你可试试.(2)积分常数C可写在积分号∫⼀旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (⽤分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .⼩结.(1)分部积分公式常⽤于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在⽤分部积分公式计算不定积分时,将哪类函数凑成微分d v,⼀般应选择容易凑的那个.例如arctan x d,ln x d我们已学习了不定积分的⼏种常⽤⽅法,除了熟练运⽤这些⽅法外,在许多数学⼿册中往往列举了⼏百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之⽤,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使⽤的规律,特别是第⼀步凑微分时如何选择微分.7.积分表的使⽤除了基本积分公式之外,在许多数学⼿册中往往列举了⼏百个补充的积分公式,构成了积分表.下⾯列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln|sin x|+C(16)=(a>0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利⽤积分表中的公式,可使积分计算⼤⼤简化.积分表的使⽤⽅法⽐较简单,现举⼀例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代⼊上式并添上积分常数C即得解答:=.。
微积分公式大全导数公式:基本积分表:三角函数的有理式积分:22221sin cos 11u u x x u u -==++, ,一些初等函数:两个重要极限:22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=⋅'=-⋅'='=+'=222(arcsin )(arccos )1(arctan )11(arc cot )11()x x x x x x thx ch '='='=+'=-+'=2222sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x xdx xdx x C x dx xdx x Cx x xdx x C x xdx x Ca a dx Ca shxdx chx C chxdx shx C x C==+==-+⋅=+⋅=-+=+=+=+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x Cxdx x x C xdx x x Cdx xC a x a a dx x aC x a a x a dx a xC a x a a x xC a=-+=+=++=-+=++-=+-++=+--=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x三角函数公式:·和差化积公式:·积化和差公式:·和差角公式: ·万能公式、正切代换、其他公式:·倍角公式:·半角公式:sin cos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα==-+=====+-[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ= ++-=+--=++-=-+--sin sin 2sin22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=-222222sin 22sin cos cos 22cos 112sin cos sin cot 1cot 22cot 2tan tan 21tan αααααααααααα==-=-=--==-2222222222222tan1tan 22sin cos 1tan 1tan 221tan cos sin 1tan 1tan tan sec 1cot csc 1|sin ||||tan |x xx x x xx x x x xx x x x x x x -==++==++=-=-<<, , , sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=·正弦定理:R C cB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcsin arccos arctan arccot 2 2x x x xππ=-=-高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑值定理与导数应用:拉格朗日值定理。
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
2。
基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x〉0)(4)(a〉0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=—cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=—csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)’ =1/x.事实上,对x〉0,(ln|x|)’ =1/x;若x〈0,则(ln|x|)' =(ln(—x))’ =。
(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2。
5。
4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注。
此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C ,因此在最后写出C即可.例2.5.5求∫(1+)3d x解。
原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2。